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ABSTRACT

There are currently seven approved immune checkpoint
inhibitors (ICIs) for the treatment of various cancers. These
drugs are associated with profound, durable responses in a
subset of patients with advanced cancers. Unfortunately, in
addition to individuals whose tumors show resistance, there
is a minority subgroup treated with ICIs who demonstrate a
paradoxical acceleration in the rate of growth or their
tumors—hyperprogressive disease. Hyperprogressive dis-
ease is associated with significantly worse outcomes in
these patients. This phenomenon, though still a matter of
dispute, has been recognized by multiple groups of investi-
gators across the globe and in diverse types of cancers.

There are not yet consensus standardized criteria for defin-
ing hyperprogressive disease, but most commonly time to
treatment failure less than 2 months and an increase in
pace of progression of at least twofold between pre-
immunotherapy and on-treatment imaging has been used.
In some patients, the change in rate of progression can be
especially dramatic—up to 35- to 40-fold. MDM2 amplifica-
tion and EGFR mutations have been suggested as genomic
correlates of increased risk of hyperprogression, but these
correlates require validation. The underlying mechanism for
hyperprogression is not known but warrants urgent investi-
gation. The Oncologist 2020;25:94–98

Immunotherapy in the form of checkpoint blockade has
resulted in impressive responses for several previously
refractory tumor types. Indeed, the U.S. Food and Drug
Administration (FDA) has now approved seven checkpoint
inhibitors: pembrolizumab, nivolumab, durvalumab, avelumab,
atezolizumab, cemiplimab, and ipilimumab [1–7]. Immune
checkpoint inhibitors mediate responses by reactivating the
immune system. Reactivation occurs because these antibodies
interfere with checkpoints such as programmed death-ligand
1 (PD-L1) and cytotoxic T-lymphocyte–associated antigen
4 that have been exploited by tumor cells to evade the
immune response, a necessity if the cancer is going to survive
[8]. The FDA approvals notwithstanding, there are now multi-
ple groups that have reported that a minority of patients
(albeit encompassing diverse cancers) experience a dramatic
acceleration in the rate of tumor progression after starting
checkpoint blockade—a phenomenon designated hyper-
progressive disease (HPD; Table 1) [9–20]. Unfortunately, in

the patients who are deemed to have HPD, their median over-
all survival is estimated to be roughly 3 months [21].

The phenomenon of enhanced progression after check-
point blockade has been described with different checkpoint
blockade agents and in numerous tumor types including, but
not limited to, non-small cell lung, head and neck, breast, gas-
tric, and genitourinary cancers [9–16, 18–23]. The fact that
various histologies that can be afflicted by HPD suggests that
there could be common, histology-agnostic biologic or molec-
ular mechanism(s). A final reason for the controversy around
the existence of HPD may be the reluctance of physicians and
other stakeholders to acknowledge that therapies like check-
point blockade could make some patients worse. Indeed,
despite HPD, our impression remains that immune checkpoint
inhibitors are some of the most effective drugs ever brought
into the clinical cancer arena, with transformative activity in a
broad range of lethal malignancies, including long-term com-
plete remissions in some individuals with highly refractory
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disease and heavy disease burden. For this reason, HPD
should be considered “a toxicity,” or an immune-related
adverse event (irAE) similar to other potential side effects,
and should not restrict the use of these important agents.
Even so, there is an urgent imperative to inform patients of
the risk of HPD, to determine the predictors of this phenome-
non, and to unravel its underlying biology.

The frequency of HPD after immunotherapy varies
depending on the publication, ranging from <5% to 29%
(the latter reported in one study of head and neck squa-
mous cell carcinoma) [9–16, 21–23]. One question that
arises is whether or not HPD is unique to immunotherapy.
One report suggests that HPD after chemotherapy can
occur, albeit at a much lower rate of 5.1% (3/59) (vs. �14%
after checkpoint blockade in that study) [15].

A key debate regarding the existence of HPD is whether
or not the cancer was an aggressive one in the first place,
with the thought being that rather than an induced immu-
nologic effect, the aggressive growth is merely a lack of
effective therapy (Fig. 1). In this regard, there are varying
criteria that have been proposed to define HPD (Table 1).
For instance, Champiat and colleagues [9] define HPD as
RECIST progression after first evaluation and at least two-
fold increase of the tumor growth rate between the refer-
ence (prior) and the experimental periods; Kato et al. [10]
defined HPD as >50% increase in tumor burden while on
checkpoint blockade compared with pre-immunotherapy,
with a <2-month time to treatment failure (TTF) and a
more than twofold increase in progression pace [10].
Importantly, the latter requires scans approximately
2 months before starting immunotherapy to be compared
with pre-immunotherapy scans, to exclude the possibility
that the tumor had an aggressive pace of growth even
before the start of immunotherapy. Virtually all other
research groups have almost identical definitions for HPD
(Table 1) except for Matos et al. [13] and Lo Russo et al.

[18]. The first group used the following definition: TTF
<2 months and increase in measurable lesions of ≥10 mm
plus the following: (A) increase of ≥40% in target tumor
burden compared with pre-immunotherapy or (B) increase
of ≥20% in target tumor burden plus multiple new lesions.
The second group used a similar definition, and patients
with HPD had to fulfill at least three of the following clini-
cal or radiological criteria: (A) TTF <2 months, (B) increase
of ≥50% in the sum of target lesions’ major diameters
between baseline and first radiologic evaluation,
(C) appearance of at least two new lesions in an organ
already involved between pre-immunotherapy and first
radiologic evaluation, (D) spread of the disease to a new
organ between pre-immunotherapy and first radiologic
evaluation, and (E) clinical deterioration with decrease in
Eastern Cooperative Oncology Group performance status
≥2 during the first 2 months of treatment. To avoid attrib-
uting rapid progression to immunotherapy when it simply
reflects aggressive disease, some have argued that criteria
that identifying HPD include a comparison with a
prebaseline time period (perhaps �2 months) to demon-
strate a substantial change in pace of tumor growth. Even
this may not be valid, as patients are often on therapy dur-
ing the period preceding initiation of immunotherapy. Fur-
thermore, this strategy could be difficult to apply when
immunotherapy is administered in the first line; therefore,
validation of surrogate criteria that do not include a
prebaseline scan will be an important future effort.

Despite the controversy around the existence of HPD,
unique response patterns after checkpoint blockade are
not new [24, 25]. For instance, a phenomenon termed
pseudoprogression has been well established after check-
point blockade, albeit in a small subgroup of patients
[25–27]. Pseudoprogression is defined by the appearance of
progression on scans, probably because of immune infiltra-
tion, but the patient is asymptomatic or feels better
(in contrast to hyperprogression, in which the patient, in
our experience, feels worse; Fig. 1). Furthermore, with
pseudoprogression, scans ultimately show tumor response.
Forms of pseudoprogression have also been previously
described, albeit rarely, with agents outside of immunother-
apy, for example, after glioblastoma treatment and with
some targeted therapeutics [28–30]. The relatively unique
response patterns after checkpoint blockade have resulted
in development of modified RECIST criteria for
immunotherapy—that is, iRECIST [31, 32]. Importantly, with
iRECIST, new lesions are assessed as per RECIST 1.1 [17] but
are recorded separately (and not included in the sum of tar-
get lesions identified at baseline). This type of evaluation
results in a new category of unconfirmed progression
(iUPD). Confirmed progression (iCPD) is only assigned if, at
the next imaging, an increase in the size of new lesions is
seen or additional new lesions appear.

Because of the urgency associated with the rapid pro-
gression that is the hallmark of HPD, it is crucial to differen-
tiate between hyperprogression and pseudoprogression as
early as possible, even before re-imaging. With the former,
checkpoint blockade should be immediately stopped; in
contrast, with the latter, treatment should be continued.
Liquid biopsies that interrogate serial blood-derived
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Figure 1. Potential outcomes after initiation of immunotherapy
with immune checkpoint inhibitors for the treatment of various
cancers over time. (Green): Durable response to treatment in
which target lesions shrink on imaging and remain attenuated.
(Purple): Nondurable response in which lesions initially
response to therapy, but on subsequent surveillance imaging,
lesions become resistant and increase in size. (Orange): Disease
progression in which target lesions grow >20% from previous
imaging. (Blue): Pseudoprogression in which tumors enlarge on
imaging initially followed by decrease in size seen. (Red):
Hyperprogressive disease in which rapid growth occurs after
initiating immune checkpoint inhibitors.
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circulating cell-free DNA may be useful in this regard. It
appears, at least based on one small study, that the genome
instability number in cell-free DNA rises precipitously with
hyperprogression, but falls with pseudoprogression, when
measured at about 3 to 6 weeks after starting immunother-
apy [33].

Another key question in HPD is whether there are clini-
cal or molecular features that are associated with an
increased risk of accelerated growth after checkpoint block-
ade. Predictors of HPD have included age ≥ 65 years, female

gender, regional recurrence of disease, having more than
two sites of metastases, low baseline highly differentiated
CD4+ T cells or effector memory CD8+ T cells, high severely
exhausted T cells or proliferating T regulatory cells, clus-
tered CD163+ PD-L1+ CD33+ macrophages with epithelioid
morphology, and genomic markers (mainly MDM2/MDM4
alterations and EGFR alterations; Table 1) [9–16, 18–20, 22].
There are inconsistencies between studies in that some
have not shown age or sex to be predictors. Furthermore,
although it has been described by several groups including

Table 1. Criteria for and predictors of HPD according to different research groups

Author Criteria for HPD Predictors of HPD

Peer-reviewed
manuscript

Champiat et al. [9] RECIST progression after first evaluation and at
least twofold increase of the TGR between
pre-immunotherapy imaging and on-treatment

≥65 years of age

Kato et al. [10] TTF <2 months, >50% increase in tumor burden
compared with baseline pre-immunotherapy
imaging, and more than twofold increase in
progression pace

MDM2/MDM4 and EGFR alterations
Poor TTF (defined as TTF <2 months) was not

associated with age, tumor type, Royal
Marsden or MD Anderson score, or type of
checkpoint blockade

DNMT3A alterations also significantly associated
with poor TTF in multivariate analysis

Saada-Bouzid et al. [11] TGKR calculated as ratio of the slope of tumor
growth pre-immunotherapy and the slope of
tumor growth on-treatment

HPD was defined as a TGKR ≥ 2

HPD seen in 39% of patients with at least a
locoregional recurrence and 9% of patients with
exclusively distant metastases

Ferrara et al. [15] Disease progression at the first evaluation with
change in TGR exceeding 50%

More than two metastatic sites prior to
immunotherapy

Kanjanapan et al. [16] RECIST 1.1 [17] progression at the first
on-treatment scan and at least twofold increase
in TGR between pre-immunotherapy and
on-treatment

Female gender

Lo Russo et al. [18] TTF <2 months, increase ≥50% in the sum of
target lesions major diameters, appearance of
at least two new lesions in an organ already
involved, spread of the disease to a new
organ, ECOG performance status worse than
≥2 during the first 2 months

HPD on the basis of three concomitant out of
the five possible criteria

Clustered macrophages with epithelioid
morphology and colocalization of CD163, PD-L1,
and CD33 markers (defined as complete
phenotype) in HPD cases

Kamada et al. [19] TTF <2 months; >50% increase in tumor burden
compared with pre-immunotherapy imaging, and
more than twofold increase in progression speed
(same as per [10])

PD-1 blockade facilitated the proliferation of
highly suppressive PD-1+ effector (CD4+) T
regulatory cells

One of three patients with HPD had MDM2
amplification versus 0 of 18 patients without
HPD

Kim et al. [20] TTF <2 months or at least twofold increase of
the TGR between pre-immunotherapy and
on-treatment (same as [9])

HPD was associated with lower frequency of
effector or memory (CCR7-CD45RA-) circulating
CD8+ T cells, and higher frequency of severely
exhausted (TIGIT+PD1+) circulating CD8+ T cells

Abstract only

Singavi et al. [12] Progression at first restaging on-treatment with
increase in tumor size >50%, more than twofold
increase in TGR

MDM2/MDM4, EGFR, amplifications on 11q13
(CCND1, FGF3, FGF4, FGF19)

Matos et al. [13] TTF <2 months and minimum increase in
measurable lesions of 10 mm plus (A) increase of
≥40% in target tumor burden compared with
baseline or (B) increase ≥20% in target tumor
burden plus multiple new lesions

HPD was not associated with age, tumor type,
checkpoint inhibitor regimens, previous
checkpoint inhibitor, or metastatic site

Kim et al. [14] Defined by TGK pre-immunotherapy versus
on-treatment (details not provided)

No associations found

Abbreviations: ECOG, Eastern Cooperative Oncology Group; HPD, hyperprogressive disease; PD-1, programmed cell death-1; PD-L1, programmed
cell death ligand11; TGK, tumor growth kinetic; TGKR, tumor growth kinetic ratio; TGR, tumor growth rate; TTF, time to treatment failure.
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ours [10, 12, 19, 34], the putative genomic correlates
(e.g., MDM2/MDM4 and EGFR alterations) require larger
sample size validation and an understanding of potential
mechanisms by which these alterations could mediate or
facilitate accelerated tumor growth after checkpoint
blockade.

Despite the current uncertainty regarding molecular
markers such as MDM2 amplification and EGFR alterations
that may predict HPD [9, 12, 34], the use of genomic aber-
rations as biomarkers for immunotherapy response pattern
has been previously established [35–41]. Indeed, although
genomics and immunotherapy are often considered as sep-
arate fields, in reality, they are tightly linked [42]. There are
various genomic aberrations that correlate with immuno-
therapy response, including (but not limited to)
(A) mismatch repair gene defects that result in high micro-
satellite instability (MSI), (B) high tumor mutational burden
(TMB), (C) PBRM1 and CDK12 mutations, and (D) PD-L1
amplification [35–41]. Other biomarkers include high PD-L1
protein expression, gut microbiome, and POLE [43], ATM
[44] (TMB-mediated), ATR [45] (TMB-mediated), and CDK12
[46] mutations, which have been shown to predict response
to immunotherapy [33, 47–49]. Of interest in this regard,
pembrolizumab was granted the first tissue-agnostic
approval by the FDA in patients with mismatch repair gene-
altered/MSI-high solid tumors of any type, based on
response rates of �40% [1]. The reasons that high MSI and
high TMB predict response to immunotherapy are probably
related, because high MSI almost inevitably leads to a high
TMB [50]. High TMB means that there are likely many
neoantigens produced by the tumor mutational genome
and, hence, a greater chance that the reactivated immune
system after checkpoint blockade will be able to differenti-
ate the neoplasm from normal tissue elements and target it
for eradication [51, 52]. In certain tumor types, such as
clear cell renal cell carcinoma, PBRM1 mutations have been
associated with response to immunotherapy [35, 40].
PBRM1 encodes a subunit of the PBAF switch-sucrose non-
fermentable chromatin remodeling complex, which regu-
lates how tightly DNA is packaged in cells; its loss may
increase expression of T-cell cytotoxicity [35, 40]. Similarly,
PD-L1 amplification in Hodgkin lymphoma and various solid
tumors also associates with immunotherapy benefit [39, 53,
54]. There are also several markers of tumor resistance,
again of genomic origin: (A) STK11 and KRAS co-mutations
in lung cancer [55]; (B) loss-of-function mutations in the
genes encoding interferon-receptor–associated Janus kinase
1 or Janus kinase 2, concurrent with deletion of the wild-type
allele [56]; and (C) truncating mutations in the gene encoding

the antigen-presenting protein beta-2-microglobulin (which
leads to loss of surface expression of major histocompatibil-
ity complex class I resulting in attenuated neoantigen presen-
tation) [56]. These observations suggest that genomic
markers can predict response pattern after checkpoint block-
ade and that their mechanism of action is not always fully
understood, at least initially.

In summary, despite the numerous research teams that
have documented HPD [9–16, 18, 20–22], the existence of
this phenomenon remains a matter of dispute. Indeed, an
analysis of the OAK trial [57], which was a randomized
study of checkpoint blockade versus chemotherapy in lung
cancer, did not show a difference in the number of “fast
progressors” between the arms. However, this trial had no
pre-immunotherapy evaluation to demonstrate whether or
not the pace of progression had increased. Patients with
rapid progression who do not have pre-immunotherapy
imaging available may be currently difficult to designate as
having HPD. It is important to note, however, that using
pre-immunotherapy imaging may not always be feasible for
all treatment settings; for example, in the first-line setting
not all cancer patients have pre-immunotherapy scans
available. Therefore, some groups (Table 1) [13, 18] have
suggested criteria for HPD that do not require pre- immuno-
therapy scans; these criteria will need to be validated in
patients with existing pre-immunotherapy scans. Recent
data have shown that HPD can be recapitulated in preclini-
cal models [18]. As physicians make immunotherapy a
mainstay of treatment in more cancer types, it will be
imperative to develop predictive markers for HPD and to
understand the biology that underlies this devastating irAE.
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