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Abstract

For in vivo studies of influenza dynamics where within-host measurements are fit with a mathematical model, infectivity
assays (e.g. 50% tissue culture infectious dose; TCID50) are often used to estimate the infectious virion concentration over
time. Less frequently, measurements of the total (infectious and non-infectious) viral particle concentration (obtained using
real-time reverse transcription-polymerase chain reaction; rRT-PCR) have been used as an alternative to infectivity assays.
We investigated the degree to which measuring both infectious (via TCID50) and total (via rRT-PCR) viral load allows within-
host model parameters to be estimated with greater consistency and reduced uncertainty, compared with fitting to TCID50

data alone. We applied our models to viral load data from an experimental ferret infection study. Best-fit parameter
estimates for the ‘‘dual-measurement’’ model are similar to those from the TCID50-only model, with greater consistency in
best-fit estimates across different experiments, as well as reduced uncertainty in some parameter estimates. Our results also
highlight how variation in TCID50 assay sensitivity and calibration may hinder model interpretation, as some parameter
estimates systematically vary with known uncontrolled variations in the assay. Our techniques may aid in drawing stronger
quantitative inferences from in vivo studies of influenza virus dynamics.
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Introduction

Influenza is an infectious disease that causes significant

morbidity and mortality worldwide [2]. Human influenza

infection is usually localised to the upper respiratory tract (URT)

[1], and generally lasts for approximately one week [1,3–5].

Mathematical modelling of in vivo or in vitro influenza experiments

can be used to improve our understanding of the dynamics of

infection [6–8], and to subsequently provide useful insights into

areas such as: the assessment and optimisation of antiviral drug

treatment strategies [4,9], the assessment of relative fitness

between different influenza strains [10], and the optimisation of

vaccine production [11,12]. Recent reviews of mathematical

modelling of influenza infection have highlighted the need for

more precise, comprehensive datasets in order to generate more

reliable estimates of the parameters that govern infection dynamics

[7,8].

For in vivo studies of within-host influenza dynamics, infectivity

assays such as 50% tissue culture infectious dose (TCID50) or

plaque assays are often used as a measure of the infectious (viable)

virion concentration over time [3–5,13–19] – we define infectious

virions to be virions that can infect susceptible cells and initiate the

production of progeny virus. In addition to infectious virions,

infected cells can also produce non-infectious viral particles

[20,21]. In some in vivo influenza modelling studies [15,22–24],

real-time reverse transcription-polymerase chain reaction (rRT-

PCR) assays that quantify viral RNA (vRNA) have been used as an

alternative to infectivity assays – we define total (infectious and

non-infectious) viral particles to be particles that contain vRNA

measurable via rRT-PCR. Mathematical models that have been

fitted to such total viral load data have implicitly assumed that the

proportionality between infectious and total viral particle concen-

tration is constant over time.

However, in an in vitro influenza study, Schulze-Horsel et al.

[12] employed TCID50 and hemagglutination (HA) assays as

quantifications of infectious and total viral load, respectively. They

fitted these data using a mathematical model that included both

infectious and non-infectious viral particles, and found that

infectious particles decayed faster than non-infectious particles.

Similarly, results from previous influenza studies have suggested

that the in vivo ratio of infectious to total viral particles changes

over time (e.g. [25–28]; reviewed in [7]), and this has also been

suggested by results obtained for other viruses [29–32]. Recently,

in an in vitro study, Iwami et al. [33] used both TCID50 and rRT-

PCR assays and a corresponding mathematical model to draw
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improved inferences on the replication kinetics of simian/human

immunodeficiency virus (SHIV).

Here we investigate in vivo whether measurement of both

infectious and total influenza virus, when fit with an appropriate

within-host model, can reduce uncertainties when estimating

model parameters. We develop a mathematical model of influenza

infection in ferrets, based on previous in vitro [12,33] and in vivo [3]

models, and fit it to TCID50 and rRT-PCR data from experiments

performed by Guarnaccia et al. (under review). We find that

measurement of both infectious (via TCID50) and total (via rRT-

PCR) viral particle concentration allows some within-host model

parameters to be estimated with reduced uncertainty – and with

greater consistency in best-fit values across different experiments –

when compared with parameter estimates obtained from fitting to

infectious viral load data alone.

Methods

Ethics Statement
All ferret experiments were conducted with approval from the

CSL Limited/Pfizer Animal Ethics Committee, in accordance

with the Australian Government, National Health and Medical

Research Council, Australian code of practice for the care and use

of animals for scientific purposes (license number: SPPL 051).

Ferret Experimental Data
We analyse viral load data taken from an experiment performed

by Guarnaccia et al. (under review). This study investigated the

likelihood of an antigenically drifted mutant virus arising during

serial passages of a wild-type A(H1N1) 2009 pandemic virus (A/

Tasmania/2004/2009) through ferrets. We analyse data obtained

from the two control groups used in this study – one in which

ferrets were immunised with only an adjuvant prior to infection

with the challenge virus (designated ‘‘PBS+IFA’’), and another in

which ferrets received no immunisation (designated ‘‘Naı̈ve’’).

Two separate serial passage lines (A and B) were run for each

group.

Each serial passage line included eight ‘‘naturally-infected’’

ferrets (designated R0–R7). Each of these ferrets were infected by

being co-housed with the preceding ferret in the serial passage line

(or in the case of each R0 ferret, with an infected ferret that had

received no immunisation). Each infected ferret was co-housed

with the next ferret in line only once the infected ferret had

attained a high enough viral load (assessed via either rRT-PCR or

a rapid influenza test) that the authors believed it was likely to be

infectious.

All ferrets were nasal washed daily throughout the experiment.

Total vRNA concentration within these samples was measured

using rRT-PCR assays (by amplification of influenza A matrix 1

gene). Infectious viral load was measured for multiple samples at a

time by performing TCID50 assays in batches (see ‘‘Fitting the

data’’). Although rRT-PCR assays were standardised using RNA

standards, TCID50 assays did not include internal standards for

inter-assay calibration.

We fit within-host models separately to each of the following

four datasets:

1. Naive line A, ferrets R0–R7,

2. Naive line B, ferrets R0–R7,

3. PBS+IFA line A, ferrets R0–R7,

4. PBS+IFA line B, ferrets R0–R7.

For datasets 1 and 2, rRT-PCR was used to determine the time

that each ferret was co-housed with the next ferret in the serial

passage line, while the rapid test was used for datasets 3 and 4.

Within-host Models
Single-measurement model. Here we outline a model of

the ferret upper respiratory tract (URT) that we fit solely to

TCID50 measurements; the ‘‘single-measurement’’ model

(Figure 1A). In this model, free infectious virions (VTCID
inf ) infect

susceptible epithelial cells (‘‘target’’ cells, T ) at the rate b,

producing latently infected cells (L). These latent cells become

productively infected cells (I ) at the rate k, which in turn produce

infectious virions at the rate p and undergo cell death at the rate d.

Infectious virions are cleared at the rate c. The units of all state

variables and parameters in this model are shown in Table 1. The

system of ordinary differential equations (ODEs) that govern the

dynamics of this model as a function of time t, are:

dT

dt
~{bTVTCID

inf ð1Þ

dL

dt
~bTVTCID

inf {kL ð2Þ

dI

dt
~kL{dI ð3Þ

dVTCID
inf

dt
~pI{cVTCID

inf : ð4Þ

This model and similar extensions, have been used previously to

simulate both in vivo and in vitro influenza dynamics

[3,5,9,15,19,23,34].

The system of ODEs given in Equations 1–4 implicitly assumes

an exponential distribution for the times spent by cells in each of

the latent (L) and infected (I ) states. However, models with normal

or lognormal distributions for L and I lifespans have been found to

produce more accurate fits to in vitro data (single-cycle viral yield

experiments), compared with models that employ exponential

distributions or fixed delays [5,34]. We model more biologically

realistic distributions for the L and I lifespans (without increasing

the number of parameters) by employing the method of stages

[35], whereby each of the L and I compartments is split into

several subcompartments or stages. We include 20 stages within

each compartment, as this produces standard deviations for the

distributions of the L and I lifespans that are consistent with in vitro

estimates and fixed values from previous studies [10,34,36].

We fit the VTCID
inf state in the resulting single-measurement

model to TCID50 viral load data, noting as others have [4,7–9],

that the units of an infectivity assay may underestimate the actual

concentration of infectious virions at the site of infection.

Dual-measurement model. Here we extend the single-

measurement model to include an additional state variable for

total viral particles (VPCR
tot ). This compartment incorporates both

infectious virions and non-infectious viral particles (which contain

vRNA but are not capable of infecting susceptible cells). Infected

cells produce both types of viral particles in this ‘‘dual-

measurement’’ model (Figure 1B). We fit model output from
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VPCR
tot to rRT-PCR measurements, and fit VTCID

inf to TCID50

measurements.

In order to derive this model, we must build upon a ‘‘biological’’

model that explicitly incorporates counts of actual numbers of

infectious virions (Vinf ) and non-infectious viral particles (Vni).

Similar to other modelling studies (e.g. [33]), we introduce scaling

relationships:

VTCID
inf ~wTCIDVinf ð5Þ

VPCR
tot ~wPCRVtot ~ wPCR(Vinf zVni), ð6Þ

that transform the biological model, so that ‘‘rescaled’’ viral load

compartments (VTCID
inf and VPCR

tot ) can be fitted directly to assay

data. We then make the following assumptions: (1) the ratio of

non-infectious to infectious particles produced by infected cells is

constant over time (assumed in previous in vitro modelling studies

[12,33,36]); (2) the host’s immune response clears both infectious

and non-infectious particles at the same rate, ch (assumed in

several models of human immunodeficiency virus infection

[37,38]); and (3) this host-driven clearance rate is much larger

than the degradation rate of non-infectious particles, dni (the

biological plausibility of this assumption is supported by compar-

ing previous estimates of the viral clearance rate and viral

degradation rate; see Text S1). Under these assumptions we obtain

the dual-measurement model:

dT

dt
~{bTVTCID

inf ð7Þ

dL

dt
~bTVTCID

inf {kL ð8Þ

dI

dt
~kL{dI ð9Þ

dVTCID
inf

dt
~pI{chVTCID

inf {dinf VTCID
inf ð10Þ

dVPCR
tot

dt
~jpI{chVPCR

tot , ð11Þ

where total viral particles are produced from infected cells at the

rate j|p (thus j gives the ratio of total vRNA measured via rRT-

PCR to infectious virions measured via TCID50, as produced by

infected cells), and infectious virions degrade into non-infectious

viral particles at the rate dinf . This degradation process does not

change the concentration of vRNA, and hence does not change

the concentration of VPCR
tot . In the single-measurement model,

degradation of infectivity was implicitly incorporated into the

clearance rate, c. The b, p, and j parameters are related to their

corresponding biological model parameters (b̂b, p̂p, and ĵj) via:

b~b̂b=wTCID
, p~p̂pwTCID

, and j~(1zĵj)wPCR=wTCID
.

The units of all state variables and parameters in the dual-

measurement model are shown in Table 2. In order to produce

more biologically accurate distributions for the latent and infected

cell lifespans, we again split the L and I compartments into 20

stages as outlined above in the context of the single-measurement

model.

Fitting the Data
We estimate the best fit for a given model by performing a

nonlinear least squares fit to viral load data in log-space. For the

dual-measurement model, the sum of squared residuals (SSR) for a

single set of model parameters (h) is given by:

SSR(h)~
XNTCID

i~1

log10 V̂VTCID
i { log10 VTCID

inf (ti,h)

log10 V̂VTCID
max

 !2

z
XNPCR

i~1

log10 V̂VPCR
i { log10 VPCR

tot (ti,h)

log10 V̂VPCR
max

 !2

,

ð12Þ

where NTCID and NPCR are the number of TCID50 and rRT-PCR

data points being fitted, respectively, ti is the time that the ith data

point was measured, V̂VTCID
i and V̂VPCR

i are the ith TCID50 and

Figure 1. Within-host models. Schematics of (A): the single-measurement model, where VTCID
inf is fit to TCID50 data, and (B): the dual-

measurement model, where V TCID
inf and VPCR

tot are fit to TCID50 and rRT-PCR data, respectively. For clarity, the colours of the VTCID
inf and VPCR

tot

compartments (green/red) are matched to the colours of those compartments in Figure 2.
doi:10.1371/journal.pone.0064098.g001
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PCR measurements, respectively, and V̂VTCID
max and V̂VPCR

max are the

maximum values that were obtained across all TCID50 and PCR

measurements, respectively. The weighting of each respective term

by V̂VTCID
max and V̂VPCR

max makes the corresponding residuals dimen-

sionless. This is similar to the weighting procedure that Saenz et al.

[22] used to fit a within-host influenza model to in vivo

measurements of viral load, innate immune response, and the

cumulative proportion of cells that become infected and die over

the course of infection.

For any measurement of (infectious or total) viral load, the

actual concentration may be below the relevant assay’s detect-

ability threshold, in which case assay results provide only an upper

bound on the state. We will refer to this as a ‘‘non-detection’’.

Further, the TCID50 assay may also saturate (a ‘‘max-detection’’),

due to a limited number of available wells in the assay. Such max-

detections provide only a lower bound on the infectious viral load.

For any non-detection data points, if the relevant (infectious or

total) viral load state in the model is above the detectability

threshold at that timepoint, then we calculate the relevant

(TCID50 or PCR) term of the SSR as per Equation 12. However,

if the simulated viral load concentration lies below the detectability

threshold at that timepoint then, as in [22], we do not include any

contribution to the relevant term of the SSR. Similarly, for any

max-detection data points, we include a non-zero contribution to

the TCID50 term of the SSR only if VTCID
inf is below the maximum

threshold at that timepoint – otherwise, no contribution to the

SSR is made.

When fitting the single-measurement model to data, we use the

SSR in equation 12 with the PCR term omitted. For both models,

the SSR is minimised using MATLAB R2011b’s genetic algorithm

to perform global optimisation.

For any naturally-infected ferret, the time when infection

actually occurred is unknown. We assume that infection occurred

24 hours before the first positive (above-threshold) viral load

measurement was taken for each ferret. We define this time to be

t~0 da post{infection (dpi) and run all model simulations

from this point onwards. For 31 of the 32 ferrets in datasets 1–4,

t~0 matches up with the time that each ferret was co-housed with

the previous ferret in the serial passage line (the only ferret where

this is not the case is the N2 ferret in dataset 1, where t~0
corresponds to 24 hours after co-housing began).

We use the following initial conditions when fitting each model

to data:

N T(t~0)~7|107 (an estimate of the number of epithelial cells

in the ferret URT; based on an estimate of &20 cm2 for the

URT surface area of mammals that are similar in size to ferrets

[39], and an estimated surface area per ferret epithelial cell of

&3|10{7 cm2, which is similar to previous estimates of

epithelial cell surface area for both humans [3] and mice [16]),

N L(0) = I(0) = 0,

N VTCID
inf (0)~ fitted parameter (this parameter can be interpret-

ed biologically as the initial infectious viral inoculum, but only

when ferrets were indeed infected at t~0).

For the dual-measurement model, we define r to be the ratio of

total to infectious free viral load:

r(t)~
VPCR

tot (t)

VTCID
inf (t)

, ð13Þ

so that the initial total viral concentration is given by

VPCR
tot (0)~r(0)VTCID

inf (0), where r(0) is a fitted parameter. When

fitting each model to data, we fix k~3 d{1 and estimate all other

parameters (see Text S1 for more detail, including the biologically

realistic ranges that we use to constrain parameter estimates).

We determine uncertainties in parameter estimates by plotting

likelihood confidence regions (LCRs) in parameter space [40] and

estimating parameter confidence intervals (CIs) [41]. LCRs

provide good approximations of confidence regions for nonlinear

models [40,41], and the LCR method has been shown to estimate

confidence regions and confidence intervals more reliably than

linearisation methods [41]. LCRs can be generated during the

genetic algorithm optimisation procedure, at the 100(1{a)%
confidence level, by plotting all parameter sets that have a

corresponding SSR value that satisfies [40]:

SSR( cos{1 h)ƒSSR(bhh) 1z
Np

Nd{Np

F1{a
Np ,Nd {Np

� �
, ð14Þ

where ĥh is the best-fitting (optimal) parameter set,

Nd~NTCIDzNPCR is the total number of data points being

fitted, Np is the number of unknown model parameters, and

F1{a
Np,Nd {Np

is the F -distribution with Np and (Nd{Np) degrees of

freedom at the 100(1{a)% confidence level. Confidence intervals

Table 1. Single-measurement model variables.

Description Units

T number of target cells cells

L number of latently infected cells cells

I number of productively infected cells cells

V
inf

TCID concentration of free infectious virions measured via TCID50 infectivity assay TCID50=ml of nasal wash

b rate governing infection of target cells by infectious virions (TCID50=ml){1 d{1

p rate of production of infectious virions (TCID50=ml) cell{1 d{1

k transition rate from latent to productive infection d{1

d death rate of productively infected cells d{1

c clearance rate of infectious virions d{1

Definitions of all state variables (compartments) and parameters in the single-measurement model.
doi:10.1371/journal.pone.0064098.t001
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(CIs) for each parameter are given by the projection of the LCR

onto that parameter’s axis [41].

Lastly, TCID50 assays have an inherent variability that can

systematically shift all assay results towards higher or lower

log10(TCID50=ml) concentrations. Three different TCID50 assays

were performed: (i) dataset 1, (ii) dataset 2, and (iii) datasets 3 and

4. It can be shown that a shift in log-space by some factor – say

log10(k) – would rescale certain parameter estimates. For both

models, VTCID
inf (0), b, and p are rescaled according to:

~VVTCID
inf (0)~kVTCID

inf (0) ð15Þ

~bb~b=k ð16Þ

~pp~kp: ð17Þ

For the dual-measurement model, j is also rescaled:

~jj~j=k: ð18Þ

Beauchemin et al. [7,9] performed a similar analysis to this

when investigating the effects of measurement variability on model

parameters.

Results

Fits to Viral Load Data
Fits of each model to combined viral load data, for each of the

four different ferret experiments, are shown in Figure 2. We fit the

single-measurement model solely to TCID50 data, while the dual-

measurement model is fit to both TCID50 and rRT-PCR data.

The ratio of rRT-PCR to TCID50 data is not constant over time.

This reflects the fact that each of these measurements are probing

different aspects of the underlying biological dynamics.

The TCID50 assay used for dataset 1 appears to produce

infectious concentrations that are shifted approximately a few

orders of magnitude higher, relative to the results from the other

two TCID50 assays. In contrast, the rRT-PCR assays seem to

produce relatively consistent results across all four datasets. Also,

infectious viral load appears to peak approximately 1 day later in

dataset 1 compared with datasets 2–4.

Comparison of Parameter Estimates from the Two
Models

In order to examine and compare uncertainties in parameter

estimates from each model, we estimate LCRs using Equation 14.

68% and 95% LCRs for the single- and dual-measurement models

fitted to each of the four different datasets are plotted in Figures 3

and 4.

In these figures, R0 is the basic reproductive number, defined as

the average number of cells that will become infected following the

introduction of a single infected cell into a population composed

entirely of susceptible cells [3,9]:

R0~pbT(0)tItVinf , ð19Þ

where tI~1=d is the expected lifetime of a productively infected

cell, and tVinf is the expected lifetime of an infectious virion

(tVinf ~1=c for the single-measurement model;

tVinf ~1=(chzdinf ) for the dual-measurement model). Also, we

define the initial number of infected cells (LV(0)) to be the average

number of cells that become (latently) infected by the initial viral

inoculum. Like VTCID
inf (0), the biological interpretation of LV(0)

only holds in cases where ferrets were indeed infected at t~0.

Since T(t) may be assumed to be approximately constant (&T(0))
immediately following infection, we estimate LV(0) using:

LV(0)~bT(0)VTCID
inf (0)tVinf : ð20Þ

If we assume that the average number of infectious virions

required to infect a target cell is the same for each experiment,

then LV(0) is proportional to the number of infectious virions in the

initial viral inoculum, with a constant of proportionality that is

identical regardless of TCID50 assay variability. Thus, estimates of

LV(0) can be compared across all four datasets, unlike estimates of

VTCID
inf (0). We also define an infecting time [10,34]:

tinf ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

pbT(0)

s
, ð21Þ

as the expected time taken for a single productively infected cell to

(latently) infect a second cell, when introduced into an entirely

susceptible population. This physical interpretation of tinf emerges

from the single-measurement model if viral clearance (c) is

neglected [10], and from the dual-measurement model if both

Table 2. Dual-measurement model variables.

Description Units

VPCR
tot

concentration of total vRNA (from infectious and non-infectious free viral particles)
measured via rRT-PCR assay

vRNA copies=ml

ch host-driven clearance rate (assumed to be the same for both infectious and
non-infectious viral particles)

d{1

dinf rate of degradation of infectious virions to non-infectious viral particles d{1

c~chzdinf clearance rate of infectious virions d{1

j ratio of total vRNA measured via rRT-PCR to infectious virions measured
via TCID50, as produced by infected cells

vRNA copies=TCID50

Definitions of all state variables (compartments) and parameters in the dual-measurement model that do not appear in the single-measurement model (Table 1).
doi:10.1371/journal.pone.0064098.t002
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host-driven clearance (ch) and infectious virus degradation (dinf )

are neglected. Lastly, we define a production rate of total vRNA,

pPCR
tot ~j|p, which has units (vRNA copies=ml) cell{1 d{1.

Figures 3 and 4 show that LCRs obtained using the dual-

measurement model are smaller than those obtained using the

single-measurement model, for all four datasets, at both the 68%

and 95% confidence levels. Best-fit parameter estimates are

generally similar for the two models.

Correlations between some parameter estimates are evident in

Figures 3 and 4. For example, parameter estimates for tinf and

LV(0) are generally correlated for both models, as large tinf

estimates generally require large LV(0) estimates in order to fit the

data, while small tinf estimates are generally associated with small

LV(0) estimates. pPCR
tot and c parameter estimates in the dual-

measurement model are also generally correlated, and similar

correlations are present in both p versus c and p versus d LCR

projections (data not shown). In contrast, parameter estimates of

R0 and tinf , as well as VTCID
inf and R0, are generally anti-correlated

in both models (VTCID
inf and b are similarly anti-correlated; data not

shown).

Estimates of the d and c parameters display degeneracy in both

models, although this is more prevalent in the single-measurement

model, particularly for the fits to datasets 3 and 4. When c

estimates are small, variations in d estimates do not significantly

affect the goodness of fit, and vice versa. The 68% and 95%

confidence regions for d and c are unbounded for all four single-

measurement model fits, unlike in the dual-measurement model

Figure 2. Best fits to viral load data. Combined viral load data from all ferrets are shown for datasets 1 (top row) to 4 (bottom row). For the
single-measurement model (left column), we show the best-fit of infectious viral load (solid green line; V TCID

inf (t)) to TCID50 data (green dots; dashed
green lines give lower and upper thresholds; some dots overlap as there are occasionally multiple data points at exactly the same TCID50 level). For
the dual-measurement model (centre and right columns), we show the best-fits of infectious (solid green line) and total (solid red line; VPCR

tot (t)) viral
load to TCID50 data (green dots) and rRT-PCR data (red diamonds; dashed red line gives lower threshold), respectively. We also show the ratio of rRT-
PCR to TCID50 data (blue dots), as well as the r(t) curve (solid blue line) and j value (solid mauve line) generated by the best-fit of the dual-
measurement model. Whenever a TCID50 measurement is a non-detection (lower threshold) or max-detection (upper threshold), the corresponding
r(t) measurement is a lower limit (upward-pointing blue arrows) or an upper limit (downward-pointing blue arrows), respectively. In addition to the
best-fit lines, we also plot 500 randomly sampled fits with SSR values that satisfy Equation 14 at the 95% confidence level (faded dotted lines for
V TCID

inf (t), VPCR
tot (t), and r(t), and faded dot-dashed lines for j).

doi:10.1371/journal.pone.0064098.g002
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where the equivalent parameters, d and c~(chzdinf ), are

bounded in some cases; e.g. datasets 3 and 4.

The parameters r(0) and dinf (not represented in Figures 3 and

4) have unbounded confidence regions for all dual-measurement

model fits. Figure 5 shows LCR projections of r(0) or dinf versus d

for all four datasets. For LCR projections of r(0) or dinf versus

model parameters other than d, there is generally little or no

correlation evident (data not shown).

Table 3 and Figure 6 show best fit parameter estimates and CIs,

for each model fitted to each dataset. We can only compare

parameter estimates across different datasets if those parameters

do not have TCID50 in their units (i.e. d, c, R0, LV(0), tinf , and

pPCR
tot ), due to the aforementioned TCID50 assay variability (see

‘‘Fitting the data’’). This restriction does not apply to comparisons

between datasets 3 and 4, as the same TCID50 assay was used for

both datasets. Indeed estimates for all parameters are consistent

between these two datasets, for both the single- and dual-

measurement models.

Best-fit estimates for c, R0, LV(0), and tinf are more consistent

across the different datasets for the dual-measurement model,

compared with the single-measurement model. The range of best-

fit estimates for these parameters are, for the dual- and single-

measurement models, respectively: 3:1{10:4 d{1 and

2:4{738 d{1 for c; 277{11,066 and 461{59,429 for R0;

7{2,393 cells and 7{14,791 cells for LV(0); and 18{66 min and

1:5{96 min for tinf . However, the 95% CIs for c, R0, LV(0), and

tinf all cover a relatively large range for both models, although

again this range is smaller for the dual-measurement model than

for the single-measurement model. For best-fit estimates of d, the

variability across different datasets is similar for both models. For

each model, 68% and 95% CIs for d, c, R0, LV(0), and tinf are self-

consistent across all four datasets, and this is also true for pPCR
tot in

the dual-measurement model.

All CIs from the dual-measurement model are either similar in

size or smaller than those from the single-measurement model.

The most prominent reduction in uncertainty between the two

models is seen in estimates of d (at the 95% confidence level for

datasets 3 and 4) and c (in 68% CIs for datasets 1 and 2). For any

given dataset, all CIs are consistent between the two different

models.

Figure 3. LCRs for the two Naive experiments. (A): LCRs obtained by fitting the single-measurement model (first row) or dual-measurement
model (second row) to the combined data from dataset 1. For each model, we plot best-fit parameter estimates (dots), as well as 2-dimensional
projections of the 68% LCR (inner contours) and 95% LCR (outer contours). (B): Same as (A), except that these LCRs were obtained by fitting each
model to dataset 2.
doi:10.1371/journal.pone.0064098.g003
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Discussion

Main Findings
Our analyses demonstrate that the ratio of total (rRT-PCR) to

infectious (TCID50) viral particle concentration is time-dependent

in acute influenza infection of ferrets. Thus the biological processes

underlying in vivo infection can potentially be probed more

comprehensively by including both measurements in a within-

host model. Fitting such a model allows most parameters to be

estimated with reduced uncertainty (smaller LCRs), but this is not

the case for all parameters. Also, best-fit estimates for c, R0, LV(0),

and tinf are more consistent across datasets for such a model,

although large CIs in parameter estimates mean that this result is

not well supported statistically.

The observed time-dependence in the ratio of total to infectious

virus, r(t) (Figure 2), can potentially be explained within the

context of the dual-measurement model, in terms of three distinct

phases:

1. During the first few (&1{6) hours of infection, r(t) increases

briefly as there are no productively infected cells in the dual-

measurement model initially, and we have assumed that

infectious virus decays faster (chzdinf ) than total virus (ch).

2. During the phase of exponential viral growth, r(t) tends

towards a value that is just above j, as viral production from

infected cells becomes the main contributor to r(t). Since

infectious virus decays faster than total virus in the dual-

measurement model, r(t) must tend towards a value that is

greater than j.

3. After the exponential growth phase (around the viral load

peak), the model transitions into a phase of exponential viral

decay, dominated by viral clearance and/or degradation (loss

of infectivity). As infectious virus decays faster than total virus

in the model, r(t) increases during this phase.

Another possible explanation for the time-dependence of r(t)
has been investigated by Vaidya et al. [32] within the context of

in vivo simian immunodeficiency virus (SIV) infection, by allowing

the infectivity rate in a within-host model to vary with time.

Vaidya et al. also discussed alternative mechanisms for generating

time-dependence in r(t) during SIV infection, which could

potentially apply to in vivo influenza infection as well – these

include a time-varying production rate for infectious virions, and

the coating of infectious virions by antibody.

We observed that the infectious viral load in dataset 1 appears

to have a delayed peak relative to that in datasets 2–4 (Figure 2).

Such a delay might arise as a consequence of using two different

Figure 4. LCRs for the two PBS+IFA experiments. Same as Figure 3, except that these LCRs were obtained by fitting each model to (A): dataset
3, and (B): dataset 4. Also, we include projections onto TCID50 assay-dependent parameters (V TCID

inf (0), b, and p) in this figure, as estimates for those
parameters are able to be compared across datasets 3 and 4 (because all TCID50 data were obtained from the same assay).
doi:10.1371/journal.pone.0064098.g004
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tests (rRT-PCR or a rapid test) to determine the time that each

ferret was co-housed with the next ferret in the serial passage line

(see ‘‘Ferret experimental data’’). When the rapid test was used

(datasets 3 and 4), ferrets were more likely to have a higher viral

load upon being co-housed with the next ferret in line, relative to

when rRT-PCR was used (datasets 1 and 2), due to the higher

sensitivity of the rRT-PCR assay (data not shown). Consequently,

ferrets in datasets 1 and 2 may have been more likely to become

infected either relatively late, or with a relatively low initial viral

inoculum, or both, compared with ferrets in datasets 3 and 4. The

greater the number of ferrets with late infection time and/or low

initial viral load, the more likely it is that their combined data will

have a delayed viral load peak. Due to stochastic variation, it is

possible that this occurred more frequently for ferrets in dataset 1

compared with dataset 2.

Subsequently, it is interesting that best-fit estimates from the

dual-measurement model of the initial number of infected cells,

LV(0), for datasets 1 and 2 are approximately 1–2 orders of

magnitude lower (&10{severalhundred cells) than those for

datasets 3 and 4 (&severalthousand cells). This could point

towards a relatively low initial viral inoculum and/or relatively late

time of infection for the combined data in each of datasets 1 and 2,

consistent with the potential causes of a delayed viral load peak

discussed above. However, we must keep in mind that the

biological interpretation of LV(0) only applies in cases where ferrets

were indeed infected at t~0. Also, we cannot make a statistically

significant inference regarding differences in LV(0) estimates

between the different datasets, as the 68% and 95% uncertainties

of these estimates all overlap. Indeed, parameter estimate

uncertainties, for all parameters that do not contain TCID50 in

their units, are self-consistent across all four datasets. Nonetheless,

the potential to compare LV(0) across different datasets (with

infectivity data originating from different TCID50 assays) high-

lights the usefulness of estimating LV(0) in addition to the VTCID
inf (0)

parameter, which cannot be compared across datasets that use

different infectivity assays.

We found that estimates of certain parameters are correlated,

for both models, while certain other parameter estimates are anti-

correlated (Figures 3 and 4). Such correlations can arise when

fitting data due to mechanistic interrelationships between model

parameters. For instance, tinf and LV(0) estimates were generally

correlated with each other because decreasing LV(0) delays the

increase in viral load – this change in viral load dynamics can be

compensated for by increasing the rate of spread of infection (e.g.

by decreasing tinf ). An analogous interrelationship applies to

increases in LV(0) and tinf . Importantly, investigating such correla-

tions between parameters using LCR projections can provide

insight into how parameter estimation could potentially be

improved. For instance, the anti-correlation between VTCID
inf and

R0 indicates that any attempt to improve estimates of VTCID
inf (for

example, by measuring viral load more frequently close to the time

of infection) could have the added benefit of generating stronger

estimates of R0.

We also observed degeneracy between estimates of the d and c

parameters, with small d estimates associated with degeneracy in c,

and vice versa (Figures 3 and 4). This degeneracy is not

unexpected based on previous analytic results for a single stage

model that showed that the post-peak decay rate of infectious viral

load is governed by the smallest of the k, d, and c parameters [18].

We found that, despite confidence regions being unbounded for

r(0) and dinf , potentially useful information can still be obtained

by investigating LCR projections for these parameters (Figure 5).

For fits to datasets 1 and 2, the LCR projections in Figure 5

indicate that if d were to be measured independently, and if its

estimated value were >2, the identifiability of r(0) and dinf could

potentially be improved. However, this is not the case for fits to

datasets 3 and 4, as little correlation is evident in those LCR

projections. There is generally little or no correlation evident when

r(0) or dinf are plotted against most other model parameters.

We compare parameter estimates obtained when modelling

ferret infection data with the dual-measurement model (Table 3),

to those obtained when modelling in vitro influenza data [10,36],

and in vivo data from humans [3–5] and mice [17,19]. Unfortu-

nately, we cannot compare estimates of c, R0, LV(0), and pPCR
tot to

those from other studies, because our estimates all have large (and

sometimes unbounded) 95% CIs. We only compare estimates of d
and tinf , as those are the only remaining parameters that do not

contain TCID50 in their units. Acknowledging potential variation

in biological parameters by strain, our best-fit estimates of d

(0:30{0:38 d{1; tI~1=d~2:6{3:4 d) are slightly larger than d
estimates from several in vitro [36] and in vivo [3–5,19] modelling

studies (which are roughly in the range tI&0:1{2 d ) as well as

estimates from direct experimental measurements of the average

lifetime of influenza-infected cells (0:5{2 d; as reviewed by

Beauchemin & Handel [7]), but are in agreement with the in vivo

estimates of Miao et al. [17] (which are in the range tI&1{7 d).

For tinf , our best-fit estimates (18{66 min) and 95% CIs

(0:6{242 min) are consistent with previous in vitro estimates

[10,36] (which are roughly in the range tinf &1{100 min).

Figure 5. LCRs for the dual-measurement model fitted to
datasets 1–4. LCRs obtained by fitting the dual-measurement model
to combined data; from dataset 1 (first row) to dataset 4 (fourth row).
doi:10.1371/journal.pone.0064098.g005
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Main Limitations of this Study
Both the single- and dual-measurement models we use are

target cell-limited – i.e. the progress of the infection is limited

only by the availability of susceptible epithelial cells, rather than

by any form of time-varying immune response. Although such

models can generate viral load dynamics that are consistent with

in vivo data, it is likely that immune response dynamics contribute

towards limiting the spread of infection (recent reviews [6–8]

discuss evidence for the importance of immune responses in

regulating influenza dynamics). Several recent within-host

modelling papers have required the inclusion of some form of

time-varying immune response in their models in order to

adequately explain the dynamics of both viral load and immune

response data [14,16,17]. The in vivo experiments analysed in this

paper, however, did not include regularly sampled measurements

of immune responses and thus these recent techniques are not

able to be applied here.

While confidence regions for parameters have been substan-

tially reduced with the dual-measurement model (Figures 3 and

4), parameter estimates do remain somewhat poorly constrained,

reflecting fundamental limitations in the inferences we can draw

from routinely available viral load data. Confidence regions for

r(0) and dinf are unbounded for fits of the dual-measurement

model to all four datasets. For r(0), this is likely a consequence of

a lack of data within the first 24 hours of infection, coupled with

the fact that the dual-measurement model can generate r(t)
dynamics that are similar to those seen in the data, for many

different values of r(0). For dinf , confidence regions are

unbounded because the range we restrict dinf estimates to is

very small (Text S1). It may be possible to alleviate this

identifiability issue for r(0) in future experiments, by taking

more frequent measurements around the time of infection. Also,

unboundedness in r(0) estimates should be less of a problem in

any experiment where animals are inoculated rather than

naturally infected, as r(0) could be measured in the inoculum.

Because all ferrets were naturally infected, the exact time of

infection for each ferret is unknown. This affects the physical

interpretation of the VTCID
inf (0), r(0), and LV(0) parameters, in

any cases where ferrets did not become infected at approximately

the time we have assumed. This issue could potentially be

mitigated in future experiments, by reducing the duration that

each infected animal is exposed to susceptible animals to a single,

brief period of exposure. This parameter interpretation problem

does not apply to experiments where animals are inoculated

rather than naturally infected.

When constructing the dual-measurement model, we assumed

that host-driven clearance of both infectious and non-infectious

viral particles occurred at the same rate, consistent with several

models of HIV infection [37,38]. However, there is currently a

lack of experimental evidence that tests the biological validity of

this assumption. If models similar to the dual-measurement

model are to be used in future, it will be important to investigate

the relative clearance rates of infectious and non-infectious viral

particles further.

In this work, total viral particles were defined as particles that

contain vRNA measurable via rRT-PCR. However, rRT-PCR

measurements may underestimate the concentration of non-

infectious (and hence total) virus, because non-infectious particles

may contain incomplete vRNA [21]. Any non-infectious particles

that were missing the portion of influenza A matrix 1 gene used

here to amplify vRNA during rRT-PCR assays, would not have

been detectable (Guarnaccia et al., under review).
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Further, it is likely that the different subpopulations of virus

particles in an in vivo influenza infection are more diverse and

complex than the two subpopulations (infectious and total virus)

included in the dual-measurement model. Richer classifications of

influenza subpopulations have previously been investigated in vitro.

For example, Marcus et al. [20] studied the dynamics of plaque-

forming particles, defective interfering particles, non-infectious

cell-killing particles, and hemagglutinating particles during in vitro

serial passaging. Within-host modelling of the dynamics of such

viral particle subpopulations has the potential to increase our

understanding of influenza pathogenicity and immune responses.

Our dual-measurement model provides an incremental step

towards capturing the complex in vivo dynamics of these virus

particle subpopulations.

Ramifications of Our Findings
Recently, some influenza modelling studies have implicitly

assumed that the in vivo ratio of total to infectious virus is constant

over time [15,22–24]. However, results from other in vivo influenza

studies suggest that this ratio is time-dependent (e.g. [25–28]), and

this is also supported by the data analysed in this work.

Our results also highlight how variation in TCID50 assay

sensitivity and calibration may hinder model interpretation, as we

were unable to compare estimates for any parameters with

TCID50 in their units. Future improvements in infectivity assay

reproducibility will greatly aid the capability to compare

parameter estimates across different studies. For example,

development of an international standard stock of influenza virus

could provide inter-laboratory calibration of infectivity assays,

analogous to the international standardisation of hemagglutina-

tion-inhibition and virus neutralisation assays [42].

Recent reviews of within-host influenza modelling have

discussed the need for more comprehensive datasets, in order to

obtain a more accurate picture of infection dynamics and enhance

the precision of biological inferences based on within-host

modelling [7,8]. The techniques outlined in this work can be

used to increase the diversity of available data in order to further

inform such model-based biological inferences.

Supporting Information

Text S1 A comparison of previous estimates of viral
clearance rate and viral degradation rate, as well as
further details regarding data fitting.

(PDF)
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