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Abstract

In metazoans, each cell type follows a characteristic, spatio-temporally regulated DNA replication program. Histone
modifications (HMs) and chromatin binding proteins (CBPs) are fundamental for a faithful progression and completion of
this process. However, no individual HM is strictly indispensable for origin function, suggesting that HMs may act
combinatorially in analogy to the histone code hypothesis for transcriptional regulation. In contrast to gene expression
however, the relationship between combinations of chromatin features and DNA replication timing has not yet been
demonstrated. Here, by exploiting a comprehensive data collection consisting of 95 CBPs and HMs we investigated their
combinatorial potential for the prediction of DNA replication timing in Drosophila using quantitative statistical models. We
found that while combinations of CBPs exhibit moderate predictive power for replication timing, pairwise interactions
between HMs lead to accurate predictions genome-wide that can be locally further improved by CBPs. Independent feature
importance and model analyses led us to derive a simplified, biologically interpretable model of the relationship between
chromatin landscape and replication timing reaching 80% of the full model accuracy using six model terms. Finally, we show
that pairwise combinations of HMs are able to predict differential DNA replication timing across different cell types. All in all,
our work provides support to the existence of combinatorial HM patterns for DNA replication and reveal cell-type
independent key elements thereof, whose experimental investigation might contribute to elucidate the regulatory mode of

this fundamental cellular process.
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Introduction

In eukaryotes, DNA replication is regulated both in time and
space and initiates at multiple origins along the genome [1]. When
averaged over a cell population, each genomic region shows
reproducible replication timing in S-phase [2,3]. The timing of
replication is a mitotically stable cell-type specific feature of
chromosomes [4] that was recently legitimated as an epigenetic
feature [3]. For example, many tissue specific genes that are subject
to developmental regulation are early replicating in their tissue of
expression but rather late replicating in other tissues. Conversely,
housekeeping genes expressed in almost all tissues are replicated in
the first half of the S-phase [6,7].

From an epigenetic point of view DNA replication constitutes a
periodic window of both risk and opportunity. On one hand,
established chromatin patterns of genome regulation are challenged
by their disruption at the time of replication [8]. On the other hand,
the same process paves the way for epigenetic changes and hence
adaptation of cells to new cues. Our current understanding of the
molecular mechanisms underlying eukaryotic DNA replication is
the result of decades of experimental work that exploited model
organisms as diverse as budding yeast, Xenopus laevis and Drosophila
melanogaster [9]. Very recent work shed light on basic principles
that regulate DNA replication timing at a global level [10-13].
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Genome-wide profiling of DNA replication timing substantially
contributed to these findings and a number of replication timing
profiles are now available for different organisms and cell lines
[4,14-16]. The concurrent release of genome-wide profiles of
histone modifications (HMs) and chromatin binding proteins (CBPs)
through large scale genomic projects such as modENCODE and
ENCODE represents a timely opportunity to systematically
mvestigate the connection between replication timing and chroma-
tin landscape. To date, chromatin feature levels have been
individually correlated genome-wide to replication timing in
different organisms [4,15,17,18] and this studied extended single-
locus-based observations to a genome-wide scale. Particularly, it is
now accepted that euchromatin, gene dense, transcriptionally active
regions of the genome preferentially replicate in early S-phase, as
opposed to constitutive heterochromatin, repetitive, transcription-
ally inactive regions that remain condensed throughout the cell
cycle [1]. However, the observation that gene expression requires to
be averaged over chromatin domains to strongly correlate with their
replication timing [2,19], suggested that this domain-like organiza-
tion of replication timing might be regulated through higher-order
chromatin structure [17,20]. This, in turn, contributed to the
development of qualitative models in which the chromosome
accessibility of a domain affects its replication timing [2,20].
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Author Summary

Before a cell divides, its genome must be faithfully
duplicated to ensure that the daughter cell receives an
exact copy of the parental genetic material. However, this
process requires disruption of chromatin, the combination
of DNA and histone proteins, whose structure and function
have to be readily restored afterwards. This is achieved
through a nuclear process known as DNA replication,
which represents the basis for biological inheritance. In
eukaryotes, genome replication starts from distinct geno-
mic locations termed replication origins. Origins fire in a
temporally regulated, cell-type dependent manner and
timing of DNA replication is therefore the result of this
concerted origin activation. However, replication timing is
not encoded in the genome and its regulatory mode
remains to a large degree unresolved. Here, we system-
atically study the relationship between chromatin, repre-
sented by histone modifications and chromatin binding
proteins, and DNA replication timing. We report combina-
torial histone modification patterns exhibiting regulatory
potential for this process and we characterize those
elements that might contribute to further elucidate the
regulatory mode of this fundamental cellular process.

Recent work linked HMs and CBPs levels to gene expression by
means of quantitative statistical models [21-25], singling out a
small number of HMs predicting the transcriptional output with
high accuracy. However, HMs and CBPs also play a pivotal role in
ensuring faithful completion of the DNA replication program [26—
30]. As no individual HM has been found to be essential for origin
function to date, it is likely that HMs act combinatorially in
regulating DNA replication timing. Indeed, the view of chromatin
as a platform for the assembly of different protein complexes in
conjunction with the combinatorial nature of HMs led to the
formulation of the hotly debated histone code hypothesis, in which
specific combinations of HMs determine unique biological outputs
[31-34]. Although proposed as a regulatory mechanism of
chromatin-templated processes and well investigated for transcrip-
tional regulation, this concept has to our knowledge not yet been
demonstrated for DNA replication. Seminal work by Eaton et al.
[15] tightened the link between chromatin features and DNA
replication timing by showing that clusters of chromatin features
are predictive for early origin activity and changes thereof in
Drosophila. Here, we set out to systematically characterize this link
and investigate the combinatorial relevance of chromatin features
in predicting replication timing. Using a comprehensive data
collection encompassing 95 HMs and CBPs profiled by the
modENCODE project or independent studies in Drosophila cell
lines, we asked the following five questions: i) Is there a quan-
titative relationship between HMs and CBPs levels and DNA
replication timing? 11) Do these features act combinatorially and if
yes, do HMs and CBPs convey redundant or distinct information?
iii) Which features contribute the most in this relationship? iv) Do
these rules apply genome-wide? v) Can these rules be generalized
to various cell types? We addressed these points using Lasso (Least
Absolute Shrinkage and Selection Operator), an L'-norm regu-
larized linear model [35]. We systematically analyzed the
predictive power of different subsets of chromatin features and
combinatorial schemes thereof, applied feature importance
analyses to obtain a simplified, biologically interpretable model
and revealed cell-type independent combinations of chromatin
features potentially impacting origin firing and likely to be
conserved across species.
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Results/Discussion

Individual chromatin features exhibit limited predictive
power on DNA replication timing

Recent studies reported moderate correlations between single
chromatin features and DNA replication timing [15,18,36,37].
However, these analyses were based on a rather limited number of
genome-wide profiles. Here, we considered a genome-wide
replication timing profile generated by [15] using tiling arrays and
investigated the individual predictive power of a comprehensive set
of 95 chromatin features (30 HMs - more precisely 28 HMs and 2
histone variants hereinafter collectively referred to as HMs - and 65
CBPs) profiled in Drosophila S2 cells using ChIP-chip or ChIP-Seq
and generated by modENCODE [38] or independent studies. The
goal of our study is to predict the replication timing across the
Drosophila S2 genome. To this purpose, as the precise genomic
coordinates of replication origins remain rather elusive in metazo-
ans, we first considered a set of 7552 unique promoters (see
Methods) for model learning. Several studies reported that
replication initiation sites are associated with transcriptional units
[14,36,39] and share common sequence motifs thereof [36]. In
addition, the majority of ORC binding sites overlap with
transcription start sites (I'SSs) in Drosophila [40]. Feature levels
and replication timing were therefore estimated for each promoter
in a 1 kb window centered on its TSS (see Methods). As we
integrated data sets generated by different laboratories and
platforms, we first hierarchically clustered chromatin feature profiles
at promoters and verified that feature levels reflected known
biological associations between CBPs and HMs (Supplementary
Figure S1). Then, for each feature we fitted cross-validated
univariate linear regression models to analyze its predictive power
on promoter-proximal replication timing. Our results confirm that
individual features are rather poor predictors of replication timing
(Supplementary Figure S2). Single HMs are on average significantly
more predictive than individual CBPs (p<1.8:10~%, two-sided t-
test), but only few of them, i.e. H4K8ac, H3K36mel, H3K18ac,
H4Kb5ac, H3K4mel, can predict replication timing with an
accuracy (Pearson’s correlation coefficient, hereinafter PCC or p)
of p>0.3. As previously shown [15], histone variants H2Av and
H3.3 are positively correlated with replication timing. In addition,
we found that levels of H4K5ac are predictive for early replication
and that levels of H4K20mel, total H4 and linker histone H1, are
individually predictive for late replication (Supplementary Figure
S2). These results support the current view in which levels of
acetylated and mono-methylated histones, localizing within euchro-
matin and marking accessible chromatin, are predictive for early
replication, in contrast to levels of heterochromatic marks. Among
CBPs, RNA Pol II (Pol IT) and chromatin remodelers (such as ISWI,
NURF and GAF) were previously shown to correlate with early
replication timing in Drosophila [15]. Besides confirming these
observations, our analysis highlights two CBPs, i.e. the chaperone
protein Hsp90 and the ATP-dependent chromatin-remodeling
factor dMi2, as top-ranked features predictive for early replication.
The latter is involved in rapid nucleosome turnover, a distinguishing
feature of origins of replication and promoters [41], and has been
very recently implicated in regulation of higher-order chromatin
structures and local decondensation of chromatin in Drosophila [42].
Hsp90 is involved in a number of chromatin processes [43].
Particularly, chromatin-associated Hsp90 is widespread genome-
wide, where it binds to the T'SSs of Pol II paused genes [44]. Our
finding suggests that Hsp90 might be involved in regulating the
timing of replication origin firing via a transcriptional-dependent or
independent mechanism. However, experimental work will be
required to detail this mechanism and to exclude an indirect role of
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Hsp90 as a marker of accessible chromatin. All in all, the limited
predictive power of single features led us to hypothesize the
existence of a combinatorial interplay between chromatin features
enabling an accurate description of their relationship with repli-
cation timing. In the next sections, we test this hypothesis.

Combinatorial contribution of chromatin binding
proteins to replication timing prediction

Quantitative modeling of the relationship between chromatin
features and DNA replication timing requires testing of combina-
torial patterns of chromatin features. In this high dimensional space,
over-fitting represents a significant risk and therefore model regu-
larization and cross-validation are required to effectively minimize
it. Thus, our analysis is based on the statistical model Lasso (Least
Absolute Shrinkage and Selection Operator, see Methods for
details) [35,45], a regularized linear model that penalizes model
complexity through an L' norm penalty. As a consequence, Lasso
coeflicients are sparse and feature selection is performed implicitly,
facilitating model interpretation [35,46]. Regularized regression
methods have been previously employed to discover transcription
factor binding motifs [47] and Lasso was very recently applied to
predict RNA expression and promoter-proximal pausing from
CBPs profiles [48].

Figure 1A illustrates our modeling framework. First, unique
promoters were randomly partitioned into training and test sets
(see Methods). Lasso models were then trained with ten-fold cross
validation on the training set. To this purpose, the training set was
randomly partitioned into ten subsets of equal size. Then, at each
round of cross validation one subset was used in turn as validation
set, while the model was learnt on the remaining nine subsets. The
resulting ten models were averaged to obtain the cross-validated
model. Prediction accuracy was evaluated on the test set and
defined as the PCC between measured and predicted replication
timing.

We started by analyzing the combinatorial predictive power of
CBPs. When CBP levels were jointly considered, the model
achieved an accuracy of p=0.50 (Figure 1B and Supplementary
Figure S3A, B). Although significantly higher than the predictive
power of any individual protein, this value is still modest. Thus, we
investigated whether the addition of multiplicative interaction
terms, in the form of second-order interactions, could raise the
predictive power of CBPs. We found that allowing for pairwise
interactions between CBPs significantly improved the model
accuracy (p=0.60, Figure 1C and Supplementary Figure S3A),
suggesting that CBPs might combinatorially contribute to the
regulation of replication timing. Notably, the higher predictive
power of the latter model is not a mere consequence of an
increased complexity as consideration of third-order interactions
led to predictions that did not correlate any better with measured
replication timing (p=0.61, Supplementary Figure S3A, C).
Taken together, these results indicate that CBPs and their pairwise
interactions can account for a moderate yet substantial fraction,
approximately 35%, of the variation in replication timing.

Combinatorial contribution of histone modifications to
replication timing prediction

We next analyzed the relationship between HM levels and
DNA replication timing. As for CBPs, we combined HMs using
Lasso. The prediction accuracy achieved with HMs (p=0.61,
Figure 1B and Supplementary Figure S3A,D) is significantly
higher than what we previously obtained with CBPs and as for the
latter, significantly higher than the predictive power of any
individual feature. As the histone code hypothesis postulated that
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HMSs act combinatorially in regulating chromatin processes, with a
one-to-one mapping between HM combinations and biological
outcomes [31-33], we tested whether considering multiplicative
second-order interactions between HMs could further increase the
accuracy of the previous model. Inclusion of these combinations
significantly raised the model accuracy from p=0.61 to p=0.69
(Figure 1B,D), suggesting that a combinatorial interplay between
pairs of HMs might modulate DNA replication timing in
Drosophila. This result suggested us to test whether more complex
combinations, in the form of multiplicative third-order interactions
between HMs, could bear even more predictive power than
pairwise interactions. On the same line as for CBPs, we found that
the prediction accuracy did not significantly increase (p = 0.69,
Supplementary Figure S3A,E) solely as a consequence of a higher
model complexity. Although this result implies that combinatorial
patterns of HMs exhibit low complexity, in line with observations
in vivo pertaining gene expression regulation [34], a very recent
computational analysis showed that a simple histone code, based
on modification at two histone residues, may suffice to generate a
number of different circuits featuring heritable bistability [49].

In summary, we showed that HMs and their pairwise
interactions are more predictive for replication timing than the
corresponding terms involving CBPs. This result suggested to
analyze the joint predictive power of CBPs and HMs and to test
their redundancy for replication timing predictions.

Combinations of histone modifications and chromatin
binding proteins predict replication timing with high
accuracy

To test whether CBPs and HMs convey redundant information
on replication timing, we trained a Lasso model by jointly
considering these two sets of features. We found that predictions
based on combinations of CBPs and HMs exhibit a significantly
lower cross-validated mean squared error (MSE) than the models
trained on CBPs or HMs alone (Figure 1B) and thereby
outperformed (p =0.67, Supplementary Figure S4A) the accuracy
of models solely based on CBPs (p=0.50, Supplementary Figure
S3B) or HMs (p=0.61, Supplementary Figure S3D). However,
this result indicates a partial redundancy between CBPs and HMs,
which was further supported by a simple analysis of model
residuals. As residuals are differences between measured and
estimated DNA replication timing, they can be seen as information
about replication timing that can not be explained by the model.
Thus, we first considered the residuals of the model trained on
CBP levels. Then, we tested whether HMs exhibit any predictive
power for these residuals. Under the hypothesis that CBPs and
HMs convey redundant information on replication timing, no
correlation between model predictions and residuals is expected.
Conversely, we found that HM levels can predict replication
timing residuals with a highly significant yet moderate accuracy
(p=0.46). A similar result, despite a lower predictive power
(p=0.31), was obtained when CBPs were used to predict the
residuals of the model trained solely on HMs. These results
suggested us to investigate whether the introduction of CBPs could
comparably raise the predictive power of second-order interac-
tions between HMs. Indeed, CBPs in conjunction with pairwise
mteractions of HMs led to a model able to predict replication
timing with higher accuracy (p =0.72, Figure 1E) than HMs alone
(p=0.69, Figure 1D) and significantly reduced the cross-validated
MSE as compared to the latter (Figure 1B). Finally, we tested
whether allowing multiplicative cross-interactions between HMs
and CBPs could further increase our ability to predict replication
timing. However, despite a large increase in complexity this model
did not outperform the previous one simply based on CBPs and
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Figure 1. Schematic representation of the modeling framework and combinatorial predictive power of chromatin features. (A)
Schematic illustration of the modeling framework. DNA replication timing (ToR, blue line) and chromatin feature signals (f1,....f, indicated by
gradient filled rectangles) were quantified for each promoter in a 1 kb window centered on its TSS (). The resulting input data matrix is shown
(bottom left), where feature levels are encoded by different colors ranging from dark green to red. TSSs were then randomized according to a
permutation P and split in training and test sets. The training set is used to train a Lasso model using 10-fold cross validation. At each model fit (CV,
to CV4p), a TSS can either be assigned to the training set (black square) or to the test set (white square). The model was then used to infer the
replication timing of promoters in the test set and the model accuracy is evaluated with respect to their experimentally measured replication timing.
(B) Cross-validated mean squared error (CV-MSE) as a function of the regularization parameter (log,((4)) for different Lasso models trained with ten
fold cross-validation. The average CV-MSE is reported as solid line, with minimum and maximum CV-MSE drawn as dashed lines. A vertical line
reaching a CV-MSE curve indicates the value of 1 that was used to generate predictions from the corresponding model. The different sets of features
used for model training are indicated in the legend. (C-E) Predicted versus experimentally measured replication timing of the test set represented as
smoothed color density scatter plot. Model predictions were generated using second-order interactions between CBPs (CBPs?, C), HMs (HMs?, D) and
HMs2+CBPs (E). Prediction accuracies are Pearson correlation coefficients. Orange lines indicate the model fit, whereas dashed gray lines indicate the
bisector y=x.

doi:10.1371/journal.pcbi.1003419.9g001

interactions between HMs (p=0.74, Supplementary Figure S4B),

confirming once again that in our framework prediction accuracies Thorough model analysis reveals combinations of

are not a sheer consequence of the number of features. Similarly,
further extension of the model by inclusion of RNA-Seq-based
gene expression levels from [50] or multivariate Hidden Markov
Model-based chromatin states [51,52] from modENCODE [53]
did not significantly improve prediction accuracy (p=0.72 and
data not shown). Taken together, these results indicate that CBPs
and HMs are able to explain slightly more than 50% of the
variation in DNA replication timing and suggest that these two sets
of features contain partially complementary information that,
when jointly captured, enable accurate predictions.
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histone modifications harboring most of the information
about DNA replication timing

Here, we consider the Lasso model based on CBPs and pairwise
interactions between HMs, we analyze feature importance and
identify simplified models able to achieve a substantial fraction of
the full model accuracy using few chromatin features. Although a
measure of feature importance is not directly available for Lasso,
different approaches can be employed to overcome this issue. First,
the geometric constraints imposed to Lasso solutions result in an
mmplicit feature selection [45]. This process depends on the extent of
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the regularization applied to the model, tuned by the parameter A.
The stronger the regularization, i.e. the higher A, the smaller the
number of selected features (see Methods for details). Consequently,
there exists an entire set of Lasso models along the A-path (i.e. the
sequence of values of 4 used to fit the model) each characterized by
different model coefficients. Figure 2A shows the model coeflicient
curves along this path. Searching for simplified models is equivalent
to identify those models with few non-zero coefficients and relatively
high accuracy along the A-path. Therefore, we considered all
models reaching at least 70% of the full model accuracy and
identified a first simplified model solely based on four terms
involving four histone modifications, i.e. H3K36mel, H4K8ac,
H2BUb and H3K79mel, able to reach an accuracy of p=0.55,
namely 76% of the full model accuracy. H3K36mel and H4K8ac
are predictive for early replication whereas pairwise interactions
between H2BUb and H3K36mel or H3K79mel are predictive for
late replication (Figure 2A). Interestingly, H3K36mel exhibits
opposite effects depending on whether it is considered alone or
through its interaction with H2BUD, suggesting a context-depen-
dent role of this modification.

If a group of features is characterized by high pairwise
correlations, Lasso tends to arbitrarily select only one representative
feature from the group [54]. However when not a single, but several
models are fit on resampled data, feature selection frequencies can
be used to estimate variable importance. Features indispensable to
achieve high prediction accuracy will be selected with high
frequency whereas redundant features or representatives of group
effects will dilute their selection probabilities. Hence, to test whether
the HM s identified above are indispensable for accurate predictions
or rather representatives of functional groups of HMs, we estimated
feature selection probabilities using bootstrap-Lasso [48]. In this
method, data points are repeatedly sampled with replacement
(bootstrap) to generate data sets used to train a full set of Lasso
models along a fixed A-path. The selection probability of each
feature can then be estimated by considering the normalized
frequency of non-zero coeflicients (see Methods). Our bootstrap-
Lasso analysis indicates that H3K36mel and H4K8ac, followed by
Hsp90, are selected with high probability and predictive for early
replication timing (Figure 2B). Conversely, three terms involving
H2BUb, namely the modification alone and its interaction with
H3K36mel and H3K79mel, are characterized by high selection
probabilities and predictive for late replication. These results
indicate that the previously identified simplified model was based
on indispensable features and led us to test whether the addition of
Hsp90 and H2BUD could further raise its predictive power. Indeed,
we found that the inclusion of these two features substantially raised
the prediction accuracy of the simplified model to p=0.58, thus
reaching 80% of the full model accuracy. The overall significance of
H3K36mel, H4K8ac, H2BUb and Hsp90 in predicting replication
timing was further substantiated using a bootstrap-based approach
in which these features were individually excluded from the model
fit (see Methods, Figure 2C). Furthermore, since the Hsp90 profile
was generated by ChIP-Seq, we technically excluded that this
feature was selected solely based on sequencing depth as Hsp90 was
neither among highest coverage features (Supplementary Figure
S5A) nor a strong correlation between coverage and individual
predictive power of ChIP-Seq-derived chromatin features emerged
in our analysis (p =0.07, Supplementary Figure S5B).

Finally, we independently sought for simplified models using
exhaustive model search as proposed in [21,22]. To this purpose, we
considered all possible combinations of two, three and four
chromatin features and used each combination to train a multi-
variate linear regression model (see Methods). Prediction accuracies
were recorded for a total of 3 188 010 models (Supplementary
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Figure S6). The Bayesian Information Ciriterion (BIC) was used to
account for model complexity and monotonically decreased as more
features were introduced, indicating that including up to four
features is beneficial for prediction accuracy (Supplementary Figure
S6A) irrespective of model complexity. Notice that we could not
generate models with five or more features as the number of -

features models (1) grows with the binomial coefficient <9kS>’ Le.

n~5.8:107 for k=>5. However, we determined top two-features
(H3K36mel, H4K8ac, p=0.46), top-three features (Hsp90,
H2BK5ac, H4K8ac, p=0.51) and top-four features (H2BUb,
H3K36mel, H3K36me3, Hsp90, p=0.53) models. Although these
combinations differ slightly from the ones determined via bootstrap-
Lasso, all features therein belong to at least one top-ranked simp-
lified model. Moreover, by analyzing the frequency of appearance
of chromatin features in four-features simplified models reaching at
least 60% of the full model accuracy, we found that features
constituting the bootstrap-Lasso simplified model were clearly
overrepresented in the feature appearance profile (Figure 2D).
Collectively, these results highlight key combinations of HMs and
interactions thereof that harbor most of the information about
replication timing. These combinations are indispensable to achieve
faithful predictions and likely to reflect regulatory principles
conserved across species. Particularly, monomethylation of
H3K36 by the yeast Set2 methyltransferase has been shown to
regulate the time of Cdc45 association with origins. Cdc4) is
recruited to replication origins at the time of initiation and this
binding event is delayed in Set2 mutants, suggesting a direct
involvement of H3K36mel in replication initiation [55]. Histone
hyper-acetylation marks active origins of the Drosophila chorion loci
[28] and H4K8ac colocalizes with ORC at these developmentally
regulated genomic regions. Chorion origin activity can be altered by
tethering of the histone deacetylase Rpd3 or of the acetyltransferase
Chameau (the ortholog of human MYST2/HBO1), which reduces
and increases origin firing, respectively [28]. In addition, recent
work indicated histone hypoacetylation as a requirement for
maintaining late replication timing of constitutive heterochromatin
[56], supporting a view in which histone acetylation levels modulate
origin activity. The Ubiquitination of H2B by the ubiquitin ligase
Brel plays multifaceted, transcriptional dependent as well as
independent roles at chromatin. The mark is mostly euchromatic
and has been shown to be required for efficient transmethylation of
H3 at positions K4 and K79 [57]. Very recent work implicated
H2BUDbI in yeast DNA replication [58], where the mark promotes
nucleosome assembly and their stability behind advancing replica-
tion forks. Although our results may seem to contradict these
findings, the impact of a variable on replication timing can be
uncoupled from its role during the DNA replication process per se.
Interestingly, H2BUbl was shown to modulate the overall
chromatin structure by inducing nucleosome stability and mediat-
ing chromatin compaction, in contrast to its supposed role in
opening up chromatin [59]. Nucleosome stabilization, in turn, can
result in transcriptional repression and a global increase of H2Bub1
levels has been shown to impede cell growth in yeast [59]. Thus, we
propose a negative effect of H2BUb on replication timing of
euchromatin, where H2BUDb enriched regions are characterized by
reduced accessibility and more stable nucleosomes. In addition,
the two interaction terms involving H2BUb, namely H2BUb:
H3K36mel and H2BUb:H3K79mel, suggest a hierarchy whereby
nucleosome stability exerts a dominant effect over the presence of
activating marks. Alternatively, these pairwise interactions might
indicate a role of Brel-Set2 and Brel-Dotl complexes in delaying
euchromatic origin firing. Finally, as the H2BUb antibody used
to generate the H2BUb ChIP-chip profile is not specific for
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Figure 2. Feature importance analysis and simplified models. (A) Values of the model coefficients along the A-path, i.e. the sequence of
values of the regularization parameter A used to fit the model. The A-path is truncated at the value of 1 used for model predictions. Line thickness is
proportional to the total number of models in which a non-zero coefficient is assigned to the corresponding feature. The vertical dashed line denotes
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the value of 1 yielding the selected simplified model solely based on the four indicated terms. (B) Scatter plot of model features according to their z-
scores and bootstrap-Lasso selection probabilities (p). Features with p>0.75 are colored in red (positive coefficient values) or blue (negative
coefficient values) and their coefficient distributions are shown on the right as violin plots. Features are ranked by decreasing selection probabilities.
(C) Boxplot of prediction accuracies (PCC on test sets) of 100 Lasso models where the indicated feature was excluded from the model fit. Rrp6 was
used as control, as stability analysis indicated no significant role for this feature in predicting replication timing. p-values were obtained using a two-
sided Wilcoxon rank sum test. (D) Frequency of appearance of chromatin features in four-features simplified models as a function of their model
accuracy with respect to the full model. Only simplified models reaching at least 60% of the full model accuracy are shown.

doi:10.1371/journal.pcbi.1003419.g002

mono-ubiquitination, polyubiquitylation of H2B might also be
responsible for the inferred effect of H2BUb on replication timing.
In yeast, extensive H2B polyubiquitylation occurs with at least two
distinct modes, Brel-dependent and independent, suggesting
distinct, yet not elucidated, biological functions [57].

Chromatin feature levels at promoters enable faithful
prediction of the whole genome replication timing
profile

To assess whether the combinations of chromatin features learnt
at promoters allow accurate prediction of the genome-wide
replication timing profile, we segmented the Drosophila genome in
10 kb bins and computed feature levels therein (see Methods).
Then, we used the Lasso model based on CBPs and pairwise
interactions between HMs trained at promoters to evaluate its
accuracy in predicting the whole genome replication timing profile
of S2 cells. Interestingly, we found that promoter-proximal
combinations of chromatin features enable accurate genome-wide
predictions (p=0.75, Figure 3A), with comparable prediction
accuracies between individual chromosome arms (p=0.73—0.78,
Supplementary Figure S7). These values are comparable to the
accuracy obtained in promoter regions (p=0.72, Figure 1E).
Consistently with these results, the bootstrap-Lasso simplified model
was able to predict the whole genome replication timing profile of
S2 cells with an accuracy of p =0.58 (Supplementary Figure S8), the
same value exhibited at promoters. These results indicate that
combinations of chromatin features with regulatory potential for
replication timing can be generalized to the whole genome and are
therefore not confined to promoter-proximal regions.

Given the good agreement between experimentally determined
and inferred values, we visually compared measurements and
predictions as a function of their genomic position, as shown in
Figure 3B,C for 6 Mb and 12 Mb of chromosomes 3R and 3L,
respectively. This visualization allows us to further evaluate model
predictions. First, although Lasso does not account for the spatial
organization of DNA replication timing and of HMs, yielding
predictions that are more noisy than measured values, the overall
structure of the measured replication timing profile was faithfully
recapitulated by the inferred one. Second, denoising of predicted
values using adaptive smoothing (see Methods) further increased
the correlation between measured and predicted values genome-
wide (p=0.80) and made their similarity even more striking
(Figure 3B,C). This result does not strongly depend on the degree
of smoothing, as predicted profiles smoothed at 20 (p=0.78), 40
(p=0.80) and 80 (p=0.77) kb resolution similarly correlate with
measured replication timing values. Third, early-to-late and late-
to-early transition zones, which coincide with boundary elements
separating distinct chromosomal domains such as those flanking
the late replicating Drosophila Bithorax complex [60] (Figure 3B,
yellow rectangle), were accurately inferred by the model.
However, we systematically investigated whether the prediction
accuracy was uniform across different classes of genomic regions
or whether some regions could be predicted with higher accuracy
than others. To this purpose, we identified timing transition
regions (IT'TRs) and replication domains using a circular binary
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segmentation algorithm (see [4] and Methods for details), and
determined gene dense and poor regions using a two-state Hidden
Markov Model (see Methods). We found that prediction accura-
cies were higher in replication domains (p=0.76) and gene poor
regions (p=0.75) than in TTRs (p=0.69) and gene dense regions
(p=0.69), respectively (Supplementary Figure S9). The reduced
prediction accuracy at TTRs might depend on the fact that these
regions are devoid of replication origins and other chromatin
features, and result from passive unidirectional replication fork
movement [17]. In contrast, as the Drosophila genome is rather
compact, it is plausible that feature averaging in gene dense bins
partially reduces prediction accuracy in these regions. Alterna-
tively, as our model globally underestimated early replication
timing peaks and as gene density positively correlates with
replication timing [36], a subset of chromatin determinants of
early origin firing might not yet be part of the profiled CBPs and
HMs and remains to be elucidated. Since CBPs are generally
characterized by narrower peaks as compared to HMs and hence
contribute more locally to replication timing predictions, it is likely
that the missing features will correspond to CBPs exhibiting
preferential binding to open chromatin.

Combinations of histone modifications predict DNA
replication timing across different cell types

We have shown that combinatorial modeling of chromatin
features can accurately predict DNA replication timing in S2 cells.
However, the chromatin landscape varies between cell types, and
similarly, replication timing is a cell-type specific epigenetic feature
[5]. Previous work from Eaton et al. [15] showed that clusters of
chromatin features are predictive for changes in early origin
strength across cell types. Thus, we focused on promoters and asked
whether differences in the chromatin landscape between two cell
types can explain the corresponding differences in their replication
timing. Besides for S2 cells, genome-wide DNA replication timing
and chromatin feature profiles are available for Drosophila Bg3 and
Kec cell lines from modENCODE. The replication timing profiles of
these two cell lines are highly correlated to each other and with the
replication timing of S2 cells (p=0.65—0.71 at promoters,
Supplementary Figure S10). As the number of HMs profiled in
both S2 and Bg3 1s larger than those in common between S2 and
Kc, we considered 21 HMs that were profiled in the former two cell
lines (termed CHMs, in Common Histone Modifications, and listed
in Methods) for further analyses. First, we assessed the predictive
power of CHMs on replication timing at promoters in S2 and Bg3
cells, respectively. For each cell line, we trained a Lasso model based
on the corresponding levels of CHMs and their pairwise interactions
and obtained fairly accurate predictions in both cell types (p =0.66
and p=0.64 in S2 and Bg3 cells, respectively; Supplementary
Figure S11). These models are cell line specific as their accuracy in
predicting unmatched replication timing profiles is significantly
lower than the one achieved on the matched profile (data not
shown). We next investigated whether differences in replication
timing between S2 and Bg3 cells can be predicted from differences
in CHMs (ACHM) levels between these two cell lines. Therefore,
we used ACHMs (S2-Bg3) and their pairwise interactions to predict
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Figure 3. Predicting the replication timing profile of the Drosophila S2 cells genome. (A) Predicted versus experimentally measured
replication timing of the Drosophila S2 cells genome represented as smoothed color density scatter plot. Model predictions were generated using the
Lasso model based on CBPs and second-order interactions between HMs (HMs?+CBPs) and trained at promoters. Prediction accuracy is Pearson
correlation coefficient. The orange line indicates the model fit, whereas the dashed gray line indicates the bisector y =x. (B,C) Measured (top track)
and predicted (middle and bottom track, see Methods) replication timing profiles along 6 Mb and 12 Mb of chromosomes 3R (B) and 3L (C),
respectively. A color gradient representation of feature signals is shown at the bottom for chromatin features within the bootstrap-Lasso simplified
model (K8ac =H4K8ac; K36me1 =H3K36me1 and K79me1 =H3K79me1). The yellow rectangle in B highlights the genomic position of the Bithorax

Complex.
doi:10.1371/journal.pcbi.1003419.g003

differential replication timing (S2-Bg3, see Methods) and found that
the model was able to achieve a prediction accuracy of p=0.54
(Figure 4A). Although this result indicates that inferring differences
in replication timing is more challenging than inferring the timing
per se, differences in HMs levels bear a fair predictive power on
differential replication timing. Next, we investigated feature
importance in predicting differential replication and estimated
feature selection probabilities using bootstrap-Lasso as described
before. We found that H3K18ac, H3K36mel and its interactions
with H3K27me3, H3K4mel and H3K36me3, as well as
H3K79mel are selected with high probability and predictive for
carlier replication in S2 than Bg3 cells (positive differences,
Figure 4B). On the other hand, H3K9me?2 and its interaction with
H3K4mel, along with H2BUD levels, are stable predictors for later
replication timing values in S2 than Bg3 cells (negative differences,
Figure 4B). Overall, this analysis revealed that cell-type-specific
differences in HMs are more predictive for differences in replication
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timing than cell-type-specific differences in interactions between
HMs.

Finally, we narrowed our attention to differentially replicating
promoters (DRPs) between S2 and Bg3 cell lines and asked
whether the Lasso model trained on CHMs levels in S2 cells
(Supplementary Figure S11A) can predict the replication timing of
DRPs in Bg3 cells. The set of DRPs was defined using three
different fold change cutoffs at the high end of the overall fold
changes in replication timing (Figure 4C, see Methods). Notably,
we found that the model based on S2 data was able to predict the
replication timing of DRPs in Bg3 cells with high accuracy for all
three cutoffs (p=0.64—0.70, Figure 4C and Supplementary
Figure S12). Prediction accuracies did not vary significantly upon
further increase of the cutoff. Taken together, these results indicate
that combinations of HMs allow a general, cell-type independent
description of the relationship between replication timing and
chromatin.
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Figure 4. Histone modification levels predict replication timing across different cell types. (A) Predicted versus experimentally measured
differences in replication timing between S2 and Bg3 cells unique promoters (S2-Bg3) represented as smoothed color density scatter plot. Model
predictions were generated using differences in HMs levels and their pairwise interactions for a subset of HMs that were profiled in both S2 and Bg3
cell lines (CHMs). The orange line indicates the model fit, whereas the dashed gray line indicates the bisector y = x. (B) Scatter plot of model features
according to their z-scores and bootstrap-Lasso selection probabilities (p). Features with p>0.75 are colored in red (positive coefficient values) or
blue (negative coefficient values) and their coefficient distributions are shown on the right as violin plots. Features are ranked by decreasing selection
probabilities. (C, top) Replication timing of S2 cells promoters versus Bg3. Differentially replicating promoters are color-coded according to the
quadrant (delimited by dashed blue lines) they belong to (red: early replicating in S2 and late replicating in Bg3; green: early in both S2 and Bg3; blue:
late in S2 and early in Bg3, aqua: late in both S2 and Bg3). A total of =220 promoters exhibit a log fold change greater than or equal to 1 (6=1). (C,
bottom) Experimentally determined replication timing in Bg3 versus predictions generated by a model based on pairwise interactions between CHMs

in S2 cells. Prediction accuracy is Pearson correlation coefficient. The dashed gray line indicates the bisector y=x.

doi:10.1371/journal.pcbi.1003419.g004

Conclusions and perspectives

We systematically investigated the relevance of combinatorial
HM patterns for DNA replication timing in Drosophila using Lasso.
Developed on linear combinations of chromatin features from a
comprehensive collection of HMs and CBPs profiles, our model
quantitatively predicts replication timing with high accuracy
genome-wide and across cell types. Our results show that com-
binations of HMs and their pairwise interactions are key in
achieving accurate predictions, suggesting that combinatorial HM
patters might indeed contribute to the regulation of DNA
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replication timing. However, it is important to notice that our data
and analysis do not allow us to infer causality. Therefore, our
description of the relationship between chromatin features and
replication timing is a correlative one. In addition, there is a
remaining 48% of variation in DNA replication timing that is not
explained by our model. Accurate estimates of the maximal fraction
of the observed variation in replication timing that could
theoretically be explained by the model - e.g. following the recent
approach proposed by [61] - were not possible in our framework
due to lack of biological replicates for a subset of features and would
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have nevertheless been challenged by data integration across
different laboratories and platforms. Unexplained variation can be
possibly due to missing key features, presence of nonlinearities in the
modeled relationship and existence of additional factors other than
CBPs and HMs, such as the chromatin architecture, contributing to
replication timing regulation. Although it is plausible that key
determinants of DNA replication timing have not yet been profiled,
it is unlikely that this aspect alone could entirely fill the gap. Since
the regulatory mode of replication timing has not yet been fully
elucidated, we hypothesized that a nonlinear relationship between
chromatin landscape and replication timing could explain, at least
partially, the remaining variation in DNA replication timing. We
tested this hypothesis by using multivariate adaptive regression
splines (MARS) [62], a flexible non-parametric regression technique
based on piecewise linear basis functions which can also be adopted
to estimate feature importance. However, MARS prediction
accuracies were comparable to Lasso irrespective of model com-
plexity (Supplementary Table S1), indicating that the relationship
between chromatin feature levels and replication timing is well
modeled by a linear function. For consistency, performances of the
Lasso and MARS fits were also tested and confirmed using a
second, independently generated, genome-wide replication timing
profile in S2 cells [37] (Supplementary Table S1).

Through feature importance analyses, we identified a minimal set
of six terms whose prediction accuracy reaches 80% of the full
model accuracy. Remarkably, all elements within this set were
selected by the MARS fit, with H4K8ac, H3K36mel, H2BUb:
H3K36mel, H2BUb and Hsp90 indicated as the five most
important terms. Besides demonstrating the necessity of these
features to achieve high prediction accuracy, our results contribute
experimentally testable, putative elements of a combinatorial HM
pattern for DNA replication. In addition, availability of genome-
wide profiles for these features in the same human or mouse cell line
will enable to assess whether their predictive power is conserved
across species. Finally, experimental investigation of our simplified
model terms might unravel the mechanistic basis of their connection
to DNA replication, and thereby, shed light on the regulatory mode
of this fundamental cellular process.

Materials and Methods

Data

Genome-wide replication timing profiles of Drosophila S2 and Bg3
cell lines (GEO accession numbers GSE17280 and GSE17281,
respectively) were generated by Eaton et al. [15] using Agilent tiling
arrays. Normalized smoothed M-values were used for the analysis.
ChIP-Seq profiles of CBPs and HMs in S2 cells were downloaded as
raw data in sra format from the Short Read Archive (SRA) or
fetched from the Gene Expression Omnibus (GEO). Matched input
datasets were downloaded where available. ChIP-chip profiles were
downloaded from the modENCODE [38] data warchouse. Nor-
malized smoothed M-values as provided by modENCODE were
used for the analysis. If a feature was profiled more than once, only
one profile was considered by taking into account antibodies
characterization and technological platforms and by prioritizing
deep sequencing based profiles. Pairwise Pearson’s correlations p of
feature signals at promoters were computed between the selected
profile and all possible alternatives and typically 0.7<p<0.95. A
list of the datasets included in the analysis is provided in
Supplementary Tables S2 and S3 for CBPs and HMs, respectively.

Selecting genomic regions for analysis

Chromosome arms 2L, 2R, 3L and 3R were considered for the
analysis. Chromosomes 4 and X were excluded due to special
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chromatin characteristics. Specifically, the single male X chromo-
some is hyperacetylated on H4K16 [63] and completes replication
significantly earlier than the autosomes in male cell lines [37]
whereas the fourth chromosome is predominantly heterochromat-
ic and exhibits a high-transposon density [65]. For the prediction
of DNA replication timing of promoters, Ensembl gene annota-
tions were downloaded from biomart (www.biomart.org, genome
assembly BDGP 5.12) using the R package biomaRt [64].
Promoter regions were defined as 1 kb windows centered on
unique transcription start sites (I'SS) in order to limit ambiguous
assignment of chromatin feature signals to promoters. We defined
a T'SS as unique if no other TSS was annotated within the 1 kb
genomic region flanking the TSS, regardless of the strand. A total
of 7552 unique promoters was then considered for the analysis.
For the prediction of genome-wide replication timing, the
Drosophila genome was segmented into bins of width 10 kb. A
total of 9663 bins was used for the analysis.

Scoring of chromatin features

ChIP-Seq data in sra format were first converted to fastq format
using the NCBI Short Read Archive Toolkit and subsequently
aligned to the Flybase Drosophila melanogaster dm3 reference genome
assembly r5.22 using Bowtie 0.12.8 with parameters [-n 2 -k 1, ~best
and -M 100]. Matched input datasets were aligned using the same
parameters. The alignment output was converted from SAM to
BAM format using SAMtools 0.1.18 and BAM files were imported
in R using Rsamtools (Morgan, M. and Pages, H., Rsamtools:
Binary alignment (BAM), variant call (BCF), or tabix file import, R
package version 1.8.6). Feature signals in both promoters and
genomic bins were estimated as follows. Given a sample dataset §
and an input dataset / the feature enrichment M of S relative to /
within a given region of interest R was computed using available D
replicates as follows. Let ng and n; be the library size of § and /,
respectively and p an integer pseudocount used to avoid undefined
values in logarithmic transformations (p=1 in this analysis). Then,
define m=min(ng,n;). Finally, let x5 g and x; g be the number of
short reads entirely aligning within R for sample and input datasets,
respectively. For each replicate d we then computed:

M, =log,

1 &2
and defined the feature enrichment as M = D M. For ChIP-
d=1
chip datasets, the feature signal was computed as mean smoothed
M-value within R. Similarly, the replication timing of R was
computed as the average replication timing value of probesets
mapping entirely within R.

Hierarchical clustering of chromatin features at
promoters

Hierarchical clustering of chromatin features at promoters was
performed using a correlation-based dissimilarity measure between
feature signals at promoters. Given two profiles 51 and s», their
dissimilarity d was computed as d=(1—p(s1,52))/2, where p
denotes the Pearson’s correlation coefficient.

Predicting DNA replication timing using Lasso

The relationship between DNA replication timing and chro-
matin features was modeled using Lasso. Briefly, let y be the
dependent variable (DNA replication timing), X be the mxn
enrichment matrix where m is the number of promoters and 7 the
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number of independent variables (chromatin features and when
considered, their interaction terms) and f; the j-th linear model
coeflicient associated to the j-th independent variable. The Lasso

parameters %% are then estimated as:

m n n
plasse — argmin{%Z(y,——ﬁo— injﬂj)2+ﬂv2|ﬁj|}
B i=1 J=1 i=1
where the first term corresponds to the residual sum of squares
commonly minimized by multiple linear regression models and
where the second term 2;7:1 IB;] is the L' Lasso penalty that is
tuned by the regularization parameter A.

To fit the model, the set of 7552 unique promoters was
randomly partitioned into two sets 77 (5000 promoters) and 75
(2552 promoters). The model was trained on 7' with ten-fold cross
validation. The cross-validated mean squared error (CV-MSE) as
a function of A was used to inspect the model fit. The value of 4
minimizing the CV-MSE was used to predict the replication
timing of the test set 75. The Pearson correlation coefficient
between measured and predicted continuous replication timing
values on 75 was used to determine the model accuracy.

Deriving simplified models

Simplified models were obtained using three different ap-
proaches: 1) By analyzing the coeflicients of the Lasso model based
on CBPs and interactions between HMs along the A-path used to
fit the model. Only models leading to a prediction accuracy of at
least 75% of the prediction accuracy achieved by the full model
were considered; ii) By performing stability analysis of model
coeflicients (see below); iii) By generating all possible combinations
of two (4 371), three (134 044) and four (3 049 501) features and
training a multiple linear regression model based on each
combination following the same procedure described above for
the Lasso model fit. The Bayesian Information Criterion was used
to account for model complexity and assess whether increasing the
number of features was still beneficial for the model fit.

Computing feature selection probabilities

Stability analysis of model coefficients was performed essentially
as described in [48]. Feature selection probabilities (normalized
frequencies of mnon-zero coeflicients) were computed using
bootstrap-Lasso. Briefly, a Lasso model based on CBP levels and
interactions between HMs was trained with ten-fold cross
validation using all 7552 unique promoters. The values of the
regularization parameter / yielding an empty model (49 =0.2) and
an almost full model (4,=0.00002) were used to construct a
sequence A of 100 values ranging from g to 4, with constant
ratios between consecutive elements. This sequence was then used
to fit 100 Lasso models on 100 bootstrap samples of 7552
promoters. Model coefficients were stored for each value of 4,eA
and for each fitted model. Finally, for each chromatin feature the
number of non-zero coefficients was summed and normalized to
the total number of recorded coefficients. Normalized values
represent the estimated selection probabilities.

Estimating the significance of selected model features
The overall significance of H3K36mel, H4K8ac, H2BUb and
Hsp90 in predicting replication timing was estimated using a
bootstrap-based approach. For each feature, 100 bootstrap
samples of 7552 promoters were generated and partitioned into
T and T3 as above. Each T sample was used to train a Lasso
model based on CBPs and pairwise interactions of HMs but
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lacking all model terms involving the selected feature with ten-
fold cross validation. Model accuracies (PCC) on 7 were
recorded and compared to the accuracies achieved by full models
trained on the same bootstrap samples using a two-sided
Wilcoxon rank sum test.

Smoothing of predicted DNA replication timing profiles
Adaptive smoothing of predicted genome-wide replication
timing profile was performed using a maximum overlap discrete
wavelet transform (MODWT). In pratice, we used the R package
waveslim (Whitcher,B., waveslim: Basic wavelet routines for one-,
two- and three-dimensional signal processing, R package version
1.7.1) with la8 wavelet filter, J =2 and reflecting boundaries.

Identifying timing transition regions

Timing transition regions (I'TRs) were identified using the
circular binary segmentation algorithm implemented in the R
package DNAcopy (Venkatraman,E.S. and Olshen,A., DNAcopy:
DNA copy number data analysis, R package version 1.32.0)
according to [4]. Replication timing of the 9663 Drosophila
genomic bins at 10 kb resolution was provided as input and a
30 kb window centered on each identified domain boundary was
used to define a TTR. Visual inspection of the segmented
replication timing profile was performed and verified accurate
recognition of TTRs.

Determining gene dense and gene poor regions

Gene density along the Drosophila genome was computed using
Ensembl gene annotations at a 10 kb resolution and used to
classify gene poor and gene dense regions by learning a two-state
Hidden Markov Model (HMM). The HMM was fit using the
Baum-Welch algorithm implemented in the R package RHmm
(Taramasco,O. and Bauer,S., RHmm: Hidden Markov Models
simulations and estimations, R package version 2.0.3) and the
optimal hidden states sequence was computed using the Viterbi
algorithm.

Predicting DNA replication timing across cell types

A subset of 21 HMs (termed in Common Histone Modifica-
tions, CHMs) that have been profiled by modENCODE in both
S2 and Bg3 cell lines was considered. This set includes the
following features: H1, H2BUb, H3K18ac, H3K23ac, H3K27ac,
H3K27me2, H3K27me3, H3K36mel, H3K36me3, H3K4mel,
H3K4me3, H3K79mel, H3K79me2, H3K9acS10P, H3K9ac,
H3K9mel, H3K9me2, H3K9me3, H4Kl6ac, H4K20me and
H4. Feature scoring and computation of DNA replication timing
at unique promoters were performed as described above. The
predictive power of CHMs on replication timing of S2 and Bg3
promoters was evaluated using Lasso models based on second-
order interactions between CHMs. For each cell line, a model was
trained on 7 with ten-fold cross validation using the correspond-
ing CHMs levels. Model accuracy (PCC) was determined on 75.

To test whether differential CHMs between cell lines can
predict differential replication timing (S2-Bg3, Ai), we computed
differences in CHMs levels between S2 and Bg3 cells (ACHMs)
and used them to predict A¢ through a Lasso model with pairwise
interactions. To predict the replication timing of differentially
replicating promoters (DRPs) in Bg3 cells, we defined DRPs based
on log fold change differences between S2 and Bg3 promoters
using three increasing cutoff values (0.8, 0.9 and 1.0). The Lasso
model introduced above to evaluate the predictive power of
CHMs in S2 cells was then applied to infer the replication timing
of DRPs in Bg3 cells.3

January 2014 | Volume 10 | Issue 1 | 1003419



Availability of R scripts

All analyses were performed using R 3.0.0 (R Core Team, R: A
Language and Environment for Statistical Computing, http://
www.R-project.org). Custom R scripts are available from https://
github.com/FedericoComoglio/ToR.

Supporting Information

Figure S1 Hierarchical clustering of chromatin feature
levels at promoters. (A) Chromatin binding proteins (B) Histone
modifications. Correlation-based dissimilarities (see Methods in the
main text) are colored according to the top right color key.

(TIF)

Figure S2 Individual predictive power of chromatin
features. Predictive power of individual chromatin feature levels
on replication timing at promoters in S2 cells. Histone
modifications (top) are separated from chromatin binding proteins
(bottom) by a red dashed line. Gray bars represent the average
model accuracy as PCC (Pearson’s correlation coefficient)
obtained from 10-fold cross-validation of a univariate linear
model. Error bars represent standard deviations.

(TIF)

Figure S3 Combinatorial predictive power of chromatin
features (I). (A) Cross-validated mean squared error (CV-MSE)
as a function of the regularization parameter (log;o(4)) for different
Lasso models trained with ten fold cross-validation. The average
CV-MSE is reported as solid line, with minimum and maximum
CV-MSE drawn as dashed lines. A vertical line reaching a CV-
MSE curve indicates the value of A that was used to generate
predictions from the corresponding model. The different sets of
features used for model training are indicated in the legend. (B-E)
Predicted versus experimentally measured replication timing of the
test set represented as smoothed color density scatter plot. Model
predictions were generated using the indicated sets of features.
Prediction accuracies are Pearson correlation coefficients. Orange
lines indicate the model fit, whereas dashed gray lines indicate the
bisector y=x.

(TIF)

Figure S4 Combinatorial predictive power of chromatin
features (II). (A-B) Predicted versus experimentally measured
replication timing of the test set represented as smoothed color
density scatter plot. Model predictions were generated using HMs
and CBPs (HMs+CBPs, A) and second-order interaction terms of
HMs and CBPs, encompassing pairwise interactions between
HMs, CBPs and interactions between HMs and CBPs (HMs+
CBPs)%, B). Prediction accuracics are Pearson correlation coeffi-
cients. Orange lines indicate the model fit, whereas dashed gray
lines indicate the bisector y=x.

(TIF)

Figure S5 Sequencing depth analysis of ChIP-Seq-based
chromatin features. (A) Sequencing depth, expressed as total
number of aligned reads, for each ChIP-Seq profile included in
this work. Features are ranked by decreasing coverage values and
Hsp90 is highlighted in blue. (B) Individual predictive power of
ChIP-Seq-based chromatin features as a function of their
sequencing depth. Prediction accuracies are Pearson correlation
coeflicients. The orange lines indicates the fitted univariate linear
regression model fit.

(TIF)

Figure S6 Prediction accuracies of simplified models
obtained through exhaustive model search. (A) The value
of the Bayesian Information Criterion (BIC) for the best simplified
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model (i.e. the model yielding the highest prediction accuracy
(Pearson’s correlation coefficient, PCC) in each group of one-,
two-, three- and four-feature simplified models. (B) Boxplot of
prediction accuracies for all simplified models within the same
groups of models.

(TIF)

Figure S7 Predicting the replication timing of individ-
ual chromosome arms of the Drosophila S2 cells
genome. Predicted versus experimentally measured replication
timing of the Drosophila S2 cells genome for individual chromo-
some arms: (A) 2L (B) 2R (C) 3L (D) 3R. Model predictions were
generated using chromatin binding proteins and second-order
interactions between histone modifications (HMs*+CBPs) from a
model trained at promoters. Prediction accuracies are Pearson
correlation coefficients. Orange lines indicate the model fit,
whereas dashed gray lines indicate the bisector y=x.

(TTF)

Figure S8 Prediction accuracy of the bootstrap-Lasso
simplified model on the whole Drosophila S2 cells
genome. Predicted versus experimentally measured replication
timing of the Drosophila S2 cells genome represented as smoothed
color density scatter plot. Model predictions were generated
using the six-features (H4K8ac, H3K36mel, H2BUb, H2BUb:
H3K36mel, H2BUb:H3K79mel and Hsp90) bootstrap-Lasso
simplified model trained at promoters. Prediction accuracy is
Pearson correlation coefficient. The orange line indicates the
model fit, whereas the dashed gray line indicates the bisector y = x.
(TIF)

Figure 89 Evaluating prediction accuracies at different
classes of genomic regions. Predicted versus experimentally
measured replication timing of the Drosophila S2 cells genome at:
(A) timing transition regions (B) early/late replication domains (C)
gene poor regions (D) gene dense regions. Model predictions were
generated using chromatin binding proteins and second-order
interactions between histone modifications (HMs*+CBPs) from a
model trained at promoters. Prediction accuracies are Pearson
correlation coefficients. Orange lines indicate the model fit,
whereas dashed gray lines indicate the bisector y=x.

(TIF)

Figure S10 Correlation of DNA replication timing
profiles at promoters in S2, Kc and Bg3 cell lines.
Pairwise smoothed color density scatter plots between DNA
replication timing of promoters in S2, Kc and Bg3 cell lines.
Upper triangular entries are Pearson’s correlation coefficients.

(TIF)

Figure S11 Evaluating the predictive power of HMs
levels in common between S2 and Bg3 cells. Predicted
versus experimentally measured replication timing of the test set
represented as smoothed color density scatter plot. Model predictions
were generated based on second-order interactions between HMs
levels in S2 cells (A) and Bg3 cells (B), using only a subset of HMs that
were profiled in both cell lines (CHMs?). Prediction accuracies are
Pearson correlation coefficients. Orange lines indicate the model fit,
whereas dashed gray lines indicate the bisector y = x.

(TIF)

Figure S12 Predicting the replication timing of pro-
moters that differentially replicate between S2 and Bg3
cells. (A, left) Replication timing of S2 cells promoters versus Bg3.
Differentially replicating promoters are color-coded according to
the quadrant (delimited by dashed blue lines) they belong to (red:
early replicating in S2 and late replicating in Bg3; green: early in
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both S2 and Bg3; blue: late in S2 and early in Bg3, aqua: late in
both S2 and Bg3). A total of n=1528 promoters exhibit a log fold
change greater than or equal to 0.8 (6=0.8). (A, right)
Experimentally determined replication timing in Bg3 versus
predictions generated by a model based on pairwise interactions
between CHMs in S2 cells. Prediction accuracy is Pearson
correlation coefficient. The dashed gray line indicates the bisector
y=ux. (B) Same as A, for 6=0.9.

(TIF)

Table S1 Pearson’s correlation coefficients between
measured and predicted replication timing for different
sets of chromatin features and both Lasso and MARS
statistical models. In addition, Lasso predictions on replication
timing of S2 promoters are indicated for the model trained and
tested using a second replication timing profile generated by
Schwaiger et al. [37]. CBPs: chromatin binding proteins; HMs:
histone modifications; HMs?+CBPs: CBPs and second-order
multiplicative interactions between HMs; (HMs+CBPs)®: second-
order multiplicative interaction terms of HMs and CBPs,
encompassing pairwise interactions between HMs, CBPs and
interactions between HMs and CBPs.

(PDF)
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