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Background. +e modernization of traditional Chinese medicine (TCM) demands systematic data mining using medical records.
However, this process is hindered by the fact that many TCM symptoms have the same meaning but different literal expressions
(i.e., TCM synonymous symptoms). +is problem can be solved by using natural language processing algorithms to construct a
high-quality TCM symptom normalization model for normalizing TCM synonymous symptoms to unified literal expressions.
Methods. Four types of TCM symptom normalization models, based on natural language processing, were constructed to find a
high-quality one: (1) a text sequence generation model based on a bidirectional long short-term memory (Bi-LSTM) neural
network with an encoder-decoder structure; (2) a text classification model based on a Bi-LSTM neural network and sigmoid
function; (3) a text sequence generation model based on bidirectional encoder representation from transformers (BERT) with
sequence-to-sequence training method of unified language model (BERT-UniLM); (4) a text classification model based on BERT
and sigmoid function (BERT-Classification). +e performance of the models was compared using four metrics: accuracy, recall,
precision, and F1-score. Results. +e BERT-Classification model outperformed the models based on Bi-LSTM and BERT-UniLM
with respect to the four metrics. Conclusions. +e BERT-Classification model has superior performance in normalizing ex-
pressions of TCM synonymous symptoms.

1. Introduction

Traditional Chinese medicine (TCM) symptoms are
recorded by TCM practitioners who sometimes use different
words when recording the same symptoms, as a conse-
quence of their diverse experience and educational back-
ground. +ese variations in words lead to the phenomenon
known as “one symptom with different literal expressions,”
which is prevalent in TCM medical records. Wang et al. [1]
reported that approximately 80% of TCM symptoms were
recorded with multiple expressions. Although the literal
expressions of these symptoms are different, they have the

same meaning, and their use does not affect understanding.
+us, the use of these alternative symptoms does not affect
the pathogenesis diagnosis. In summary, TCM symptoms
that have the same meaning but different literal descriptions
are known as TCM synonymous symptoms. For example,
the symptom “lack of appetite” (纳减) can also be expressed
as “loss of appetite” (纳差) or “decreased appetite” (食欲减
低). +ey all mean a reduced desire to eat and are used in the
description of spleen Qi deficiency (脾气虚).

It is essential to explore and analyze TCM medical
records for the purpose of TCM modernization [2, 3].
However, the abundance of synonymous symptoms in TCM
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medical records hinders systematic scientific knowledge
discovery. Referring to the TCM terminology [4] published
by relevant authorities, it is possible to establish a TCM
thesaurus and then normalize each symptom in TCM
medical records to a symptom that has the same meaning in
the thesaurus, so that TCM synonymous symptoms would
have uniform literal expressions. +at is, TCM symptom
normalization is a feasible method for handling TCM
synonymous symptoms. However, manual TCM symptom
normalization is time-consuming and labor-intensive be-
cause of the large and growing quantity of TCM electronic
medical records.

Natural language processing (NLP), which has experi-
enced extraordinary development in recent years, provides
valuable support for the automatic processing of text data,
such as language translation [5], question answering [6], and
information processing of medical texts [7–10]. +is success
suggests that the NLP technology will be effective for nor-
malizing the expression of TCM synonymous symptoms.

In previous work, researchers have proposed some NLP-
based normalization models for biomedical fields, such as
Word2Vec [11], Jaccard similarity [12], DNorm [13], and
BERT-based ranking [14] from the perspective of similarity
matching. In addition, from the perspective of named entity
recognition (NER), there are transition-based [15] models and
Bi-LSTM-CNNs-CRF [16]. Although the performance of these
models is satisfactory according to the published reports, there
are two problems that are worthy of further exploration, from
the perspectives of their applicability to normalizing TCM
symptoms and the modeling concepts of the NLP model:

(1) With regard to applicability, the above models are
used for normalizing multiple synonymous terms to
one term. However, they are not suitable for cases in
which synonymous symptoms correspond to mul-
tiple normalized symptoms. For example, “less white
sputum and difficult to expectorate” (痰少色白难
咳) and “less white phlegm and not easy to expec-
torate” (少量白痰且不易咳出) are synonymous
symptoms, should be normalized to “less phlegm”
(痰少), “white phlegm” (痰白), and “expectoration
difficulties” (痰难咳出).

(2) With regard to the modeling concept, approaches
from the perspectives of similarity matching and
NER have been reported. However, many models
constructed from the perspectives of sequence
generation and text classification have also shown
excellent performance and applicability in NLP tasks
[17, 18]. +erefore, it is necessary to explore the
applicability of sequence generation and text clas-
sification to this normalization task and investigate
whether better performance can be achieved.

According to the above statement, the objective of this
study is to develop normalization models for normalizing
the expressions of TCM synonymous symptoms from the
perspective of sequence generation and text classification

and to compare and analyze the applicability and perfor-
mance of the models, so as to select the best model.

2. Methods

+e workflow of this study is shown in Figure 1. It can be
divided into three parts: (1) collecting TCM symptoms from
medical records (referred to as sample collection), (2)
preparing training, development, and test data sets (referred
to as division of data sets), and (3) constructing models for
normalizing expressions of TCM synonymous symptoms
(referred to as model construction).

2.1. Data Sources and Labeling. In total, 3,252 medical
records, recorded by 22 TCM doctors on the platform of the
“Heritage Program of Chinese Well-Known Experts” [19],
were collected. +e symptoms in the medical records were
regarded as the original symptoms, each of which was then
labeled by the corresponding normalized symptom,
according to the TCM +esaurus (from the Beijing Uni-
versity of Chinese Medicine TCM Information Science
Research Center). Two researchers, who had obtained the
qualification of TCM practicing physician and been trained
by the provider of the TCM +esaurus, performed the la-
beling work. Two additional experts in the TCM +esaurus
checked the labeling results independently, and inconsistent
labeling results were submitted to a third expert for review
and discussion to ensure consistency.

+ere are two forms of original symptoms in medical
records: single symptoms and complex symptoms. A single
symptom is an original symptom that corresponds to only
one clinical manifestation; such a symptom was labeled as
one normalized symptom by referring to the TCM +e-
saurus. For example, “thinning and shapeless stool” was
labeled as “loose stool.” A complex symptom is an original
symptom that corresponds to multiple clinical manifesta-
tions; such a symptom was labeled as multiple normalized
symptoms. For example, “dry and itchy throat” was labeled
as “dry throat” and “itchy throat” by referring to the TCM
+esaurus.

In total, 16,808 nonrepetitive original symptoms were
collected from the 3,252 medical records, corresponding to
1,501 normalized symptoms, of which 339 appeared only
once. +e collected original symptoms and labeled nor-
malized symptoms served as the input and output data,
respectively, of TCM symptom normalization models.

2.2. Partition ofData Sets. Two strategies were used to divide
the collected data into training, development, and test data
sets. +e first strategy was to divide the medical records by
source doctors randomly. +e nonrepetitive original
symptoms recorded by one randomly selected doctor, and
the corresponding normalized symptoms were used as a
development set to set the parameters of the model. +e
nonrepetitive original symptoms recorded by another
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randomly selected doctor, and the corresponding normal-
ized symptoms were used as a test set to observe the ability of
the model to normalize the expression of TCM symptoms.
+e nonrepetitive original symptoms recorded by the 20
other doctors, and the corresponding normalized symptoms
were used as the training set.+ese data sets were called total
data sets (TDS). +is data set division is suitable for eval-
uating the performance of the TCM symptom normalization
models in practical applications.

+e second strategy for dividing the collected data into
training, development, and test data sets was based on high-
frequency normalized symptoms.+ese data sets were called
high-frequency data sets (HFDS). According to Zipf’s law
[20], N � −1 +

��������
1 + 8 × I1

􏽰
/2 (N is the threshold between

high-frequency and low-frequency, and I1 is the number of
normalized symptoms that only appeared once). Normal-
ized symptoms with a frequency greater than 26 were de-
fined as high-frequency normalized symptoms. +e high-
frequency normalized symptoms and the corresponding
original symptoms were included in the HFDS.+e ten most
frequent normalized symptoms and their corresponding
numbers of original symptoms are shown in Figure 2. In the
HFDS, 70% of the data (6,768 original symptoms and the
corresponding normalized symptoms) were randomly se-
lected as a training set, 15% (1,471 original symptoms and
the corresponding normalized symptoms) were as a de-
velopment set, and 15% (1,425 original symptoms and the
corresponding normalized symptoms) were as a test set. +e
numbers of samples in HFDS and TDS are shown in Table 1.

2.3. Model Construction. From the perspective of text se-
quence generation, the bidirectional long short-term

memory (Bi-LSTM) recurrent neural network (RNN) with
the encoder-decoder structure [21], combined with the
Luong attention mechanism [22], was used to establish four
models for TCM symptom normalization. (1) Encoder
(Char)-Decoder (Char) model: the input of the original
symptom and the output of the normalized symptom were
in character form (multiple output normalized symptoms
were separated by “,”). (2) Encoder (Word)-Decoder (Word)
model: the input of the original symptom and the output of
the normalized symptom were in word form. (3) Encoder

Symptom records
source from 22 doctors

Normalized symptom frequency >26

ID Symptom in medical
records

Normalized
symptom

001 Stool is not formed Loose stool

002 Formless stool Loose stool

Collected symptoms and labeled the normalized symptoms

Train set:
15115 unique samples

Dev set:
1413 unique samples

Test set:
1777 unique samples

Train set:
6768 unique samples

Dev set:
1471 unique samples

Test set:
1425 unique samples

BERT-UniLM

Records of 20 doctors Records of 1 doctor Records of 1 doctor

Symptom records were
randomly divided by source doctors

Encoder-ClassificationEncoder-Decoder

Part3: models construction

Total datasets High-frequency datasets

Part1: sample collection

Part2: division of datasets

BERT-Classification

Figure 1: Workflow of the research process.

0 100 200 300

Loss of appetite
Phlegm white

Epigastric distension
Diarrhea

White tongue coating
Greasy tongue coating

Loose stool
Sticky sputum

Yellow tongue coating
Poor sleep

The number of original symptoms

N
or

m
al

iz
ed

 sy
m

pt
om

s

Figure 2: +e ten most frequent normalized symptoms in the
collected medical records.

Table 1: Numbers of samples in HFDS and TDS.

Data set HFDS TDS
Training 6,768 15,115
Development 1,471 1,413
Test 1,425 1,777
Total 9,664 18,305
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(Char)-Decoder (Label) model: the input of the original
symptom was in character form, and the output of the
normalized symptom was in label form. (4) Encoder
(Word)-Decoder (Label) model: the input of the original
symptom was in word form, and the output of the nor-
malized symptomwas in label form.+e structure of the four
models was consistent; only the input and output forms were
different, as shown in Figure 3(a).

+is study also applied the Bi-LSTM and a full con-
nection layer with sigmoid function to explore the feasibility
of TCM symptom normalization from the perspective of text
classification. In this case, the model output was in label
form, and the input was in character or word form (see
Figure 3(b)). In the Encoder (Char)-Classification model,
the input was in character form; in the Encoder (Word)-
Classification model, the input was in word form.+e words
that were input to the model were obtained from the original
symptoms by a segmentation tool [23].

Chinese language pretraining weights, trained on a large
number of Chinese corpora, can help achieve better results.
+erefore, this study further used the unified language
model (UniLM) based on the Chinese pretraining weights of
bidirectional encoder representation from transformers
(BERT) [18, 24] to construct the TCM symptom normali-
zation model. +e training process included first loading the
Chinese pretraining weights of BERT (https://storage.
googleapis.com/bert_models/2018_11_03/chinese_L-12_H-
768_A-12.zip) and then training with the sequence-to-se-
quence method of UniLM [18]. +is training method was
based on text sequence generation. Two output forms were
used in training: a character-based output form, namely the
BERT-UniLM (Char) model, and a label-based output form,
namely the BERT-UniLM (Label) model, as shown in
Figure 4(a). BERT and a full connection layer with sigmoid
function were also used to construct the TCM symptom
normalization model, namely the BERT-Classification
model, as shown in Figure 4(b). Because the input of the
pretraining weights of BERTwas in character form, the input
of the BERT-based models was also in character form.

2.4. Model Parameters. +e encoder-decoder models had
initialization weights sampled from a random uniform
distribution in the range of −0.05–0.05, the dimension of
embedding was 300, and the training batch size was 256.
Adam was the optimizer [25]. According to the F1-score of
the encoder-decoder models on the development set, the
best parameter combinations were selected for learning rate
(selected from 0.0001, 0.0003, and 0.0005), dropout rate
(selected from 0.3 and 0.5), and the number of memory cells
(selected from 128, 256, and 512).

For the encoder-classification models, the training batch
size was 256. According to the F1-score of the models on the
development set, the best parameter combinations were
selected for learning rate (selected from 0.005, 0.01, and
0.03), dropout rate (selected from 0.3 and 0.5), and the
number of memory cells (selected from 128, 256, and 512).

For the BERT-UniLM and BERT-Classification models,
the training batch size was 16, the optimizer was Adam [25],

and the learning rate was 0.0003. +e other parameters were
the default settings of the BERT neural network [24].

+e TensorFlow neural network framework (http://
www.tensorflow.org/), developed by Google, was used to
implement the above models and was combined with
NVIDIA GeForce RTX 2080 (11 GB memory) to train the
models. When the F1-score of the models in the develop-
ment set had not improved for 20 epochs, the training was
terminated. Even if a fixed random seed number was used,
the results from different computers were still biased.
+erefore, after setting the model parameters, the modeling
process was repeated 10 times; the model performance was
evaluated by four metrics and expressed as mean± standard
deviation (SD). +e four metrics used were accuracy, pre-
cision, recall, and F1-score. Accuracy � P/T;
Precision � TP/TP + FP ; Recall � TP/TP + FN; and
F1 − score � 2 × Precision × Recall/Precision + Recall.
Here, P (the correct normalized symptoms of model pre-
diction) is the number of all correct results output by the
model, and T (total correct normalized symptoms corre-
sponding to the test set) is the number of all tests. TP (true
positive) is the number of results produced by the model that
were consistent with the actual results, FN (false negative) is
the number of correct results that the model failed to output,
and FP (false positive) is the number of results produced by
the model that were incorrect. +e key model parameters
and development set results are shown in Tables 2 and 3.

2.5. Statistical Analysis. IBM SPSS 20.0 was used to analyze
the results. When analyzing the indexes of each group, if the
variance between groups was homogeneous and normal
distribution was satisfied, one-way ANOVA was used. If the
variance was not homogeneous or there was non-normal
distribution among groups, the Kruskal–Wallis test was
used.

3. Results

3.1. Performance of Models on Test Data Sets. Generally, the
performance of models was better on the HFDS test data set
than on TDS.With regard to the model structure, the BERT-
UniLM models had more advantages than the Encoder-
Decoder models, as shown in Tables 4 and 5. In addition,
comparing the BERT-UniLM models with the BERT-
Classification model, the BERT-Classification model had
more advantages. +at is, the BERT-Classification model
was the best model for normalizing expressions of TCM
synonymous symptoms in this study, on both the HFDS and
TDS test data sets.

+e performance of three classification models with
different threshold values on HFDS and TDS was explored.
With regard to HFDS, when the threshold value was 0.2, the
performance of both BERT-Classification and Encoder-
Classification was generally the best, as shown in Figure 5.
With regard to TDS, the best threshold value was 0.1, as
shown in Figure 6. When comparing the BERT-Classifica-
tion model with the Encoder-Classification models, the
BERT-Classification model achieved better results. +e
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accuracy and F1-score were 0.9051 and 0.9073 on the HFDS
and 0.8568 and 0.8574 on the TDS, respectively.

+e classification-basedmodels have the ability to adjust the
output threshold to change the recall. We believe this capability
can be used for the retrieval of normalized symptoms. Because
retrieval focuses on higher recall, namely, focuses on the outputs
contain the correct normalized symptoms. By lowering the
output threshold, the models can output the top 5 and 10
normalized symptoms above the threshold. +erefore, the re-
trieval ability was evaluated by the top 5 and 10 recall, and the
results are shown in Table 6.

3.2. Performance of Models in Normalizing Single and Com-
plex Symptoms. In evaluating the various models for nor-
malizing single symptoms (the original symptoms
corresponding to one normalized symptom) and complex
symptoms (the original symptoms corresponding to multiple
normalized symptoms), we found that the performance of the
BERT-Classification model was comprehensively superior, not
only on HFDS but also on TDS, as shown in Figures 7 and 8.

3.3. Comparison with Other Normalization Models. We also
compared the BERT-Classification model with several other
models that performwell for normalization, including the state-

of-the-art models reported by other researchers.+ese methods
are the Jaccard similarity algorithm [12],Word2Vec with cosine
[11], DNorm [13], the transition-based model [15], RNN-
CNNs-CRF [16], and BERT-based ranking [14]. +e above
models were not designed for the normalization of complex
symptoms. +erefore, we only compared the performance of
models to handle single symptoms (4,555 single symptoms)
taken from the HFDS. +e 4,555 single symptoms, and their
corresponding normalized symptoms, were divided into a
training set (70%), a development set (15%), and a test set (15%).
+e development set was used to select the parameters of each
model, except the Jaccardmethod, for which there is no need to
select parameters. +e test results showed that the BERT-
Classification model performed better than the other methods,
as shown in Table 7.

We note that Jaccard similarity, Word2Vec with cosine,
DNorm, and BERT-based ranking can output the score of
each normalized symptom. +erefore, the models can
output the top 5 and 10 normalized symptoms by score
ranking to achieve retrieval. We used recall to observe the
ability of retrieval, as shown in Table 8. +e results show that
the BERT-Classification model has advantages in retrieval.

To further demonstrate the advantages of our model, we
summarized the test results on HFDS. According to the
results, we comprehensively compared the performance and

Bi-LSTM

Bi-LSTM

Word form of original symptom 

Character form of original symptom

Token embedding

Attention

Character form of normalized symptom

Word form of normalized symptom

Label form of normalized symptom
Label1 Label2 Labeln

Input
form

Encoder 

Decoder

Output
form Word1

Word1 Word2

Char1

Char1 Char2 Charn

Char2 Charn

Word2 Wordn

Wordn

(a)

Label1 Label2 Labeln

Bi-LSTM

Full connection layer with sigmoid

Token embedding

Attention

Encoder

Output
form

Classification

Word form of original symptom

Character form of original symptom

Input
form

Word1 Word2 Wordn

Char1 Char2 Charn

Label form of normalized symptom

(b)

Figure 3: Examples of the (a) Encoder-Decoder and (b) Encoder-Classification models.
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applicability of our model with that of existing models, as
shown in Table 9.

4. Discussion

+e normalization of expressions of TCM synonymous
symptoms plays an important role in the collation of medical
records, statistical mining, construction of TCM knowledge
databases, and construction of TCM medical assistant

decision-making systems [9]. +e application of NLP
technology improves the efficiency of normalization pro-
cessing. NLP algorithms based on neural networks have been
applied in normalizing biomedical texts [13, 14] but not in
normalizing the expressions of TCM synonymous symp-
toms. In this study, multiple models were constructed with
NLP algorithms based on Bi-LSTM and the BERT neural
network to explore the normalization of expressions of TCM
synonymous symptoms.

Token Embedding

Segment Embedding

Transformer Block 12

Transformer Block 1

Transformer Block 2

Token output layer

Label form

Character form

EOSChar1 Char2 Charn

Label1 Label2 Labeln EOS

SOS EOS EOS

Segment 1:
input characters of original symptom

Segment 2:
labels of normalized symptom

Label form

Character form

EOS

Char1 Char1Char2 Char2Charn Charn

LabelnLabel2Label1

(a)

Token Embedding

Segment Embedding

SOS

Segment 1:
input characters of original symptom

Transformer Block 12

Transformer Block 1

Transformer Block 2

Full connection layer with sigmoid

Label form

Label1 Label2 Labeln

EOS

EOS

Char1 Char2 Charn

(b)

Figure 4: Examples of the BERT-UniLM and BERT-Classification models. (a) +is model structure is consistent with BERT. +ere are 12
transformer blocks. According to the embedding composition of BERT, including segment embedding of segments 1 and 2 and character
embedding of original symptom. +e token output layer of the model outputs the normalized symptom in character form or label form
through a fully connected layer with a softmax function. SOS is the symbol at the start of the sequence, and EOS is the symbol at the end of
the sequence. +is model was trained by the sequence-to-sequence method of UniLM. (b) +is normalization model structure is also based
on BERT. In contrast to (a), a full connection layer with the sigmoid function is used as the output layer.

Table 2: Model parameters and development set results on HFDS.

Model LR DR MC Accuracy Precision Recall F1-score
Encoder (Char)-Decoder (Char) 0.0003 0.5 512 0.8631± 0.0042 0.8637± 0.0091 0.8587± 0.0038 0.8611± 0.0053
Encoder (Char)-Decoder (Label) 0.0005 0.5 256 0.8688± 0.0046 0.8812± 0.0070 0.8623± 0.0044 0.8716± 0.0048
Encoder (Word)-Decoder (Label) 0.0005 0.3 512 0.8631± 0.0042 0.8637± 0.0091 0.8587± 0.0038 0.8611± 0.0053
Encoder (Word)-Decoder (Word) 0.0005 0.3 512 0.8549± 0.0055 0.8596± 0.0047 0.8468± 0.0065 0.8531± 0.0052
Encoder (Char)-Classification 0.005 0.3 512 0.8377± 0.0060 0.9020± 0.0109 0.8414± 0.0062 0.8706± 0.0058
Encoder (Word)-Classification 0.005 0.5 512 0.8326± 0.0061 0.8978± 0.0068 0.8335± 0.0056 0.8645± 0.0043
BERT-UniLM (Char) 0.00003 0.1 N/A 0.8966± 0.0027 0.9013± 0.0064 0.8920± 0.0041 0.8966± 0.0025
BERT-UniLM (Label) 0.00003 0.1 N/A 0.8957± 0.0042 0.8996± 0.0063 0.8895± 0.0038 0.8945± 0.0039
BERT-Classification 0.00003 0.1 N/A 0.9087± 0.0029 0.9216± 0.0027 0.9084± 0.0034 0.9150± 0.0018
Note. LR: learning rate; DR: dropout rate; MC: number of memory cells of RNN; N/A: not applicable.
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In TCM synonymous symptom normalization, the
performance of normalization and the ability to handle one
symptom corresponding to multiple normalized symptoms
are crucial to the normalization model. +e test results show
that our BERT-Classification model outperforms previous
models and has the ability as mentioned above, while
previous models do not have. In addition, the model also
supports retrieve normalized candidate symptoms. Our
model can retrieve other candidate normalization symptoms
according to original symptoms when the model does not
provide suitably normalized symptoms.

+ese advantages of the model provide technical support
for the efficient normalization of TCM synonymous
symptoms and make the model highly adaptable in medical
situations.

In this study, the accuracy, recall, precision, and F1-
score metrics were used to evaluate the performance of

each model. +e results show that the BERT-Classifica-
tion model outperformed other existing models with
respect to various metrics; these models include the
proposed Encoder-Decoder, Encoder-Classification, and
BERT-UniLM designed in this study. +is is because the
performance of NLP models based on neural networks is
strongly related to the extracted semantic features, and
BERT excels in extracting semantic features [24].
+erefore, the BERT-Classification model, which extracts
semantic features using BERT, is advantageous for
normalization tasks. BERT-Classification, BERT-UniLM,
and BERT-based ranking are all based on the BERTneural
network; they differ only in their output layers due to
their different modeling concepts. +e results suggest that
BERT-Classification performs best; therefore, the clas-
sification-based modeling concept may be the most
conducive to normalizing TCM symptoms.

Table 3: Model parameters and development set results on TDS.

Model LR DR MC Accuracy Precision Recall F1-score
Encoder (Char)-Decoder (Char) 0.0005 0.3 512 0.8212± 0.0038 0.8307± 0.0107 0.8011± 0.0044 0.8156± 0.0067
Encoder (Char)-Decoder (Label) 0.0003 0.5 512 0.8160± 0.0026 0.8379± 0.0060 0.7959± 0.0030 0.8164± 0.0033
Encoder (Word)-Decoder (Label) 0.0003 0.5 512 0.8091± 0.0045 0.8320± 0.0048 0.7875± 0.0052 0.8091± 0.0040
Encoder (Word)-Decoder (Word) 0.0001 0.3 256 0.8053± 0.0028 0.8167± 0.0076 0.7838± 0.0034 0.7999± 0.0049
Encoder (Char)-Classification 0.01 0.5 512 0.7681± 0.0058 0.8876± 0.0114 0.7503± 0.0051 0.8132± 0.0061
Encoder (Word)-Classification 0.01 0.3 512 0.7790± 0.0051 0.8913± 0.0074 0.7595± 0.0060 0.8201± 0.0034
BERT-UniLM (Char) 0.00003 0.1 N/A 0.8338± 0.0027 0.8399± 0.0047 0.8180± 0.0034 0.8288± 0.0033
BERT-UniLM (Label) 0.00003 0.1 N/A 0.8219± 0.0017 0.8388± 0.0056 0.8018± 0.0034 0.8199± 0.0028
BERT-Classification 0.00003 0.1 N/A 0.8547± 0.0027 0.9072± 0.0037 0.8405± 0.0026 0.8726± 0.0024
Note. LR: learning rate; DR: dropout rate; MC: number of memory cells of RNN; N/A: not applicable.

Table 4: Model performance on HFDS test data sets.

Model Accuracy Precision Recall F1-score
Encoder (Char)-Decoder (Char) 0.8641± 0.0065a,b 0.8656± 0.0084a,b 0.8555± 0.0062a,c 0.8605± 0.0056a,b
Encoder (Char)-Decoder (Label) 0.8558± 0.0070a,b 0.8727± 0.0038a,b 0.8463± 0.0062a,b 0.8593± 0.0043a,b
Encoder (Word)-Decoder (Label) 0.8487± 0.0046a,b 0.8678± 0.0076a,b 0.8377± 0.0054a,b 0.8525± 0.0059a,b
Encoder (Word)-Decoder (Word) 0.8451± 0.0035a,b 0.8472± 0.0056a,b 0.8345± 0.0036a,b 0.8408± 0.0023a,b
Encoder (Char)-Classification 0.8311± 0.0078c 0.8937± 0.0072c 0.8342± 0.0077c 0.8629± 0.0045c
Encoder (Word)-Classification 0.8294± 0.0079c 0.8983± 0.0055c 0.8302± 0.0070c 0.8629± 0.0038c
BERT-UniLM (Char) 0.8914± 0.0059c 0.8983± 0.0042c 0.8855± 0.0077c 0.8918± 0.0043c
BERT-UniLM (Label) 0.8829± 0.0046c 0.8909± 0.0069c 0.8773± 0.0044c 0.8840± 0.0036c
BERT-Classification 0.9051 ± 0.0039 0.9118 ± 0.0033 0.9028 ± 0.0046 0.9073 ± 0.0033
Note. +e results are expressed as mean± SD, and the threshold value of the sigmoid function was 0.2. aP< 0.05, compared with BERT-UniLM (Char); b:
P< 0.05, compared with BERT-UniLM (Label). cP< 0.05, compared with BERT-Classification.

Table 5: Model performance on TDS test data sets.

Model Accuracy Precision Recall F1-score
Encoder (Char)-Decoder (Char) 0.7980± 0.0078a,b 0.7876± 0.0147a,b 0.7678± 0.0088a,b 0.7775± 0.0106a,b
Encoder (Char)-Decoder (Label) 0.7974± 0.0050a,b 0.8060± 0.0081a,b 0.7690± 0.0062a,b 0.7870± 0.0056a,b
Encoder (Word)-Decoder (Label) 0.7892± 0.0069a,b 0.7979± 0.0100a,b 0.7595± 0.0066a,b 0.7782± 0.0074a,b
Encoder (Word)-Decoder (Word) 0.7904± 0.0079a,b 0.7805± 0.0122a,b 0.7594± 0.0078a,b 0.7698± 0.0092a,b
Encoder (Char)-Classification 0.7559± 0.0056c 0.8560± 0.0125c 0.7278± 0.0057c 0.7866± 0.0058c
Encoder (Word)-Classification 0.7652± 0.0042c 0.8557± 0.0065c 0.7364± 0.0038c 0.7915± 0.0028c
BERT-UniLM (Char) 0.8274± 0.0087c 0.8152± 0.0115c 0.8043± 0.0082c 0.8097± 0.0094c
BERT-UniLM (Label) 0.8248± 0.0045c 0.8230± 0.0066c 0.7970± 0.0056c 0.8098± 0.0037c
BERT-Classification 0.8568 ± 0.0029 0.8870 ± 0.0039 0.8298 ± 0.0037 0.8574 ± 0.0026
Note. +e results are expressed as mean± SD, and the threshold value of the sigmoid function was 0.1. aP< 0.05, compared with BERT-UniLM (Char);
bP< 0.05, compared with BERT-UniLM (Label). cP< 0.05, compared with BERT-Classification.
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Figure 5: Effects of different thresholds onHFDS.+emean values of precision, recall, and F1-score of the (a) Encoder (Char)-Classification
model, (b) Encoder (Word)-Classification model, and (c) BERT-Classification model at different sigmoid output thresholds.
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Figure 6: Continued.
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Table 6: +e top 5 and 10 recall on the test set.

Model
HFDS TDS

Top 5 recall Top 10 recall Top 5 recall Top 10 recall
Encoder (Char)-Classification 0.9692± 0.0028∗ 0.9818± 0.0013∗ 0.8906± 0.0045∗ 0.9164± 0.0037∗
Encoder (Word)-Classification 0.9635± 0.0025∗ 0.9785± 0.0015∗ 0.8928± 0.0046∗ 0.9195± 0.0038∗
BERT-Classification 0.9758 ± 0.0012 0.9858 ± 0.0011 0.9212 ± 0.0019 0.9426 ± 0.0015
Note. +e results are expressed as mean± SD. ∗P< 0.05, compared with BERT-Classification.
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Figure 6: Effects of different thresholds on TDS.+e mean values of precision, recall, and F1-score of the (a) Encoder (Char)-Classification
model, (b) Encoder (Word)-Classification model, and (c) BERT-Classification model at different sigmoid output thresholds.

Accuracy
Precision

Recall
F1-score

0.500.550.600.650.700.750.800.850.900.95

Encoder(Char)-Decoder(Char)
Encoder(Char)-Decoder(Label)
Encoder(Word)-Decoder(Label)
Encoder(Word)-Decoder(Word)

Encoder(Char)-Classification
Encoder(Word)-Classification

BERT-UniLM(Char)
BERT-UniLM(Label)
BERT-Classification

Encoder(Char)-Decoder(Char)
Encoder(Char)-Decoder(Label)
Encoder(Word)-Decoder(Label)
Encoder(Word)-Decoder(Word)

Encoder(Char)-Classification
Encoder(Word)-Classification

BERT-UniLM(Char)
BERT-UniLM(Label)
BERT-Classification

Encoder(Char)-Decoder(Char)
Encoder(Char)-Decoder(Label)
Encoder(Word)-Decoder(Label)
Encoder(Word)-Decoder(Word)

Encoder(Char)-Classification
Encoder(Word)-Classification

BERT-UniLM(Char)
BERT-UniLM(Label)
BERT-Classification

Encoder(Char)-Decoder(Char)
Encoder(Char)-Decoder(Label)
Encoder(Word)-Decoder(Label)
Encoder(Word)-Decoder(Word)

Encoder(Char)-Classification
Encoder(Word)-Classification

BERT-UniLM(Char)
BERT-UniLM(Label)
BERT-Classification

Single symptom

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Complex symptom

Figure 7: Normalization performance of single and complex symptoms on HFDS.
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With regard to applicability, our proposed BERT-
Classification model supports both the processing of the
original symptoms that correspond to multiple normalized
symptoms and the retrieval of normalized symptoms. We
use sigmoid as an output function to handle the situation in
which each original symptom corresponds to multiple
normalized symptoms; this method is effective and out-
performs sequence generation methods. Moreover, for the
model to support the retrieval of normalized symptoms, it

requires a higher recall. Our BERT-Classification model can
increase the recall by reducing the output threshold of the
sigmoid function and thereby support retrieval.

In contrast to BERT-Classification, the other reported
models cannot support both of the above applications si-
multaneously. Jaccard similarity, DNorm, Word2vec with
cosine, and BERT-based ranking pair an original symptom
with each normalized symptom and rank the normalized
symptoms by their pairing score. Although these models can
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Figure 8: Normalization performance of single and complex symptoms on TDS.

Table 7: Comparison of the BERT-Classification model with other models.

Model Accuracy Precision Recall F1-score
Jaccard similarity 0.49188 0.65251 0.54722 0.54317
Word2Vec with cosine 0.6424± 0.0019∗ 0.7365± 0.0093∗ 0.6906± 0.0036∗ 0.6724± 0.0047∗
DNorm 0.8572± 0.0050∗ 0.8694± 0.0087∗ 0.8602± 0.0072∗ 0.8555± 0.0061∗
Transition-based model 0.7980± 0.0056∗ 0.8256± 0.0081∗ 0.7970± 0.0051∗ 0.7937± 0.0050∗
RNN-CNNs-CRF 0.8852± 0.0036∗ 0.8755± 0.0035∗ 0.8724± 0.0032∗ 0.8645± 0.0034∗
BERT-based ranking 0.9264± 0.0057 0.9413± 0.0056 0.9321± 0.0072∗ 0.9313± 0.0065∗
BERT-Classification 0.9300 ± 0.0019 0.9473 ± 0.0023 0.9380 ± 0.0021 0.9378 ± 0.0021
Note. +e test results are expressed as mean± SD. Each model was repeated 10 times, except for Jaccard similarity. ∗P< 0.05, compared with BERT-
Classification.

Table 8: +e top 5 and 10 recall of models.

Model Top 5 recall Top 10 recall
Jaccard similarity 0.57312 60857
Word2Vec with cosine 0.9145± 0.0025∗ 0.9524± 0.0035∗
DNorm 0.9702± 0.0006∗ 0.9858± 0.0008∗
BERT-based ranking 0.9852± 0.0049 0.9910± 0.0050
BERT-Classification 0.9864 ± 0.0044 0.9921 ± 0.0048
Note. +e test results are expressed as mean± SD. Each model was repeated 10 times, except for Jaccard similarity. ∗P< 0.05, compared with BERT-
Classification.
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output multiple normalized symptoms by ranking them for
retrieval, when multiple normalized symptoms corre-
sponding to the original symptoms need to be output
precisely, it is difficult to decide whether the results (except
for the normalized symptom with the highest score) should
be output.+e Bi-LSTM-CNNs-CRF model is only designed
for outputting a single normalized symptom. In addition,
because the model is based on the NER modeling concept, it
cannot produce multiple candidate normalized symptoms,
as the above models can, and therefore cannot be applied to
the retrieval task. Although the Encoder-Decoder and
BERT-UniLM models support the output of multiple nor-
malized symptoms, they suffer from the same limitations as
Bi-LSTM-CNNs-CRF and are not suitable for the retrieval of
normalized symptoms.

+e HFDS contained only high-frequency samples for
modeling and testing, reflecting the performance of the
BERT-Classification model under ideal conditions. Con-
versely, the TDS included both high-frequency and low-
frequency samples, reflecting the performance of the model
in practical applications. Comparing the results of the model
on the two data sets, the performance on TDSwas lower than
that on HFDS. +is suggests that the performance of the
model can be improved by increasing the number of low-
frequency samples.

5. Conclusions

+is study constructed models to normalize TCM synonymous
symptoms from the perspectives of text classification and se-
quence generation of NLP. +e optimal model is the BERT-
Classification model, which outperforms existing reported
models in dealing with original symptoms that correspond to a
single normalized symptom. Moreover, it also supports original
symptoms that correspond to multiple normalized symptoms,
and it has the ability to retrieve normalized symptoms. +e
limitation of this study is that the normalization models only
explore symptoms. Whether the models can be used for nor-
malizing other synonymous terms, such as TCM treatment
terms and TCM disease terms, remains to be further studied. In
addition, the pretrained BERT model based on large-scale

corpora plays an important role in improving the model
performance; the BERT model trained on corpora from pro-
fessional medical fields is likely to achieve better results for
normalization of medical terms. +erefore, the use of a large
number of TCM literature corpora to construct the pretrained
model, to improve the normalization performance, also needs
further research.

Abbreviations

BERT: Bidirectional encoder representation from
transformers

Bi-
LSTM:

Bidirectional long short-term memory

DR: Dropout rate
FN: False negative
FP: False positive
HFDS: High-frequency data sets
LR: Learning rate
MC: Memory cell
N/A: Not applicable
NLP: Natural language processing
RNN: Recurrent neural network
SD: Standard deviation
TCM: Traditional Chinese medicine
TDS: Total data sets
TP: True positive
UniLM: Unified language model.
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available from the corresponding author on reasonable
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Table 9: Model comparison.

Model Modeling concept Complex symptoms a Retrieval b Overall performance c

Jaccard similarity Similarity matching × √(0.61) ×

Word2vec with cosine Similarity matching × √(0.95) ×

Encoder-Classification (our) Text classification √(0.89) √(0.98) √(0.86)
Encoder-Decoder (our) Sequence generation √(0.87) × √(0.86)
DNorm Similarity matching × √(0.99) ×

Transition-based model NER × × ×

Bi-LSTM-CNNs-CRF NER × × ×

BERT-based ranking Similarity matching × √(0.99) ×

BERT-UniLM (our) Sequence generation √(0.90) × √(0.89)
BERT-Classification (our) Text classification √(0.92) √(0.99) √(0.91)
Note. a means the ability to handle complex symptoms, if the model has this ability, it is evaluated for performance using F1-score; b means the ability to
retrieve normalized symptoms, if the model has this ability, it is evaluated for performance using top 10 recall; c stands for the overall performance of
normalizing single symptoms and complex symptoms, if the model has the ability of handling single symptoms and complex symptoms, it is evaluated by F1-
score.√ indicates that the model has this ability or can be evaluated for overall performance. × indicates that the model does not have this ability or cannot be
evaluated for overall performance.
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