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Abstract

The post-menopausal decrease in estrogen circulating levels results in rapid skin deteriora-
tion pointing out to a protective effect exerted by these hormones. The identity of the skin
cell type responding to estrogens is unclear as are the cellular and molecular processes
they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the
human dermal fibroblast cytoskeleton resulting in striking cell shape change. This morpho-
logical change was accompanied by a spatial re-organization of focal adhesion and a sub-
stantial reduction of their number as evidenced by vinculin and actin co-staining. Cell
morphology and cytoskeleton organization was fully restored upon 17B-estradiol (E2) addi-
tion. Treatment with specific ER antagonists and cycloheximide respectively showed that
the E2 acts independently of the classical Estrogen Receptors and that cell shape change
is mediated by non-genomic mechanisms. E2 treatment resulted in a rapid and transient
activation of ERK1/2 but not Src or PISK. We show that human fibroblasts express the non-
classical E2 receptor GPR30 and that its agonist G-1 phenocopies the effect of E2. Inhibit-
ing GPR30 through treatment with the G-15 antagonist or specific sShRNA impaired E2
effects. Altogether, our data reveal a novel mechanism by which estrogens act on skin fibro-
blast by regulating cell shape through the non-classical G protein-coupled receptor GPR30
and ERK1/2 activation.

Introduction

Skin exhibits several functions providing protection against pathogens and ultraviolet irradia-
tion, regulating hydration and temperature, exerting immunological surveillance and display-
ing endocrine activities. These functions are primary mediated by the epidermis, the most
outer layer, whereas the underlying connective tissue layer, the dermis, represents the major
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mechanical component that protects skin against mechanical stress. The epidermis is highly
cellular and is formed by several epidermal cell layers. In contrast, dermis contains sparse fibro-
blasts that are surrounded by an abundant extracellular matrix. Altered structure and reduced
function of both epidermis and dermis are attributable to aging and result in skin deterioration,
specifically in the face. This is characterized by dryness, atrophy, fragility, loss of elasticity, in-
creased extensibility and wrinkling, as well as impaired wound healing. These undesirable
aging effects are controlled by the genetic constitution of individuals (intrinsic aging) and are
exacerbated by environmental factors (extrinsic aging) such as ultraviolet exposure and
tobacco [1-2].

Several studies have shown that estrogens have beneficial and protective roles in skin
biology [3-4]. Consistent with this view, reduced circulating levels of these hormones in post-
menopausal women correlate with accelerated skin deterioration [4-5]. Conversely, estrogen
supplementation in post-menopause women displays a beneficial role in skin, restoring dermal
thickness and wound healing capacities [4, 6-11]. However these hormonal replacement strate-
gies have been associated to an increased risk of developing breast and uterine cancer [11], pre-
venting their use against skin aging. Little is known about the mechanisms by which estrogens
protect skin from aging, despite the well-documented deleterious effects of hypoestrogenism
on structure and function on the epidermis and dermis [2, 5, 11-12], and the strong correlation
between skin collagen loss and estrogen deficiency resulting from menopause [4]. The identity
of the skin cell type involved in estrogen protective effects is also unclear. Expression of estro-
gen receptor-corresponding mRNAs has been documented in dermal fibroblasts, the main pro-
ducers of extracellular matrix proteins, including collagen. Nonetheless, the use of specific
antibodies has shown that Estrogen Receptor (ER) o is mainly detected in sebocytes, whereas
ERp displays a broader expression in various skin cell types [13]. However, it should be noted
that ER expression can vary according to skin location, with, for instance, higher receptor levels
in facial- than breast skin [14]. Treatment with the selective estrogen receptor modulator ralox-
ifen or, to a lesser extent, 17B-estradiol increased collagen biosynthesis in cultured human skin
fibroblasts [15]. The molecular mechanisms by which estrogens act on collagen production in
human dermis is not fully understood although studies have demonstrated a role of TGER,
known to promote collagen production, in response to estrogens in human dermal fibroblasts
[15-16]. However, besides changes in skin extracellular matrix content, the function of resident
cells in the skin are likely influenced by estrogen. Although the role of exogenous estrogens in
the integrity of human dermal fibroblasts has not been investigated, changes in fibroblast phe-
notype have been noted in aging skin [17-19].

Estrogens exert their actions via various molecular mechanisms. Genomic effects require ER
o or ERB, which are members of the nuclear receptor gene family [20]. These receptors directly
bind to estrogen-response elements in the promoters of their target genes and regulate expres-
sion of the latters in a ligand-dependent manner. Such estrogenic effects eventually require
translation of the regulated RN As and can be thus blocked by the inhibitor of protein neo-
synthesis cycloheximide (CHX). Estrogens also exert so-called non-genomic effects, which de-
pend on ER localized in the cytoplasm or at the plasma membrane [21-22]. In response to
ligand, ER interacts with proteins such as PI3K or Src and induces secondary cascades that
may culminate into the regulation of gene expression, although not via direct binding of ER to
chromatin (reviewed in [23]). Since both genomic and non-genomic effects of estrogens de-
pend on ER proteins, they can be blocked by ICI182,780, a synthetic compound that antago-
nizes estrogen binding to the receptors. A third mechanism of action has recently gained
attention, which does not involve ER o or ERB, and may not lead to regulation of gene expres-
sion. As such, these effects cannot be antagonized by CHX nor by ICI182,780 [24-26]. These
effects are generally rapid (in the order of minutes) and can be mediated by binding of
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extracellular estrogens to the G protein-coupled receptor GPR30 (also called GPER for G
Protein-coupled Estrogen Receptor), a seven-transmembrane receptor (reviewed in [27-28]).
Depending on the cell system analyzed, E2-signaling through GPR30 may result in down-
stream activation of ERK1/2, EGFR, Src and/or PI3K [25-26, 29-31], leading to various cellular
effects such as regulation of proliferation, cytoskeleton remodeling and migration. Interesting-
ly, expression of GPR30 has been reported in the embryonic human skin fibroblast cell line
WSI1 suggesting the possibility of non-conventional actions of estrogen in skin [32].

To determine the direct, cell-autonomous effects of estrogens on human dermal fibroblasts,
we have used isolated cells in primary culture. To avoid potential interference with photo-
aging we chose cells originating from abdominal skin. Here we show that 17B-estradiol induces
rapid cytoskeleton remodeling in isolated human dermal fibroblasts in primary cultures. This
occurs through a GPR30-dependent, ER-independent pathway that lead to ERK1/2, but not
Src/PI3K, activation.

Materials and Methods
Cells and reagents

Human dermal fibroblasts were provided by Biopredic (St-Grégoire, France) and originated
from abdominal skin taken from female caucasian donors (aged between 28 and 41 years) with
BMI <24 and no reported hormonal dysregulation. Cells were cultured in DMEM/HAM F-12
medium (Sigma) supplemented with 10% fetal calf serum (FCS) and 1% Zell Shield (Biovalley).
MCEF7 and MDA-MB231 cells were cultured in DMEM supplemented with 10% FCS and 1%
Penicilline/Streptomycine. For desteroidation, serum was treated with activated charcoal (10g
per 500ml; Sigma) for 4h and centrifuged. After three rows of treatment, serum was sterilized
by filtration (0.22 um). Phenol-red free medium was used for all experiments involving dester-
oidated serum. Proliferation was analyzed by cell counting at the indicated time.

17B-estradiol (E2), E2-BSA, ICI182,780 and cycloheximide (CHX) were purchased from
Sigma. PD98059, G-1, LY294002, AG1478 were purchased from Cayman. G-15 was purchased
from Tocris. All compounds were dissolved and stored according to the manufacturers’ in-
structions. All inhibitors (ICI182,780, CHX, PD98059, LY294002, AG1478, G-15) were added
1 h before E2 treatment. shGPR30 (TRCN0000235160, TRCN0000235161) and shControl
(TurboGFP TRC2) were from Sigma.

Wound-healing assays

For the wound-healing assays, cells were plated to confluence in a 12-well plate, and the cell
surface was scratched using a pipette tip. Then, cells were treated or not with 10® M E2 and
placed in the microscope round chamber (37°C and 5% CO?2). The wound was imaged each 5
min for 48 h using a CCD CoolSNAP HQ monochrome camera mounted on a Timelapse
Axiovert 100 M inverted microscope (10x objective) with a Metamorph software. Cells capacity
to repopulate the scratched area was measured using Image]J software. Four independent exper-
iments were carried out.

Transient transfections

1.5 10* MCF7 cells were seeded in 96-well plates and transfected using Exgen500 following the
manufacturer’s recommendations and 125 ng final DNA, comprising 12.5 ng ERE-Luc (gener-
ous gift from P. Balaguer, Montpellier, France), 25 ng ERa-encoding plasmid (generous gift
from P. Balaguer, Montpellier, France) and pSG5 vector added as a carrier when needed.
Transfection efficiency was normalized using fGal activity brought by cotransfection of
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CMV-BGal vector. For hDF transfection, 3 10* cells were seeded in 24-well plates and trans-
fected using Jet Prime following the manufacturer’s recommendations and 500 ng final DNA,
comprising 100 ng ERE-Luc, 40 ng ER o-encoding plasmid and pSG5. Transfection efficiency
was normalized using renilla luciferase activity brought by cotransfection of PRL vector (Pro-
mega). For shRNA transfection, 2,000 ng plasmid DNA were introduced in hDF cells.

Immunostaining

For immunofluorescence experiments, cells (40% confluent) were cultured on glass slides,
fixed with 4% paraformaldehyde and then washed with PBS 1X. For vinculin analysis, cells
were seeded on glass slides coated with 0.5 pg of rat tail collagen I (Invitrogen) o/n at 4°C and
blocked with 1% BSA for 1h30. Vinculin antibody (1/200, Sigma) diluted in PBS containing 1%
BSA was used. Secondary antibody tagged with Alexa-488 (1/1000, Life Technology) and/or
rhodamin-phalloidin (1/750, Sigma) were then added for 1h. Nuclei were counterstained with
Hoescht staining. Immunofluorescence was analyzed using Zeiss- Axiolmager or LSM780 Con-
focal microscope. Vinculin quantification was performed using computational analysis.

Cell shape analysis

First, cells (30% confluent) were seeded on 6-well plates and cultivated into a room chamber
(37°C and 5% CO2). Starvation was performed as described previously. Cell shape modifica-
tion was followed by live imaging using Timelapse Axiovert. 4x4 images were taken by condi-
tion, every 2 minutes for 8 hours after estrogen treatment.

In a second time, cells area measurements were done on cells seeded on 6-well plates, at
40% of confluence. Starvation was performed as described previously. To avoid subjective ob-
servations, a blind treatment and/or blind observation were performed. Pictures were taken
with Zeiss- Axiovert.

All images were processed and analysed with the open-source package, Image] with custom
plug-in routines and PRISM Graphpad software.

Protein analysis

For western blot analysis, cells were lysed in RIPA buffer or lysis buffer containing 1 mM
NaVO; and 10 mM NaF (for phosphoprotein analysis). All buffers were supplemented with
Protease Inhibitor Cocktail (Sigma). Proteins (8-50 ug) were resolved on 10% SDS-PAGE,
blotted onto PVDF membrane (GE-Healthcare) and probed with specific antibodies after satu-
ration. For collagen extraction, cells treated for 4 days with E2 and ascorbic acid (50 pug/ml)
were washed twice with PBS and directly lysed with NaCl/acetic acid buffer before pepsine di-
gestion. After TCA extraction, pellets were resuspended in laemmli buffer and analyzed by
western blot on 8% SDS-PAGE.

The antibodies (and their dilution) used in this study were: ERo. (sc-8002 F-10, Santa Cruz,
1/1000), ERRo. (GTX108166, Genetex, 1/2500), GPR30 (sc-48525-R, Santa Cruz, 1/500), total
ERK (4695, Cell Signaling, 1/1000), p-ERK (4377, Cell Signaling, 1/2000), PI3K (4257, Cell Sig-
naling, 1/800), pPI3K (4228, Cell Signaling, 1/500), Src (sc-8056 B-12, Santa Cruz, 1/1000),
pSrc (2113, Cell Signaling, 1/800), hsp90 (API-SPA-830, Enzo Life Sciences, 1/1000), coll
(20111, Novotech, 1/5000), colV (20511, Novotech, 1/2000), colVI (20611, Novotech, 1/3000),
vinculin (1/600, Sigma).
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n-qPCR

RNAs were isolated by Guanidinium-thiocyanate/phenol/chloroform extraction. 1 pg total
RNA was converted to first-stand cDNA using SuperScript II retrotranscription kit (Invitro-
gen). Quantitative PCR were performed on 1% of the retrotranscribed mixture, using the sybr
Green Jump Start Kit (Sigma Aldrich), 150 nM primers, in 96-well plates on a C1000 Thermal
Cycler (BioRad). Oligonucleotide primers used in this study:

 36b4: GTCACTGTGCCAGCCCAGAA and TCAATGGTGCCCCTGGAGAT

o ERo: CCGGCATTCTACAGGCCAAA and CCTTGGCAGATTCCATAGCCA

o ERB: GGCCTCCATGATGATGTCCC and CGAACAGGCTGAGCTCCACA

e COLIAI: TTGCTCCCCAGCTGTCTTAT and AGACCACGAGGACCAGAGG
e COL5A1: CCGGATGTCGCTTACAGAGT and CTGCCTTTCTTGGCTTTCAC
e COL6AI: GGTATTCCAGGATGCAATGG and GGTATTCCAGGATGCAATGG
o EGFR: CCCAGTGACTGCTGCCACAA and CAGGTGGCACCAAAGCTGTA

e CCNDI: CGTGGCCTCTAAGATGAAGGA and TCGGGCCGGATAGAGTTGT

o CCND3: TCACTGGCACTGAAGTGGAC and AGCTGGTCTGAGAGGCTTCC

Statistical analysis

Data are represented as means+SEM of 4 donors. All statistical analysis were performed using
One-Way Anova and Tukey’s test.

Results

17B3-estradiol regulates rapid cell shape change and focal adhesion re-
organisation in human dermal fibroblasts

17B-estradiol (E2) is known to regulate cell proliferation in various tissues (e.g. breast, uterus)
and cell lines in culture. We thus first analyzed whether proliferation of primary human dermal
fibroblasts (hDF), isolated from abdominal skin of female donors was affected by this hor-
mone. We did not observe any difference in the proliferation rate whether hDF were cultured
in the presence of untreated- (10% fetal calf serum; FCS) or desteroidated serum (hereafter re-
terred to as DS medium; Sla-e Fig.). To specifically evaluate the effects of E2, cells were cul-
tured with DS supplemented or not with 107 M E2. As expected proliferation of MCF7 cells (a
human estrogen-dependent breast cancer cell line) was clearly induced by E2 (S1f Fig.). In con-
trast, no significant effect of the hormone was observed on hDF originating from five different
donors (Sla-e Fig). In addition cyclin D1 (but not cyclin D3) expression was transiently in-
creased in MCF7 cells upon E2 exposure (as expected, [33] and references therein) reflecting
the effect of the hormone on the G1-to-S transition (S1g Fig.). In contrast expression of neither
cyclin D1 nor D3 was altered by E2 in hDF. Altogether this indicates that E2 does not regulate
proliferation of hDF. For the experiments below we excluded cells from donor 3 which dis-
played a low proliferation rate.

During our experiments, we observed a dramatic change in hDF cell shape according to the
treatment. Indeed, as evidenced by bright field microphotographs, adherent cells cultured in
the presence of FCS displayed a multi-angular shape (Fig. 1a). When cultured in the presence
of DS, cells adopted a spindle-shaped morphology. This effect was completely reversed upon
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Fig 1. 17B-estradiol remodels cell shape in dermal fibroblasts. a. hDF were cultured in the presence of untreated (FCS) or desteroided serum (DS) or in
DS-containing medium supplemented with vehicle (DS) or 10-7M 178-estradiol (DS+E2). Bright field microphotographs with cells from donor 1 are shown.
b-c. Cells were cultured as indicated, analyzing kinetics of E2 exposure (b) or dose-response (c). Quantifications were performed indicating the ratio
between the longest to shortest axis. Diagram represents mean+SEM of 400 cells quantified on 4 independent donors. 100 cells per condition were counted
for each one donor. *p<0.05; ***p<0.001. Scale bars = 100 pm.

doi:10.1371/journal.pone.0120672.g001
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E2 addition (10" M; 24h) to the DS culture medium indicating that E2 is necessary and suffi-
cient to promote multi-angular shape of hDF cells. To illustrate the rapidity and the magnitude
of the effect of estrogen on cell shape, we performed live cell video-microscopy of 4X4 partial
overlapping fields and create video mosaics. Videos showed that E2 treatment of hDF cultivat-
ed in DS media induces rapid and synchronous cell shape change (S1 Video) compared to un-
treated control (52 Video). This effect was quantified by measuring the ratio between the
length of the longer and shorter cell axes that as an indicator of spindle vs multi-angular cell
shape. A highly significant cell elongation rate was observed when cells are cultured in DS me-
dium compared to untreated media (FCS) (Fig. 1b). Consistent with the time-lapse video mi-
croscopy observations, the restoration of the long-to-short axis ratio upon E2 treatment was
conspicuous as early as after 15 min of hormone exposure. Dose-dependent analysis indicated
a highly significant effect (***p_value>0.0001) of E2 at concentrations above 10™'° M (4h treat-
ment; Fig. 1c). We conclude that the rapid and synchronous cell shape change induced in DS
medium is fully restored upon E2 treatment.

Cell shape change is generally accompanied by actin cytoskeleton and focal adhesion (FA)
remodeling [34-35]. We thus stained hDF with anti-vinculin antibody to visualize FA and
with rhodamine-phalloidin to highlight actin fibers. While hDF cultivated in DS medium
showed elongated shape with few FA sites mainly localized at the cell periphery and cell ex-
tremity, hDF cultured in the presence of E2 spread and displayed a multi-angular shape with
multiple attachment sites similar to that observed with cells cultivated in presence of FCS
(Fig. 2a). To quantify the number, size and distribution of vinculin-containing FA, morpho-
metric analysis was conducted using image analysis software. The number of FAs that drasti-
cally decreased in DS cultured medium compared to FCS was significantly restored upon E2
treatment (Fig. 2b). Similar results were observed when the number of focal adhesions was nor-
malized to cell perimeter. Morphometric analysis also revealed a significant loss of vinculin in-
tensity and reduction of adhesive areas in DS medium as compared to FCS condition and to E2
treatment suggesting that hormone deficiency induces a loss of focal adhesion strength, a phe-
notype that can be fully restored by E2 addition (Fig. 2¢). Interestingly, the FA intensity in cells
treated with E2 was significantly higher than in the control conditions, indicative of a specific
effect of E2 on adhesion strengthening rate. Because hDF cultivated in DS medium showed
focal adhesion distribution at cell periphery and aligned along the cell long axis contrary to the
apparent even distribution throughout the entire cell adhesion area observed in the two other
conditions (Fig. 2a), we quantified their distribution by measuring FA distances to the cell
membrane. In agreement with the immunofluorescence observations (Fig. 2a), a statistically
significant change in focal adhesion distribution was observed in DS condition compared to
FCS and E2 conditions (Fig. 2d). We conclude that restoration of cell shape change by E2 treat-
ment is correlated with increased focal adhesion strength and a re-localization of attachment
sites suggesting that E2 treatment is capable to restore focal adhesion number and distribution
of hDF cultivated in DS media.

17B-estradiol treatment has no effect on cell migration and collagen
synthesis rate

A relationship between focal adhesions and cell migrating capacity has been established [36].
We thus decided to examine the effect of E2 on hDF migration capacity by conducting scratch
wound healing assays. Cell migration was evaluated by measuring the surface remaining un-
covered by the cells at the end of the experiment. Although we did observe reduced cell migra-
tion in DS than in FCS conditions, supplementation with E2 did not rescue this phenotype
indicating that the hormone is not sufficient to promote cell migration (S2a-b Fig.).
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Estrogens have also been involved in the induction of collagen synthesis. We thus examined
the effect of E2 on collagens I (coll), V (colV) and VI (colVI) that represent the major collagens
found in dermis. However, in our conditions, neither E2 deprivation nor E2 treatment had a
statistically significant effect on gene expression of all collagen type tested as measured by
qPCR and of protein secretion as indicated by western blotting analysis (Fig. 3a-b).

17B-estradiol acts independently of conventional Estrogen Receptors

Rapid effects of E2 have been documented and do not involve target gene transcription nor
protein neosynthesis. To evaluate the possibility that the effects of E2 observed on cytoskeleton
organization are mediated by such non-genomic mechanisms, we treated hDF cells with E2 to-
gether with cycloheximide (CHX, an inhibitor of translation). We observed that CHX was un-
able to block cytoskeleton re-organization operated by E2 treatment (Fig. 3a). As a control, we
verified that CHX treatment was efficient in blocking protein translation. The Estrogen Related
Receptor o (ERR o) was reported to display a short half-life [37], the rapid decrease of the level
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of the unstable ERR o protein upon CHX treatment is therefore indicative of efficient transla-
tion inhibition. The fact that E2 acts on cell shape through non-genomic mechanisms suggests
that the effects of the hormone may be mediated by membrane localized receptors. To examine
this possibility we used the membrane impermeable E2-BSA conjugate. This compound was as
efficient as E2 to reverse elongated cell shape (Fig. 3b) indicating that E2 acts at the

cell membrane.

To identify the receptors mediating the effects of E2 on hDF, we first investigated the ex-
pression of the conventional Estrogen Receptors (ERs, as members of the nuclear receptor
superfamily). In hDF, ER (but not ERB) was weakly detected at the mRNA level and not at the
protein level, in contrast to MCF?7 cells (Fig. 4a). We next examined whether this low ER ex-
pression was sufficient to mediate the effects of E2 on cytoskeletal reorganization. To this end,
cells were treated with E2 (10 M) together with 10”7 M ICI182,780 (a specific ER antagonist).
We observed that this compound was unable to block the effects of E2 on cytoskeleton organi-
zation changes (Fig. 4b). As a control we verified that ICI182,780 was efficient to penetrate
hDF cells. To this end, hDF were transiently transfected with a plasmid encompassing
estrogen-response elements controlling the expression of the luciferase reporter gene (ERE-
Luc), together with ER. As expected reporter activity was increased upon E2 treatment, a phe-
nomenon that was abrogated by ICI182,780 exposure indicating that this compound is an
efficient ER antagonist in dermal fibroblasts (S4 Fig.). Taken together these results demonstrate
that the conventional estrogen receptors do not mediate the effects of 17f3-estradiol on cell
shape change of dermal fibroblasts.

17B-estradiol induces rapid changes cytoskeleton organization in
dermal fibroblasts through GPR30

In several cell systems, GPR30 has been shown to act as a transmembrane estrogen receptor
mediating rapid effects of the hormone. We thus investigated whether E2-induced cytoskeleton
re-organization involves GPR30. We first showed that this protein is indeed expressed in hDF
as well as in MCF?7 cells, irrespective of the culture conditions (Fig. 5a). E2 signaling through
GPR30 results in rapid and transient ERK1/2 activation [24-25, 30-31]. In agreement, ERK1/2
was phosphorylated within 15 min of E2 treatment (10" M) of hDF cells, and then progressive-
ly returned to basal situation (Fig. 5b). In contrast, no significant variation was observed in the
phosphorylation levels of Src or PI3K.

If the activities of E2 are mediated by GPR30, then an E2-unrelated agonist of this receptor
should phenocopy the effects of the hormone. In agreement with this reasoning we observed that
treatment with 10® M G-1, a specific synthetic GPR30 agonist led to transient ERK1/2 phosphor-
ylation (Fig. 5¢), thus behaving similarly to E2. We next investigated whether inhibiting this recep-
tor could reverse the effect of E2. To this end cells were treated with 107 M G-15, a specific
synthetic GPR30 antagonist. We first observed that G-15 efficiently blocked the E2-induced
ERK1/2 transient phosphorylation (Fig. 5d). Similar effects were also observed using 10 M
PD98059, an inhibitor of ERK1/2 phosphorylation, as expected. In contrast, treatment with
EGFR- (which is also expressed in hDF; S5a Fig.) or PI3K inhibitors (AG1478 and LY294002, re-
spectively) did not abolished E2 effects on ERK1/2 phosphorylation (S5b Fig.). In addition, treat-
ment with G-15 or PD98059, but not with AG1478 or LY294002, abolished the E2-induced
cytoskeleton change (Fig. 5e and S5¢ Fig.). In agreement with a role for GPR30 in modulating cy-
toskeleton re-organization, 4h of treatment with G-1 resulted in similar effects to those displayed
by E2 (Fig. 5e). Finally we examined whether GPR30 was required for the effects of E2. To this
end, hDF were transiently transfected with GPR30-targeting shRNA, the efficiency of which is
shown on Fig. 6a. After such a treatment, E2 was no longer capable of inducing ERK
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Fig 4. 17B-estradiol effect on cytoskeleton re-organization involves ER-independent mechanisms.

a. Expression of the indicated ER was determined in hDF and MCF7 cells. Upper panel, gPCR analysis-
Expression of ERs is relative to the housekeeping gene 36b4 (values are in Ct of the indicated gene minus
that of 36b4). Experiments were performed twice on the four donors each in triplicate. Values are mean
+/-s.e.m. Lower panel, western blot analysis: ICI182,780 treatment (10”7 M) which induces proteasome-
dependent degradation of ER [53] was used as a control. HSP90 was used as a loading control. b. Cells were
cultured as indicated. Actin and nuclei were stained. Scale bar = 100 um. Right panel: cell shape was
monitored as in Fig. 1b. n =400 cells. ns = not significant; ***p<0.001.

doi:10.1371/journal.pone.0120672.g004

phosphorylation (Fig. 6b). Moreover the hormone was also unable to induce cytoskeleton changes
upon GPR30 inactivation (Fig. 6¢). Altogether our data show that 17B-estradiol induces cytoskele-
ton remodeling in human dermal fibroblasts in a GPR30- and ERK1/2-dependent manner.

Discussion

In this report we show that estrogens induce actin cytoskeleton remodelling in isolated human
dermal fibroblasts through an ER-independent, GPR30-dependent, non-genomic mechanism.
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In support of this statement, low amount of ER mRNA was expressed in hDF whereas no ERf
mRNA at all was detected in these cells. Furthermore ER protein was undetectable in western
blotting experiments. This is in apparent contrast with previous reports that documented the
expression of ERs in human skin [17, 38-40]. ERB was the main ER expressed in fibroblasts
whereas ER was expressed in sebocytes rather than fibroblasts [13]. However, it should be
noted that these investigations used skin from forearm or scalp sometimes originating from
post-menopausal women. In contrast we here used abdominal skin fibroblasts from pre-
menopausal women. It is thus possible that ER expression varies according to hormonal status
and/or anatomical origin of the fibroblasts.
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In sharp contrast to ERs, GPR30, which has been proposed as a transmembrane estrogen re-
ceptor, is expressed at comparable levels in MCF7 and human dermal fibroblasts. This result is
in agreement with a previous study showing the expression of GPR30, but not that of ER, in
WS fibroblasts derived from embryonic human skin [32]. Interestingly the estrogenic effects
that we observed in hDF were not blocked by the inhibitor of protein neosynthesis CHX (indi-
cating that the hormonal effect does not require regulation of gene expression) nor by the spe-
cific ER antagonist ICI182,780 (indicating that the ERs are not involved in the process). These
results are consistent with several reports indicating that E2 activity via GPR30 is not antago-
nized by ICI182,780 [24-26, 41]. In contrast, the synthetic GPR30 antagonist G-15 inhibited
estrogen-induced ERK1/2 phosphorylation as well as actin remodeling. Moreover exposure to
G-1, a specific GPR30 agonist mimicked the effects of estrogens treatment on ERK1/2 activa-
tion and cytoskeleton remodeling. In agreement coupling E2 to BSA, which renders the hor-
mone unable to cross the cell membrane, does not impair its capacity to induce actin
remodeling, indicating a membrane-based effect. Activation of ERK1/2 signaling cascade by E2
is consistent with a GPR30-mediated cascade [25, 30-31]. Furthermore the rapid ERK1/2
phosphorylation induced by estrogen treatment is also consistent with the minute range non-
genomic actions of the hormone, as are the cytoskeleton re-organization after
hormone exposure.

Estrogens have been reported to regulate cell morphology and to drive cytoskeleton re-
organisation of several cell types as glial cells [42], carcinoma cell lines [43-44], endothelial
cells [45-46], osteoblasts [47], neurons [48], and oligodendrocytes [49]. Estrogen-driven re-
organisation of actin cytoskeleton has been implicated in different aspects of cell biology such
as cell migration or protection of cell integrity. Here we showed that estrogens induce rapid
non-genomic re-organisation of actin cytoskeleton and focal adhesions and thereby restore the
spread shape of human dermal fibroblasts cultivated in desteroidated medium. Adhesive area
strongly modulated adhesion strength [34]. Cell-adhesion strength was shown to correlate
with the size, length and distribution of focal adhesions and staining intensity of vinculin-
containing FA [34-36]. We showed that fibroblast cultivated in desteroided medium displayed
a reduction of FA number and intensity and reduced adhesive area both suggestive of a de-
creased adhesion strength, a phenotype fully restored by E2 exposure. E2 is thus necessary and
sufficient to preserve cell sreading and actin cytoskeletal structures of hDF and thereby cell
adhesive strength. It has been observed that, in aging skin, fibroblast can collapse due to a dis-
ruption of the extracellular matrix by MMPs [19]. Hormonal deficiency could be in part re-
sponsible for a reduction of cell anchoring capacities, resulting in fibroblast collapse.
Importantly, our data defines a potential protective effect of sex hormone on fibroblast
adhesive strength.

Intriguingly, cell migration capacities are reduced when dermal fibroblasts were cultured in
DS-containing medium compared to untreated serum, an effect which seems not be rescued by
E2 supplementation. This indicates that desteroidation of the serum also removes factors that
are necessary for migration and are distinct from E2. This hormone is thus not sufficient alone
to induce hDF migration although it is unclear whether it is necessary or not. On another
hand, E2-induced, transcription-independent, actin remodeling and increased cell migration
have been shown to occur in endothelial and endometrial cells [45, 50-51]. These effects appar-
ently involve Src and PI3K activation and depend on a membrane localized ER protein, al-
though a potential role for GPR30 has not been addressed. Taken together with our
observation showing that Src and PI3K are not activated by E2 in human dermal fibroblasts,
this may also suggest that E2 signaling through GPR30 is sufficient for actin remodeling where-
as activation of cell migration could require additional cascades depending on a membrane lo-
calized ER signaling to Src/PI3K.
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Our data show that cytoskeleton re-organization in dermal fibroblasts does not involve
EGEFR signaling which has however been reported to contribute to GPR30-dependent estrogen-
ic effect in some cell types [24, 26, 30-31]. Although EGFR is expressed (at least at the
mRNA level) in dermal fibroblasts, it is possible that additional factors are required for an
E2-activation of this pathway. Whereas ERK1/2 phosphorylation is clearly required for
E2-induced cytoskeleton remodeling, the identification of the effectors downstream of these ki-
nases will require further investigations.

A bulk of evidence supports the effect of estrogens in collagen production. Nevertheless, we
were not able to show any induction of expression of collagen type I nor of other collagen types
such as collagen V and VT in cultured human dermal fibroblasts upon E2 treatment. It is possi-
ble that the effect of E2 on collagen synthesis is mediated by ERs rather than by GPR30. Our
data provide information on the effects of E2 on isolated fibroblasts in primary culture. It re-
mains possible that this hormone exerts distinct effects on dermal fibroblasts in vivo or even
when they are cultured in the presence of keratinocytes. For example, one may hypothesize that
keratinocytes could secrete factors that activate ER expression in fibroblasts, thereby modifying
the nature of direct E2 signaling in fibroblasts. Alternatively, E2 may directly signal to keratino-
cytes, which would in turn secrete factors regulating fibroblast homeostasis. Such cell non-
autonomous effects of E2 have indeed been described in the liver in which activation of ER
signaling induces IGF-1 secretion that contribute to the progression of the estrous cycle [52].

Altogether our results point to previously unreported effects of E2 on human dermal
fibroblasts. Our data could allow the establishment of easy tests to monitor the effects of
estrogenic-mimicking compounds that could reverse the effects of menopause on skin. Hor-
mone replacement therapies, aiming at restoring the pre-menopausal circulating levels of es-
trogens have been previously used to counteract the deleterious effects of menopause but have
however been associated with an increased risk in breast cancer, in a manner that depends on
the classical estrogen receptors. Our present data show that the effects of E2 on human dermal
fibroblasts do not depend on these receptors and have thus a different mechanistic basis. Tar-
geting GPR30 in skin, instead of the ERs, may thus circumvent the unwanted side effects of
hormone replacement therapies.

Supporting Information

S1 Fig. 17B-estradiol does not regulate proliferation of hDF. Cells from donors 1 to 5 (atoe,
respectively) were cultured in the presence of untreated (FCS) vs desteroidated serum (DS) (left
panels) or in DS-containing medium supplemented with vehicle (DS) or 10”7 M 17B-estradiol
(DS+E2) (right panels). f. MCF?7 cells were cultured in DS-containing medium supplemented or
not with 107 M 17B-estradiol. Proliferation is expressed relative to Oh. Values represent a single
experiment performed in duplicate on single donors (two experiments performed per donor
with similar results) with error bar representing S.D. Significance was estimated using one way
ANOVA test. ***: p<0.001. Donor 3 displayed a low proliferation rate and was excluded from
further analyses. g. Expression of cyclin D1 or D3 (CCND1 and CCND?3, respectively) in hDF or
MCEF?7 cells under the indicated conditions, determined by qPCR. Results are expressed relative
to the expression of the 36b4 housekeeping gene. Experiments were performed on each for do-
nors in triplicate. Values are mean+/-s.e.m. ns = not significant, ***: p<0.001.

(TIF)

S2 Fig. 17P-estradiol does not regulate hDF migration. a. hDF were cultured in the presence of
untreated (FCS) or desteroidated serum (DS) for 2 days, then supplemented with 10”7 M E2. Con-
fluent layers were then wounded and cells were allowed to migrate for the indicated time. Shown is
an experiment performed with cells from donor 1. b. Quantification of the wound healing assays.
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Areas not covered by cells were quantified and were expressed relative to Oh time point. Results are
shown as the average of six independent experiments performed in triplicate with error bars repre-
senting s.e.m. Significance was analyzed using ANOV A tests. ns = not significant, ***: p<0.001
(TIF)

S3 Fig. 17B-estradiol does not regulate collagen secretion and mRNA expression. a. hDF
were cultured in the presence of untreated (FCS) or desteroidated serum (DS) for 2 days, then
supplemented with 10”7 M E2 and ascorbic acid. Expression of secreted collagen I, V and VI
was analyzed by western blot. Ponceau staining is shown on the lower panel. Shown are the re-
sults obtained with donor 4. Quantification of protein expression (displayed below the blots) is
expressed relative to Ponceau staining (shown on the lower panel) with FCS condition assigned
to 1 as mean+SEM n = 4 donors. b. Expression of the indicated mRNA analyzed by real-time
PCR. Data are presented relative to vehicle treated samples and are the average of experiments
performed twice on 4 donors in triplicate. Error bars indicate SEM. Variations are not signifi-
cant as estimated by ANOVA tests.

(TIF)

S4 Fig. Efficiency of ICI182,780 treatment in hDF cells. hDF cells were transfected with
ERE-luc vector supplemented or not with ER-encoding plasmid and treated with the indicated
compounds. Luciferase activities were determined and are expression relative to B-Gal activities
brought by a co-transfected CMV-B-Gal plasmid. Shown are the results of three independent
transfections each performed in two donors in triplicate with error bars indicating s.e.m. Sig-
nificance was analysed using ANOVA tests. ***: p<0.005.

(TTF)

S5 Fig. Effect of 17B-estradiol is independent from PI3K and EGFR. a. Expression of EGFR
and GPR30 was determined in hDF and MDA-MB231 breast cancer cells by qPCR. Expres-
sions are indicated relative to that of the 36b4 housekeeping gene (values are in Ct of the indi-
cated genes minus that of 36b4). Experiments were performed on the four donors in triplicate.
Values are mean+/-s.e.m.b,c. Cells from individual donors were cultured in DS medium for 2
days and treated with E2, supplemented as indicated with 10° M AG1478 (AG; EGFR inhibi-
tor) or 10> M LY294002 (LY; PIK3 inhibitor) for 4h. b. Upper panel: expression of phosphory-
lated ERK (p-ERK), total ERK (t-ERK) and hsp90 in cells from donor 4 shown as illustration.
Lower panel: quantification of the western blots performed on the four donors. Data are pre-
sented as mean+SEM relative to vehicle-treated control. c. Cells shape monitored under the in-
dicated conditions as in Fig. 1b. n = 400 cells. ns: not significant; ***p<0.001.

(TTF)

S1 Video. hDF cells videorecorded for 8 h under DS + E2 conditions. Cells were cultured in
DS medium for 2 days and videorecorded when E2 was added.
(AVI)

S2 Video. hDF cells videorecorded for 8h under DS conditions. Cells were cultured in DS
medium for 2 days before being videorecorded.
(AVI)
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