
Chromosome alterations in human hepatocellular carcinomas
correlate with aetiology and histological grade – results of an
explorative CGH meta-analysis
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All available comparative genomic hybridisation (CGH) analyses (n¼ 31, until 12/2003) of human hepatocellular carcinomas (HCCs;
n¼ 785) and premalignant dysplastic nodules (DNs; n¼ 30) were compiled and correlated with clinical and histological parameters.
The most prominent amplifications of genomic material were present in 1q (57.1%), 8q (46.6%), 6p (22.3%), and 17q (22.2%), while
losses were most prevalent in 8p (38%), 16q (35.9%), 4q (34.3%), 17p (32.1%), and 13q (26.2%). Deletions of 4q, 16q, 13q, and 8p
positively correlated with hepatitis B virus aetiology, while losses of 8p were more frequently found in hepatitis C virus-negative cases.
In poorly differentiated HCCs, 13q and 4q were significantly under-represented. Moreover, gains of 1q were positively correlated
with the occurrence of all other high-frequency alterations in HCCs. In DNs, amplifications were most frequently present in 1q and
8q, while deletions occurred in 8p, 17p, 5p, 13q, 14q, and 16q. In conclusion, aetiology and dedifferentiation correlate with specific
genomic alterations in human HCCs. Gains of 1q appear to be rather early events that may predispose to further chromosomal
abnormalities. Thus, explorative CGH meta-analysis generates novel and testable hypotheses regarding the cause and functional
significance of genomic alterations in human HCCs.
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Hepatocellular carcinoma (HCC) is one of the most prevalent
cancers with steadily increasing incidence even in developed
countries, such as Europe and the United States (El-Serag, 2002). It
is believed that human hepatocarcinogenesis persists several
decades normally starting from chronic liver disease over
cirrhosis, premalignant precursor lesions (dysplastic nodules
(DNs), ‘early’ HCC upto fully malignant HCC with angioinvasive
and metastatic potential (reviewed in Kern et al, 2002a). In more
than 80% of the cases, a well-defined aetiology (e.g. viral infection,
aflatoxin B1 exposure, and chronic alcohol abuse) is associated
with the development of HCC. Hepatitis B virus (HBV) infection is
thought to contribute by two different mechanisms to hepatocar-
cinogenesis: chromosomal integrations of viral DNA with desta-
bilising effects for the host genome (Luber et al, 1996) and

expression of viral transactivating factors (HBxAg and preS/SAg;
Kekule et al, 1990; Koike, 1995). The oncogenic potential of
hepatitis C virus (HCV) infection has been linked to the viral
transcriptional activator NS5A (Kato et al, 1997) and also to the
core polypeptide (Moriya et al, 1998). Moreover, tumorigenic
properties of aflatoxin B1 are linked to somatic G/T transversion in
codon 249 of TP53 (Ozturk, 1999). Furthermore, several cellular
factors have been implicated in the pathogenesis of HCC (e.g., TP53
(p53; Feitelson, 1998), CTNNB1 (b-catenin; Prange et al, 2003), RB1
(retinoblastoma; Zhang et al, 1994), COX2 (cyclooxygenase-2; Kern
et al, 2002b), IGF2 (insulin-like growth factor-II; Breuhahn et al,
2004), and CDH1 (E-cadherin; Matsumura et al, 2001)).

Studies of the overall chromosomal alterations in carcinomas
are based on loss of heterozygosity (LOH) analyses and
comparative genomic hybridisation (CGH). Comparative genomic
hybridization is a fluorescence-based technique that is used for the
detection of chromosomal imbalances in tissues or cell popula-
tions. Areas representing loss of genomic material may contain
tumour suppressor genes, while gains may harbour dominant
protumorigenic factors (e.g. oncogenes and growth factors)
relevant for respective tumour entity. The power of CGH lies in
its potential for a more or less unbiased whole genome screening;
the main limitation is its relatively low resolution. By CGH
several chromosomal regions carrying tumour-relevant genes
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(e.g. oncogenes) have been identified in solid tumours and
haematological malignancies (reviewed in Weiss et al, 2002).

However, many information regarding relevant chromosomal
rearrangements that may play a central role in the development of
HCC are still missing. Meanwhile, over 30 different in part small
CGH studies have generated a wealth of over 700 analysed HCCs that
await comprehensive and comprising interpretation. The aim of this
study was to compile the information from all available CGH data of
human DNs/HCCs and to correlate these alterations with aetiology
and histological grading. The results demonstrate a significant
association of specific genomic imbalances with viral aetiology and
histological grade, and generate further testable hypotheses.

MATERIALS AND METHODS

Comparative genomic hybridisation-studies

Overall, 785 different CGH analyses of HCCs are available from 31
studies (public NCBI database PubMed; published until 12/2003;
see Supplementary online material). Inclusion criteria for the CGH
studies were complete data profiles and explicit tumour classifica-
tion (HCC, DN) as well as similar software and labelling systems
and used thresholds (0.7–0.8 and 1.2– 1.3). Information regarding
the HBV status was present in 428 cases (244 HBV-positive and
184 HBV-negative cases). The HCV status was available in 338
cases (110 HCV-positive and 228 HCV-negative cases).

Tumour grading was given in 199 cases (126 cases with low
grade (G1/2) and 73 cases with high-grade (G3/4) HCCs). Overall
30 CGH analyses of DNs were collected from four different studies
(see Supplementary online material).

Data recording and statistical analyses

All CGH data were recorded in a standardised fashion: each
chromosome arm was divided from 0 to 100 (centromere to
telomere direction) and gains, losses, or normal ratio were

evaluated in steps of five. From these data, the respective charts
and ideograms were displayed. Moreover, the data were submitted
to statistical analyses using SPSS. However, when only parts of a
chromosomal arm were affected, it was scored as a complete loss of
the arm in the summarising tables. When specific chromosomal
aberrations occurred in 20% of all analysed cases, they were
rated to be high frequency. These aberrations were specifically
submitted to further examination. Statistical evaluation was
performed using explorative w2 test. P-values cited were not
corrected for multiple testing. The list of known tumour relevant
genes localised in the chromosomal regions with imbalances of
highest frequency was determined using the OMIN database
(Online Mendelian Inheritance of Man).

RESULTS

Predominant chromosomal alterations in human HCCs

The complete meta-analysis of all available CGH data (n¼ 785
HCCs) revealed that gains of chromosomal material were most
prevalent in 1q (57.1% of the cases), 8q (46.6%), 6p (22.3%), and
17q (22.2%), and losses were most frequently present in 8p (38%),
16q (35.9%), 4q (34.3%), 17p (32.1%), and 13q (26.2%) (Table 1).
These data testify amplifications and deletions of chromosomal
arms on which oncogenes (e.g. MYC on 8q24) and tumour
suppressor genes (e.g. RB1 on 13q14) are located. Furthermore,
several genes with known and potential protumorigenic functions
(e.g. modulators of the WNT-signalling pathway like FZD3, WISP1,
SIAH-1, and AXIN2) have been described to be grouped on
respective chromosomal arms (Table 1).

Hepatocellular carcinoma aetiology correlates with specific
genomic imbalances

In 428 CGH analyses of HCCs, the HBV status was given (244
HBV-positive and 184 HBV-negative cases). When HBV-positive

Table 1 Frequencies of chromosomal alterations in human HCCs

Chromosome

p-arm q-arm

Loss (%)a Gain (%)a High. Fre.b Genesc Loss (%)a Gain (%)a High. fre.b Genesc

1 15.4 5.2 — — 0.6 57.1 q21.1–q44 WNT14, FASL
2 1.4 7.1 — — 2.9 8 — —
3 3.9 5 — — 1.9 8.8 — —
4 10.6 6 — — 34.3 1.7 q21.1–q35 LEF1, CCNA
5 1.7 13.6 — — 7.8 11.1 — —
6 1 22.3 — PIM1, CDKN1A 15 7.9 — —
7 0.9 15 — — 3.1 16.8 — —
8 38 4.6 p21.1–p22 FZD3, PLK3 1.9 46.6 q22.1–q24.3 MYC, WISP1
9 14 3.3 — — 11.1 2.9 — —
10 2.7 8.3 — — 11.1 4.1 — —
11 5.4 4.3 — — 10.2 9.4 — —
12 6.5 2.4 — — 2.9 6.9 — —
13 0 0 — — 26.2 7.4 q14.1–q22 RB1, BRCA3
14 0 0 — — 11.3 4.1 — —
15 0 0 — — 5.4 4.6 — —
16 16.8 3.4 — — 35.9 1.8 q12.1–q24 SIAH1, CDH1
17 32.1 2.9 p13 p53, HIC1 3.7 22.2 q23–q25 AXIN2, TIMP2
18 4.1 5.5 — — 10.8 5 — —
19 6.9 5 — — 3.8 10.4 — —
20 2 14.9 — — 0.9 18.6 — —
21 0 0 — — 8.8 2.2 — —
22 0 0 — — 6.4 2.8 — —
X 5 11.2 — — 4.5 15 — —
Y 5.1 2.3 — — 5.6 2.3 — —

aFrequencies X20% are highlighted in bold. bRegions with highest frequency of imbalances on the respective chromosomal arm are highlighted in bold. cExamples of known
tumour-relevant genes located on the respective chromosomal high-frequency region.
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and -negative cases were compared, losses at 4q (43.4 vs 19.6%),
16q (41.8 vs 18.5%), 13q (31.1 vs 19.6%), and 8p (40.6 vs 29.3%)
were positively correlated with HBV aetiology (Figures 1 and 2;
Table 2). The 338 HCCs with known HCV status consisted of 110
HCV-positive and 228 HCV-negative cases. Among these cases,
only losses of 8p were more frequent in HCV-negative cases (36 vs
20%) (Figure 2; Table 2). No other significant association of
genomic imbalances in HCCs with viral infections was found (data
not shown).

Histological grade of HCCs correlates with genomic
imbalances

Next we analysed whether the histological grade (tumour
differentiation) of the HCCs correlated with the observed pattern
of chromosomal aberrations (Table 3). In 199 cases the histological
grade was specified (126 low-grade (G1/G2) and 73 high-grade
(G3/G4) HCCs). Losses of 13q (43.8 vs 11.9%) and 4q (45.2 vs 23%)
were significantly more frequent in high-grade HCCs while the
other high-frequency genomic imbalances did not correlate with
the tumour grade (data not shown).

Correlations between different genomic imbalances

We next tested whether any of the high-frequency imbalances
(X20%) were statistically connected. Altogether, 498 CGH
analyses of HCCs given as individual profiles were accessible to

this analysis. Deletions of genomic material on 4q, 13q, and 16q
frequently coincided. Furthermore, gains of 1q were positively
associated with all other high-frequency alterations, except gains
on chromosome 17q (Table 4).

Hepatocellular carcinomas with gains on 1q (n¼ 293; 58.8%)
were compared to cases without genomic alterations of 1q
(n¼ 205; 41.2%) regarding the occurrence of additional chromo-
somal imbalances per case. A significantly higher number of
chromosomal imbalances were found in HCCs with 1q gains (6.74
imbalances per case) than in HCCs without 1q gains (3.40
imbalances per case; Po0.05).

Genomic macroimbalances in human DNs

Four different studies have analysed a limited number of DNs
(n¼ 30) by CGH. Altogether, DNs showed genomic imbalances,
although at a lower frequency as compared to HCCs. Gains were
detectable in 1q (30%) and 8q (10%), while losses were most
prevalent at 8p (16.7%), 17p (16.7%), 5p, 13q, 14q, and 16q (all
10%); (Figure 3). In DNs only gains on 1q were frequently
detectable in more than 20% of all analysed cases.

DISCUSSION

This meta-analysis of CGH data of human HCCs has unravelled
several correlations between aetiology as well as histological grade
and genomic imbalances. However, this analysis is afflicted with
several restrictions as a result of not identical criteria in different
studies.

(a) Aetiology: Some well-established reasons for human HCCs,
such as chronic alcoholic liver disease, genetic haemochro-
matosis, and aflatoxin B1 exposure, are either ill defined and/
or have not been evaluated in a sufficient number of cases
studied by CGH. Therefore, we restricted our analysis to the
potential associations with the HBV and HCV status. Analyses
of the viral status carried some inconsistency by itself.
Especially, in most studies HBV aetiology was evaluated by
assaying for HBsAg in the serum. In contrast, HBV may
exhibit its protumorigenic effects despite HBV seroconversion
(Paterlini and Brechot, 1991). Significant correlations of
chromosomal rearrangements with HBV aetiology have been
unravelled, but in our analysis they may have been even more
pronounced, if complete HBV serology would have been
performed in all studies.

(b) Lack of a uniform histological grading: Several grading
schemes are in use for HCC (Edmondson and Steiner, 1954),
and in many studies it remains unclear which grading scheme
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Figure 1 Distribution of genomic imbalances (n¼ 428) with regard to
HBV aetiology (for details, see Table 2). Data are exemplarily demon-
strated for chromosomes 1 (no differences between (A) HBV-positive and
(B) HBV-negative HCCs) and four (significant difference between (C)
HBV-positive and (D) HBV-negative HCCs).
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Figure 2 Graphical comparison of significant high-frequency genomic
alterations in HBV- or HCV-negative (black bars) and HBV- or HCV-
positive human HCCs (white bars). *Po0.05; **Po0.01; ***Po0.001.
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has been applied. Due to this fact and in order to generate
groups large enough for statistical analysis, it was necessary to
combine grades 1 and 2 (well differentiated) and 3 and 4
(poorly differentiated), which is in accordance which numerous
studies in other carcinomas.

Despite these restrictions, a number of high-frequency genomic
imbalances have been clearly identified (Figure 1). With some of
these aberrations the expression of tumour relevant genes may be
correlated, such as RB1 (13q), CDH1 (16q), SIAH1 (16q), and TP53
(17p). Interestingly, some of these genes have been described to
participate in pivotal signalling pathways frequently dysregulated
in HCCs (reviewed in Ozturk, 1999). While the p53 protein is
involved in different cellular processes (e.g. apoptosis, cell cycle,
and differentiation; Levine, 1997), dysregulation of retinoblastoma

protein (RB1), p21WAF (CDKN1A), and CyclinA2 (CCNA) directly
regulate initiation and progression of DNA synthesis (Zhang et al,
1994; Qin et al, 1998). Notably, several components of the WNT-
signalling pathway were localised on aberrant genomic regions
(WNT14, LEF1, FZD3, WISP1, SIAH-1, and AXIN2). This is of
particular interest since upto 40% of all HCCs exhibit nuclear
enrichment of b-catenin, the transcriptional activator of the WNT
pathway (Cui et al, 2003; Prange et al, 2003). However, higher
resolution techniques, such as matrix-CGH (Wessendorf et al,
2002) and expression analyses, will have to verify the expected
expression changes for most genes.

Losses of 4q, 13q, 16q, and 8p were significantly correlated with
HBV aetiology. Although the responsible genes are currently
unknown, HBV-related chromosomal rearrangements have been
mapped to 4q (Blanquet et al, 1988; Pasquinelli et al, 1988; Buetow
et al, 1989). This suggests that in addition to well-established HBV-
associated oncogenic mechanisms such as transcriptional trans-
activation by viral proteins (Wollersheim et al, 1988; Caselmann
et al, 1990; Kekule et al, 1990) and nonhomologous chromosomal
integration of viral DNA (Nagaya et al, 1987), specific correspond-
ing host factors involving tumour suppressor genes positioned at
the respective chromosomal loci may exist. Identification of these
responsible genes may generate further insight into the mechan-
isms of HBV-induced oncogenesis.

Although the number of analysed premalignant lesions (DNs) is
still low, several conclusions can already been drawn: Significant
genomic imbalances can be detected in DNs and they partly
resemble the changes present in HCCs, although at a lower
frequency. This further supports the current hypothesis that DNs
are indeed the immediate premalignant precursors of HCCs.

Another important question is the time point at which the
different genomic imbalances occur during the process of
hepatocarcinogenesis. Gains of 1q are the most frequent alteration
in DNs and appear at equal frequencies in well and poorly
differentiated HCCs; this suggests that amplifications of 1q
represent an early protumorigenic change that mostly precedes
malignant transformation. In contrast, deletions of 4q and 13q are
found significantly more frequent in poorly differentiated HCCs.
This suggests that both alterations are late progression events that
typically occur after malignant transformation.

Statistical analyses demonstrate that 1q gains are positively
correlated with all other high-frequency alterations, suggesting that

Table 2 Comparison of significant high-frequency genomic imbalances (X20%; see Table 1) in human HCCs with HBV- (n¼ 428) and HCV-aetiology
(n¼ 338)

HBV* HCV*

Chromosome Negative (n¼ 184) Positive (n¼ 244) Negative (n¼228) Positive (n¼ 110)

1q (gain; %) 50.5 P¼ 0.625 53.3 53.5 P¼ 0.201 45.5

4q (loss; %) 19.6 Po0.0005 43.4 26.3 P¼ 0.896 27.3

6p (gain; %) 21.2 P¼ 0.488 24.2 24.1 P¼ 0.121 16.4

8p (loss; %) 29.3 P¼0.019 40.6 36.0 P¼ 0.004 20.0

8q (gain; %) 37.0 P¼ 0.05 46.7 42.1 P¼ 0.194 34.5

13q (loss; %) 19.6 P¼0.008 31.1 28.5 P¼ 0.363 23.6

16q (loss; %) 18.5 Po0.0005 41.8 28.1 P¼ 0.898 27.3

17p (loss; %) 25.0 P¼ 0.108 32.4 24.1 P¼ 0.19 30.9

17q (gain; %) 17.4 P¼ 0.389 20.9 19.3 P¼ 0.766 17.3

*Significant differences are highlighted in bold (Po0.05).

Table 3 Comparison of significant high-frequency genomic imbalances
(X20%; see Table 1) in human HCCs with regard to tumour grade
(n¼ 199; low grade: G1 and G2 tumours; high grade: G3 and G4 tumours)

Tumour grade*

Chromosome Low (G1+G2) High (G3+G4)

1q (gain; %) 54.0 P¼ 0.459 60.3

4q (loss; %) 23.0 P¼ 0.001 45.2

6p (gain; %) 19.8 P¼ 1.0 19.2

8p (loss; %) 32.5 P¼ 0.876 34.2

8q (gain; %) 39.7 P¼ 0.299 47.9

13q (loss; %) 11.9 Po0.0001 43.8

16q (loss; %) 23.8 P¼ 0.053 37.0

17p (loss; %) 33.3 P¼ 0.443 39.7

17q (gain; %) 19.8 P¼ 0.224 27.4

*Significant differences are highlighted in bold (Po0.05).
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they may predispose to chromosomal alterations. Thus, the status of
1q may distinguish between two different molecular pathways in
hepatocarcinogenesis, of which cases with 1q gains are characterised
by early-on acquired genomic imbalances (‘mutator phenotype’,
Figure 4). This hypothesis is further supported by our finding that
HCCs with 1q gains carry significantly more additional chromoso-
mal alterations as compared to HCCs without 1q amplifications.

Taking these considerations into account, the following
hypotheses can be formulated:

(a) Dysplastic nodules are premalignant precursor lesions that
already carry fixed genomic alterations.

(b) Specific aetiologies, especially chronic HBV infection, may
lead to characteristic host genomic alterations. Deletions on

Table 4 Correlation analysis of genomic aberrations in human HCCs (in X20%; n¼ 498)

Chromosome 1q (gain) 4q (loss) 6p (gain) 8p (loss) 8q (gain) 13q (loss) 16q (loss) 17p (loss) 17q (gain)

1q
gain — 43 30.6 45.7 52.6 30.2 38.1 36.8 —
Ø — 19.8 11.1 25.6 30.4 16.4 23.7 21.3 —

4q
Loss 73.4 — — 51.6 — 42 53.2 41 29.8
Ø 41.9 — — 28.7 — 13.9 19.4 23.9 15.5

6p
Gain 76.9 — — 52.1 — — — — —
Ø 45.9 — — 32.6 — — — — —

8p
Loss 66.3 46.6 33.7 — — — 48.3 41 —
Ø 46.6 26.3 17.2 — — — 23.1 24.4 —

8q
Gain 65.5 — — — — — — — —
Ø 43.5 — — — — — — — —

13q
Loss 68.7 57.3 — — — — 52.7 — —
Ø 48.2 25.3 — — — — 24.8 — —

16q
Loss 65 56.4 — 55.2 — 41.1 — 42.9 —
Ø 47.8 22.4 — 28.7 — 16.4 — 24.2 —

17p
Loss 66.9 44.8 — 51.3 — — 46.8 — —
Ø 48.8 28.5 — 31.1 — — 25.6 — —

17q
Gain — 55 — — — — — — —
Ø — 28.2 — — — — — — —

Only significant differences between distinct chromosomal imbalances (first line) and the possibles status of all other high-frequency alterations (gain/loss vs no changes) are
shown (Po0.05).
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Figure 3 Direct comparison of chromosomal high-frequency alterations (X20%) in HCCs (black bars) and related DNs (white bars).
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chromosome 4q, 13q, and 16q strongly correlate with HBV
aetiology and tumour progression (4q and 13q), and may
therefore contribute to the functional loss of tumour
suppressors.

(c) Gains of 1q are the predominant early genomic alterations.
They are aetiology-independent and may further predispose to
other chromosomal imbalances (‘mutator phenotype’).

These hypotheses will have to be tested experimentally by
several means. Firstly, the data basis in regard to DNs is still
restricted and it is worthwhile to increase the number of CGH
analyses of DNs. Secondly, the resolution of conventional CGH
analysis to identify regions of interest is limited (approximately
3–10 Mbp). This gap may in part be closed by high-resolution
techniques such as matrix-CGH (down to approximately 100 kbp

(Wessendorf et al, 2002; Pestova et al, 2004). Identification and
functional analyses of potential target genes may finally unravel
the mechanisms that predispose to secondary chromosomal
changes (e.g. 1q) or aetiology-specific alterations (e.g. 4q).
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