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Abstract

Background: Chinese traditional herbal medicine Fuzhengkangai (FZKA) formulation combination with gefitinib
can overcome drug resistance and improve the prognosis of lung adenocarcinoma patients. However, the
pharmacological and molecular mechanisms underlying the active ingredients, potential targets, and overcome
drug resistance of the drug are still unclear. Therefore, it is necessary to explore the molecular mechanism of FZKA.

Methods: A systems pharmacology and bioinformatics-based approach was employed to investigate the molecular
pathogenesis of EGFR-TKI resistance with clinically effective herb formula. The differential gene expressions between
EGFR-TKI sensitive and resistance cell lines were calculated and used to find overlap from targets as core targets.
The prognosis of core targets was validated from the cancer genome atlas (TCGA) database by Cox regression.
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment is applied to analysis core targets for
revealing mechanism in biology.

Results: The results showed that 35 active compounds of FZKA can interact with eight core targets proteins
(ADRB2, BCL2, CDKN1A, HTR2C, KCNMA1, PLA2G4A, PRKCA and LYZ). The risk score of them were associated with
overall survival and relapse free time (HR = 6.604, 95% CI: 2.314–18.850; HR = 5.132, 95% CI: 1.531–17.220). The
pathway enrichment suggested that they involved in EGFR-TKI resistance and non-small cell lung cancer pathways,
which directly affect EGFR-TKI resistance. The molecular docking showed that licochalcone a and beta-sitosterol can
closely bind two targets (BCL2 and PRKCA) that involved in EGFR-TKI resistance pathway.

Conclusions: This study provided a workflow for understanding mechanism of CHM for against drug resistance.
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Background
Lung cancer is a leading cause of cancer mortality
worldwide, more than 85% of which is non-small cell
lung cancer (NSCLC). Lung adenocarcinoma is the
major form of NSCLC, which represents about 50% of

lung cancer [1]. Epidermal growth factor receptor
(EGFR) mutation is a main contributing factor of lung
adenocarcinoma (LUAD) in east Asian countries (about
60% of lung adenocarcinoma) [2]. In China, according to
cancer statistics for 2015, lung cancer shows the highest
morbidity and mortality [3].
The epidermal growth factor receptor tyrosine kinase

inhibitors (EGFR-TKIs) such as gefitinib, erlotinib and
afatinib, which targeted the EGFR pathway, showed
potential in the treatment of patients with EGFR mu-
tated NSCLC [4]. And the drugs have effects on LUAD
patients with EGFR mutations including the deletion of
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exon 19 and L858R missense mutation of exon 21 [5].
Although they are effective for early treatment of LUAD,
patients will soon have drug resistance in 4 to 12 months
during therapy process [2]. Researchers have made great
efforts to explore resistance mechanisms and they have
discovered many mechanisms of EGFR-TKI resistance.
The most frequently studied mechanism of acquired
resistance is the T790 M point mutation in exon 2 of
EGFR [6, 7]. Secondly, in histologic transformation, the
small cell of LUAD histologic transformation and
epithelial-mesenchymal transition (MET) activation were
closely associated with the acquired EGFR-TKI resist-
ance in patients with never smoked [8–11]. MET and
HER2 amplification are also reported to associate with
EGFR-TKI resistance [12–14]. BRAF secondary mutations
have also been implicated to EGFR-TKI resistance [15]. In
recent studies, PAK1 activation, upregulation of BCL2,
elevation of CDKN1A (p21), overexpression of PHGDH
and IGF1R related with acquire resistance [2, 16–19]. To
sum up, so many mechanisms of drug resistance are very
harmful to the target treatment of patients. How to
overcome various anti-drug mechanisms is the focus of
attention of many scientists.
Previous studies reported that Chinese Herbal Medicine

(CHM) Fuzhengkangai (FZKA) formulation has a good
performance in clinical cancer treatment [20, 21]. In
recent year, Yang et al. reported that CHM of FZKA com-
bine gefitinib had great effect to treat lung adenocarcin-
oma with EGFR mutation patients [22]. The study
indicates that CHM combination of gefitinib can improve
relapse free survival (RFS) significantly. However, the
mechanism of CHM in LUAD remain unclear. With the
deepening of network pharmacology research, an increas-
ing number of the mechanism of CHM has been revealed
[23–25]. Thus, this study employed network pharmacol-
ogy, bioinformatics and molecular docking method to
investigate the molecular mechanism of FZKA in against
drug resistance.

Methods
Composite of Chinese herbs of FZKA
Previous publication has reported the composition of
FZKA [22]. This prescription involved eleven herbs which
contained Atractylodes Macrocephala Koidz (Baizhu),
Hedyotis Diffusae Herba (Baihuasheshecao), Curcumae
Rhizoma (ezhu), Licorice (Gancao), Hedysarum multiju-
gum Maxim (Huangqi), Solanum nigrum Linn (Longkui),
Pseudobulbus Cremastrae Seu Pleiones (Shancigu), Salviae
Chinensis Herba (Shijianchuan), Pseudostellariae Radix
(Taizishen), Tetrapanacis Medulla (Tongcao) and Coicis
Semen (Yiyiren).
The information of molecular target filtering was

employed to Traditional Chinese Medicines for Systems

Pharmacology Database and Analysis Platform (TCMSP,
http://lsp.nwsuaf.edu.cn/tcmsp.php) [26].

Pharmacokinetic prediction
The properties of absorption, distribution, metabolism
and excretion (ADME) were considered as important
indicators for effectiveness in herbs. According to
publications, three ADME-related models, including the
evaluation of oral bioavailability (OB), Caco-2 permeability
and drug-likeness (DL), are applied to identify the poten-
tial bioactive compound of FZKA. Each of property in
above was illustrated as following:
OB represents fraction of the oral dose of bioactive

compound which reaches systemic circulation in the
TCM remedy. The reasonable threshold of OB was set
to 33% for further analysis. And the threshold of OB
referred to previous studies and used their criterion
[27–30]. The indicator of Caco-2 widely applied as
standard permeability-screening assay for prediction
of the compound’s intestinal absorption and fraction
of oral dose absorbed in humans. In this study, the
threshold of Caco-2 permeability was set to 0.4 [31].
Drug-likeness evaluation is used in drug design to
evaluation whether a compound is chemically suitable
for drug, and how drug-like a molecule is with re-
spect to parameters affecting its pharmacodynamic
and pharmacokinetic profiles which ultimately impact
its ADME properties. In this study, the threshold of
DL was set to 0.18 [32].

Differential expression genes between sensitive and
resistance EGFR-TKI lung cancer cells
The differential expression genes (DEGs) between
EGFR-TKI sensitive and resistance were calculated
from public dataset of Gene Expression Omnibus
(GEO). GSE34228 dataset include gefitinib sensitive
(n = 26) and resistance (n = 26) PC9 cell lines. For
assay the deregulation gene expression, “limma” pack-
age of R software was employed to test the DEGs.
mRNAs with log2 fold change |log FC| ≥1 (FDR ad-
justed P < 0.01) were considered to be differentially
expressed mRNAs.

Identify core sub-network from compound-target network
For identifying core targets from compounds-targets
network, the overlap of DEGs and targets were
extracted. There eight overlap targets were identified.
We selected eight targets and their neighbors (only
compounds) as core sub-network.

Validation compound-target interaction via docking
simulation
Molecular docking simulation was performed to valid-
ate those interactions and guide the associated drug
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discovery in the Glide module of Schrödinger software
(Version, Schrödinger, Inc., New York, NY, 2015). The
studied compounds were prepared and optimized in the
LigPrep module. The crystal structures of the studied pro-
tein targets were derived from the protein data bank
(PDB) database (http://www.rcsb.org/) and prepared using
the Protein Preparation Wizard. The centroid of the
co-crystalized inhibitor in the crystal structures of
complex was defined as the binding site. The poses of the
studied compounds are evaluated by both standard
precision and extra precision (XP) docking score and the
binding conformation with the highest score was selected
for binding mode analysis.

Validation in cohort with EGFR mutation
The gene expression, samples with EGFR mutation
and clinical information of lung adenocarcinoma
(LUAD) were downloaded from TCGA database
(https://portal.gdc.cancer.gov/). For filtering EGFR
mutation samples, we selected the samples which
both contain EGFR mutation and complete follow-up
information (overall survival). After filtering the
samples, there are forty-five samples were included
for further analysis. In addition, the patients with
relapse free survival (RFS) time information were also
selected to validate. There were thirty-seven patients
with RFS were filtered to test.

Fig. 1 Flowchart of data analysis
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Risk sore construction
A risk score (RS), linear combination of candidate
mRNAs (targets of active compounds) for each LUAD
patient with EGFR mutation (n = 45), is constructed.
The RS was calculated from sum of the expression value
of the mRNAs weight multiplied by univariate Cox
regression coefficients.

Risk score RSð Þ ¼
X

i
V i � βi

where βi represents the Cox regression coefficient of the
ith variable, and Virepresents the value of the ith vari-
able. Where Vi is the log 2-transformed expression value
of every mRNA and βi is the univariate Cox proportional
hazards regression coefficient of the ith mRNA.

Survival analysis and receiver operating characteristic curves
The prognostic performance was measured using the area
under the curve (AUC) derived from time-dependent
receiver operating characteristic (ROC) analysis, and the
accuracy of the risk score to predict overall survival (OS)
at 3 years was assessed. And risk score to predict
RFS at 3 years was also tested. The capacity of the
model was evaluated by analysis of area under curve

(AUC) of the receiver operating characteristic (ROC)
curves. Generally, the value of AUC is between 0.5
and 1, and the larger AUC represents a better
performance. The value of AUC is greater than 0.7. It
is considered that the model has good capacity in
classification. The risk of patient group was classified
into two groups (a sensitive and a resistance group)
according to median value point of individual patient
RS. All statistical analyses were conducted using R
Software (Version 3.4.2). Survival curves and ROC
curves were generated by the ‘survminer’ [33],
‘survival’, and ‘survivalROC’ packages [34].

Network visualization and KEGG enrichment
The networks were constructed by Cytoscape software
version 3.6.1, which is an open source software for net-
work visualization and analysis [35]. In the network, the
compounds and targets are showed by nodes, and the
interaction between two nodes is represented by an edge.
KEGG analysis were carried out using clusterProfiler
package in R (v3.4.2) [36]. KEGG pathways visualization
was employed to CyKEGGParser application (Version
1.2.9) in Cytoscape software.

Fig. 2 A compound node and a protein node are linked if the protein is targeted by the corresponding compound. Node size is proportional to its degree

Bing et al. BMC Complementary and Alternative Medicine          (2018) 18:293 Page 4 of 17



Results
Design of workflow
For investigating the mechanism of FZKA in EGFR-TKI
resistance in molecular level, a hypothesis was pro-
posed, which assumes that targets of bioactive com-
pounds may involve in some pathways that against the
EGFR-TKI. In addition, the overlap of targets and DEGs
between resistance and sensitive EGFR-TKI NSCLC cell
lines would be core targets of herbs. Generally, LUAD
patients with sensitive for EGFR-TKI would have better
prognosis than resistance. Thus, the prognosis of over-
lap was validated in LUAD patients with EGFR muta-
tion form TCGA database. For further analysis the
pathway of targets, KEGG pathway analysis was used to
investigate the active pathway which involved in
EGFR-TKI resistance. Finally, molecular docking simu-
lation was employed to validate the interaction of com-
pound and target. The docking simulation can explain
the mechanism of interaction how to affect the pathway
(Fig. 1).

Active compounds filtering
After filtering by criterion of ADME in method, a total of
76 compounds were filtered from the eleven herbs of
FZKA (Additional file 1). From TCMSP database, the
compound-target network was constructed from 76

compounds and 130 targets (Additional file 2). And the
network was showed as following (Fig. 2).
The complex network suggested each compound

could affect many targets, which can regulate those
targets to affect biological process. Although the network
showed compound-target interaction, the mechanism in
EGFR-TKI resistance LUAD cells was difficult to under-
stand. Thus, the DEGs of sensitive and resistance in LUAD
were calculated for further investigation mechanism of
herbs.

Genes associated with Gefitinib resistance
Gefitinib sensitive and resistance cell lines were collected
from GSE34228. After filtering by some criterions as
methods, there were 449 up-regulation genes and 531
down-regulation genes (Fig. 3a, b). The pathway enrich-
ment of DEGs was employed to KEGG (Fig. 3c).
The volcano plot and heatmap showed fold-changes

and DEGs in two groups. KEGG enrichment suggested
that down-regulated genes involved in more pathways. Of
these pathways, some pathways were closely associated
with cancer development such as Jak-STAT signaling
pathway, TNF signaling pathway, Ras signaling pathway
and ErbB signaling pathway. For investigating more
accurate targets of FZKA, we intersected the differentially
expressed genes and drug targets.

Fig. 3 The information of DEGs and pathway of DEGs. a Volcano plot represents DEGs. b Heatmap of DEGs between sensitive and resistance
groups. c KEGG enrichment of DEGs
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Table 1 Information of active compound by ADME filtering

ID compounds Structure OB Caco.2 DL Herbs

MOL000049 3β-acetoxyatractylone 54.07 1.13 0.22 Atractylodes
Macrocephala Koidz.

MOL000296 hederagenin 36.91 1.32 0.75 Curcumae Rhizoma

MOL000358 beta-sitosterol 36.91 1.32 0.75 Hedyotis Diffusae
Herba

MOL000371 3,9-di-O-methylnissolin 53.74 1.18 0.48 Hedysarum
multijugum Maxim.

MOL000378 7-O-methylisomucronulatol 74.69 1.08 0.3 Hedysarum
Multijugum Maxim.

MOL000380 (6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-
benzofurano[3,2-c]chromen-3-ol

64.26 0.93 0.42 Hedysarum
Multijugum Maxim.

MOL000392 Formononetin 69.67 0.78 0.21 licorice

MOL000417 Calycosin 47.75 0.52 0.24 licorice

MOL000449 Stigmasterol 43.83 1.44 0.76 Hedyotis Diffusae
Herba
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Table 1 Information of active compound by ADME filtering (Continued)

ID compounds Structure OB Caco.2 DL Herbs

MOL000497 licochalcone a 40.79 0.82 0.29 licorice

MOL000500 Vestitol 74.66 0.86 0.21 licorice

MOL000546 Diosgenin 80.88 0.82 0.81 Solanum nigrum
Linn

MOL001484 Inermine 75.18 0.89 0.54 licorice

MOL001670 2-methoxy-3-methyl-9,10-anthraquinone 37.83 0.73 0.21 Hedyotis Diffusae
Herba

MOL002565 Medicarpin 49.22 1 0.34 licorice

MOL002773 beta-carotene 37.18 2.25 0.58 Solanum Nigrum
Linn

MOL003896 7-Methoxy-2-methyl isoflavone 42.56 1.16 0.2 licorice

MOL004835 Glypallichalcone 61.6 0.76 0.19 licorice

MOL004841 Licochalcone B 76.76 0.47 0.19 licorice

MOL004857 Gancaonin B 48.79 0.58 0.45 licorice
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Table 1 Information of active compound by ADME filtering (Continued)

ID compounds Structure OB Caco.2 DL Herbs

MOL004866 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-
(3-methylbut-2-enyl)chromone

44.15 0.48 0.41 licorice

MOL004891 shinpterocarpin 80.3 1.1 0.73 licorice

MOL004908 Glabridin 53.25 0.97 0.47 licorice

MOL004911 Glabrene 46.27 0.99 0.44 licorice

MOL004945 (2S)-7-hydroxy-2-(4-hydroxyphenyl)-8-(3-
methylbut-2-enyl) chroman-4-one

36.57 0.72 0.32 licorice

MOL004957 HMO 38.37 0.79 0.21 licorice

MOL004959 1-Methoxyphaseollidin 69.98 1.01 0.64 licorice

MOL004966 3’-Hydroxy-4’-O-Methylglabridin 43.71 1 0.57 licorice

MOL004974 3′-Methoxyglabridin 46.16 0.94 0.57 licorice

MOL004978 2-[(3R)-8,8-dimethyl-3,4-dihydro-2H-pyrano[6,5-
f]chromen-3-yl]-5-methoxyphenol

36.21 1.12 0.52 licorice
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Core genes identification and network analysis
For identification some core genes in EGFR-TKI resist-
ance of NSCLC, the overlapping genes between targets
and DEGs were identified. Eight overlap genes and
thirty-five compounds were identified (Tables 1 and 2).
The expression of core genes and subnetwork of
compound-target network were showed in Fig. 4.
The results showed that 35 compounds acted on 20

pathways, which showed average degree of 6.32. In the
compound-pathway network, the compounds mainly in-
volved in pathways such as Salivary secretion (degree = 33),

Renin secretion (degree = 32) and Calcium signaling
pathway (degree = 31) (Additional file 3).
As shown in Fig. 4d, we clustered the pathways into

four modules which were secretion pathways, drug
resistance pathways, cancer pathways and signaling
pathways. The compounds of FZKA have multiple
target effects and involved in multiple pathways that
may be related to drug resistance. Of these compounds,
MOL000497 (licochalcone a), MOL002773 (beta-caro-
tene), MOL000358 (beta-sitosterol) and MOL000546
(diosgenin) directly involved in drug resistance

Table 1 Information of active compound by ADME filtering (Continued)

ID compounds Structure OB Caco.2 DL Herbs

MOL004980 Inflacoumarin A 39.71 0.73 0.33 licorice

MOL004991 7-Acetoxy-2-methylisoflavone 38.92 0.74 0.26 licorice

MOL005003 Licoagrocarpin 58.81 1.23 0.58 licorice

MOL005007 Glyasperins M 72.67 0.49 0.59 licorice

MOL005020 dehydroglyasperins C 53.82 0.68 0.37 licorice

Table 2 Core targets of Fuzhengkangai

Uniprot accession Gene names Protein name Log (Fold Change) Adjust P value

P07550 ADRB2 Beta-2 adrenergic receptor 1.02 1.63e-17

P10415 BCL2 Apoptosis regulator Bcl-2 1.20 1.49e-9

P38936 CDKN1A Cyclin-dependent kinase inhibitor 1 −1.01 4.79e-12

P28335 HTR2C 5-hydroxytryptamine receptor 2C 1.21 2.58e-16

Q12791 KCNMA1 Calcium-activated potassium channel subunit alpha-1 1.01 1.70e-8

P47712 PLA2G4A Cytosolic phospholipase A2 −1.33 3.70e-8

P17252 PRKCA Protein kinase C alpha type 1.06 3.69e-13

P61626 LYZ Lysozyme C 1.91 4.52e-17

Bing et al. BMC Complementary and Alternative Medicine          (2018) 18:293 Page 9 of 17



pathways (EGFR-TKI resistance and platinum drug
resistance).

Core genes validation in independent dataset
The core genes were searched from EGFR-mutation
LUAD cohort in TCGA. The clinical factors and baseline
information of these patients were listed in Table 3. And
RS of overall survival is calculated from linear combi-
nation of gene expression and coefficient. The median

value of RS is considered as threshold to classify patients
into two groups and RS was significantly associated with
LUAD patient survival (HR = 6.604, 95% CI: 2.314–
18.850). Generally, sensitive group would have longer
survival time than resistance. The median value of RS
showed that survival of sensitive group was significantly
better than resistance group (p = 0.0012) (Fig. 5a). The
RS distribution in patients was showed in Fig. 5b. And
AUC of RS showed that the core genes model performed

Fig. 4 Expression of core genes and subnetwork of core genes. a Heatmap of core genes in EGFR-TKI resistance and sensitive groups. b boxplot
of each core gene between two groups. c Subnetwork of compounds and targets. The triangles represent different compounds and different
color represent herbs that include the compounds. d The compound-pathway interaction network is constructed by compound and the
pathway that consisted of core targets. Red lines represent compounds directly related to drug resistance
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(AUC = 0.853) well prediction capacity (Fig. 5c). Add-
itionally, RS of RFS was also validated in TCGA database
(Fig. 5d). The result of RS in RFS was similar to overall
survival (HR = 5.132, 95% CI: 1.531–17.220). And the
log-rank test showed that these genes could significantly
classify patients into two groups (p = 0.0036). AUC of RS
of RFS also showed well prediction capacity in 3 years
(AUC = 0.746).

KEGG pathway enrichment
The results of pathway enrichment will be able to show
how these drugs act on the pathway, thereby alleviating
cell resistance to drugs (Fig. 6). Through the result of
KEGG pathway enrichment showed that two pathways
(hsa05223: Non-small cell lung cancer and hsa01521:
EGFR tyrosine kinase inhibitor resistance) were directly
associated with EGFR-TKI resistance.
The EGFR tyrosine kinase inhibitor resistance path-

way showed that there were many pathways can lead
to drug resistance. In this study, the pathway enrich-
ment indicated that FZKA acted on PRKCA and
BCL2 pathway to affect drug resistance. In addition,
in Non-small cell lung cancer, FZKA also act on
PRKCA and CDKN1A (p21).

Molecular docking assay
The mechanism of FZKA was reflected by interaction of
compound and target. Thus, molecular docking simula-
tion is used to analyze interaction between them. Three
targets and four compounds which involve in the
EGFR-TKI resistance were listed in Table 4.
The versatile functions of CDKN1A (p21) are not fully

understood and the associated pathways and mechanism
need to be further elucidated (a. Less understood issues:
p21Cip1 in mitosis and its therapeutic potential; b.
Ironing out the role of the cyclin-dependent kinase
inhibitor, p21 in cancer: Novel iron chelating agents to
target p21 expression and activity). The structure and
the interacting information of active pocket of CDKN1A
(p21) are still lacking. Thus, we mainly concentrated our
docking analysis on PRKCA and BCL2. The 3D struc-
ture of PRKCA and BCL2 are derived from the PDB
database and used for docking analysis (Fig. 7).
In simulation processing, CDKN1A (p21) does not

have full-length crystal structure and active pocket
information. Thus, we searched 3D structure of PRKCA
and BCL2 for docking analysis.
PRKCA protein has a common characteristic of

kinases and a small-molecule ligand is bound to ATP’s
competitive pockets [37]. During the molecular docking
simulation, we docked beta-sitosterol into the binding
pocket of PRKCA protein, however, it returned no
binding poses of beta-sitosterol, which indicates that
beta-sitosterol doesn’t have the ability to bind to the ac-
tive site of PRKCA protein. The binding pocket of BCL2
shows that it has the characteristics of protein-protein
interaction [38]. The results of docking simulation for
BCL2 suggested that all the three small-molecule ligands
could be docked to the binding site of BCL2 as shown in
Fig. 8a, b and c. LCA tends to have the best affinity
among three compounds according to the docking
scores (Table 5) and the detailed binding mode of LCA
was analyzed. As shown in Fig. 8d, e, LCA was buried in
a hydrophobic pocket formed by Phe101, Asp108,
Phe109, Met112, Glu133, Leu134, Asn140, Arg143,
Ala146, Phe150, Val153. Among these residues, the
hydroxy of LCA had a hydrogen bonding with Arg143,
while the benzene rings of LCA formed π-π stacking
and π-cation interaction with Phe101 and Arg143. The
results of the molecular docking simulation above
showed that BCL2 tended to be the potential target
involved in EGFR-TKI resistance and non-small cell lung
cancer pathways and LCA could be an active compound
to decrease the EGFR-TKI resistance.

Discussion
Recently, with the growing research on CHM by
network, a new “multi-target, multi-drug” model was
considered as more effective strategy for understanding

Table 3 Baseline information of NSCLC patients with EGFR
mutation

Clinical factors Patients (%) Death Log-rank test, p

Age

> =65 24 (53.3%) 14 0.70

< 65 21 (46.7%) 9

Gender

Male 13 (28.9%) 7 0.6

Female 32 (71.1%) 16

Race

Asian 2 (4.4%) 1 0.6

Black or African American 3 (6.7%) 1

Not reported 4 (8.9%) 1

White 36 (80.0%) 20

Cancer Status

Tumor free 20 (44.4%) 6 0.01*

With tumor 15 (33.3%) 12

Unknow 10 (22.2) 5

Stage

Stage I 22 (48.9%) 9 0.6

Stage II 9 (20.0%) 5

Stage III 11 (24.4%) 8

Stage IV 2 (4.4%) 1

Not reported 1 (2.2%) 0
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drug action and treatment complex disease [39].
Although a CHM formulation of FZKA was reported for
treatment NSCLC patients with EGFR-TKI resistance,
the mechanism o formulations have not been illustrated.
In this work, we employed complex network analysis,
bioinformatics and computer simulation methods for
investigating the mechanism of drug action. The results
suggested that one of the main mechanisms may be by
inhibiting BCL2 and PRKCA pathway which were
EGFR-TKI resistance pathways for overcoming EGFR-TKI
resistance.

Generally, many studies considered that hub targets or
hub pathways interacted with compounds in the
network as an important point in drug action. In this
study, ADRB2 is a hub node in the subnetwork. The
subnetwork showed that there were many molecules
interacting with ADRB2 (Fig. 4c). Beta-2 adrenergic recep-
tor (ADRB2), coded by an intronless gene on chromosome
5q31–32, mediate the catecholamine-induced activation
of adenylate cyclase through the action of G proteins [40].
Generally, ADRB2 was reported that it significantly associ-
ated development of cancer and it is considered that

Fig. 5 Core genes prognostic validation in LUAD with EGFR-mutation cohort. a Kaplan-Meier survival curve of sensitive and resistance groups for
overall survival. b RS distribution in all mutation patients. c AUC of ROC for predicting RS of OS (AUC = 0.853). d Kaplan-Meier survival curve of
sensitive and resistance groups for disease free survival. e RS distribution in all mutation patients with disease free survival information. f AUC of
ROC for predicting RS of DFS (AUC = 0.746)
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sympathetic neurotransmitters can act as ligands and
activate ADRB2 expressed on the surface of tumor cells to
promote tumor growth [41]. In addition, ADRB2 was also
found that it associated with risk of asthma and LUAD
[42–44]. At present, the relationship between ADRB2 and
lung cancer is mainly related to the activation of mitotic
pathways [44]. And some studies figure out activity
ADRB2 can active EGFR signaling pathway for tumor
growth [45, 46]. Although ADRB2 was not directly
involved in EGFR-TKI resistance pathway in this study,
the role of ADRB2 was very important in EGFR-TKI
resistance due to involve in cell proliferation and EGFR
signaling pathway.

The proteins involved in important biological pathways
was considered as core proteins. And the compounds
interacted with core proteins may be key component in
herbs. There eight genes were searched from overlap of
targeted proteins and DEG from sensitive and resistance
PC9 cell lines. And eight genes can predict prognosis of
LUAD patients with EGFR mutation. And RS of these
genes can significantly classify the patients into sensitive
and resistance groups (Fig. 6).
Of these genes, BCL2, PRKCA (PKC) and CDKN1A

(p21) were directly associated with EGFR-TKI resistance
pathway (hsa01521) and NSCLC pathway (hsa05223).
And five compounds act on these proteins (Table 5).

Fig. 6 KEGG enrichment of core genes. a KEGG pathway enrichment of core genes. b. EGFR tyrosine kinase inhibitor resistance pathway.
c Non-small cell lung cancer pathway
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BCL2 is a noted protein in regulation apoptosis of
cancer. Previous study reported that overexpression
BCL2 can inhibit apoptosis in cancer cells [47]. And
BCL2 was also reported that it involved in the mediation
of chemotherapy resistance in NSCLC [48]. In this
study, EGFR-TKI resistance cell lines have high expres-
sion of BCL2 (Fig. 4b). In addition, the results showed
that three compounds acted with BCL2. And licochal-
cone a (LCA) showed the best score in three com-
pounds. According to previous study, LCA can inhibit
BCL2 for inducing autophagy and promoting apoptosis
in cancer cells [49]. Another study reported that LCA
induced autophagy effect in NSCLC cells [50]. Although
these two studies reported that LCA can induce apop-
tosis and autophagy by experiment, the mechanism of
molecular level has not been revealed. In our study, the
simulation results showed that LCA act on active pack-
age of BCL2 protein. The binding of small molecules to
BCL2 can influence the binding of BCL to downstream
ligands. Therefore, the binding of three small molecules
and BCL2 may play vital role in regulation apoptosis of
LUAD with EGFR-TKI resistance.
Other two proteins (PRKCA and CDKN1A) were also

analyzed in study. But 3D structure of CDKN1A(p21)

has not been resolved yet. So, the mechanism of
CDKN1A fail to analyze. Additionally, in analysis of
PRKCA, the binding of beta-sitosterol and PRKCA was
very different from common PRKCA inhibitor. So, the
molecular simulation software doesn’t get the result
from PRKCA. Although PRKCA and CDKN1A have not
been validation by molecular simulation, the results also
indicated that FZKA could overcome EGFR-TKI resist-
ance through affecting eight core targets. Of these
targets, ADRB2, BCL2, PRKCA and CDKN1A were
reported by previous publications. Other genes have not
been reported to associated with EGFR-TKI in LUAD.
Above all, from our analysis, the compounds from

Hedyotis Diffusae Herba, licorice, Hedysarum multiju-
gum Maxim, Solanum nigrum Linn, Curcumae Rhi-
zoma and Atractylodes Macrocephala Koidz play
major role in overcoming EGFR-TKI resistance in
LUAD. And BCL2 and PKC pathways may be main
targets of FZKA. And these two targets as drug tar-
gets for overcoming EGFR-TKI resistance were also
reported by previous publication. Other targets such
as LYZ, HTR2C, KCNMA1 and PLA2G4A were not
enriched in pathway that related with EGFR-TKI re-
sistance. However, these targets may be potential

Table 4 The genes involved in two pathways for molecular docking

Molecular ID Molecular names Protein name Uniprot ID Gene symbol

MOL000358 beta-sitosterol Protein kinase C alpha type P17252 PRKCA

MOL000358 beta-sitosterol Apoptosis regulator Bcl-2 P10415 BCL2

MOL000546 diosgenin Cyclin-dependent kinase inhibitor1 P38936 CDKN1A

MOL002773 beta-carotene Apoptosis regulator Bcl-2 P10415 BCL2

MOL000491 licochalcone a Apoptosis regulator Bcl-2 P10415 BCL2

Fig. 7 The binding sites of PRKCA and BCL2. a Three-dimension structure of PRKCA. b Three-dimension structures of BCL2. The proteins are
shown in green cartoon and the co-crystalized inhibitors are shown in orange sticks

Bing et al. BMC Complementary and Alternative Medicine          (2018) 18:293 Page 14 of 17



targets of drug resistance. Further experiments are
still needed confirm this conclusion.

Conclusion
In clinical practice, it has been found that FZKA has the
effect of overcoming the drug resistance of EGFR muta-
tions positive, but the molecular mechanism is unclear.
This study revealed that compounds from FZKA directly
acted on targets which involved in EGFR-TKI resistance.
That interaction indicated that FZKA can overcome
drug resistance through inhibiting BLC2 and PRKCA
pathways.
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Additional file 3: The information of compound-pathway network
obtained with network analysis. (XLSX 16 kb)
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