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Abstract: Background: Transient receptor potential channels (TRPs) have been demonstrated to take
on functions in pancreatic adenocarcinoma (PAAD) biology. However, little data are available that
validate the potential of TRP in a clinical translational setting. Methods: A TRPs-related gene signature
was constructed based on the Cox regression using a TCGA-PAAD cohort and receiver operating
characteristic (ROC) was used to evaluate the predictive ability of this model. Core genes of the
signature were screened by a protein-to-protein interaction (PPI) network, and expression validated
by two independent datasets. The mutation analysis and gene set enrichment analysis (GSEA) were
conducted. Virtual interventions screening was performed to discover substance candidates for the
identified target genes. Results: A four TRPs-related gene signature, which contained MCOLN1,
PKD1, TRPC3, and TRPC7, was developed and the area under the curve (AUC) was 0.758. Kaplan–
Meier analysis revealed that patients with elevated signature score classify as a high-risk group
featuring significantly shorter recurrence free survival (RFS) time, compared to the low-risk patients
(p < 0.001). The gene prediction model also had a good predictive capability for predicting shortened
overall survival (OS) and disease-specific survival (DSS) (AUC = 0.680 and AUC = 0.739, respectively).
GSEA enrichment revealed the core genes of the signature, TRPC3 and TRPC7, were involved in
several cancer-related pathways. TRPC3 mRNA is elevated in cancer tissue compared to control
tissue and augmented in tumors with lymph node invasion compared to tumors without signs of
lymph node invasion. Virtual substance screening of FDA approved compounds indicates that four
small molecular compounds might be potentially selective not only for TRPC3 protein but also as a
potential binding partner to TRPC7 protein. Conclusions: Our computational pipeline constructed
a four TRP-related gene signature that enables us to predict clinical prognostic value of hitherto
unrecognized biomarkers for PAAD. Sensory ion channels TRPC3 and TRPC7 could be the potential
therapeutic targets in pancreatic cancer and TRPC3 might be involved in dysregulating mitochondrial
functions during PAAD genesis.
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1. Introduction

As a leading cause of cancer-related death worldwide, the reported overall five-year
survival of pancreatic adenocarcinoma (PAAD) under current standard therapy is less than
8% [1,2]. Although surgery and neoadjuvant chemotherapy have improved the prognosis
of pancreatic cancer patients, more than 80% of pancreatic cancer patients are diagnosed
at an advanced stage with limited long-curative treatment options available [3]. Thus,
biomarkers, allowing early and more precise detection, and thereby allowing therapy in
premature stages, or supporting the development of new molecular-tailored therapeutics
to improve therapy endurance, are highly needed [4,5].

Previous studies have shown that PAAD is a cellular and molecular highly heteroge-
neous tumor, and both susceptibility gene mutations and environmental factors may lead
to the occurrence and devastating progression parameters of the disease [1]. Recently, with
the benefit of next-generation genome sequencing (NGS) and bioinformatics technology,
rapid advances in molecular stratification of the disease [6], including the classification of
predicate expression signatures have sparked hopes for improved combat of this disease in
future clinical care [7–9].

The transient receptor potential channels (TRPs) are evolutionarily conserved integral
membrane proteins classified as a large gene superfamily, containing 28 different genes [10].
TRPs are cationic channels that act as stimulation-induced signal transducers by altering
membrane potential or intracellular calcium (Ca2+) concentration. The canonical TRP
(TRPC) subfamily is most prominently known for containing the founding member of
mammalian TRP channels. TRPs, mostly described in to function in neural cells, have
been identified to overtake signal sensory function in various cell types [11]. TRPs are
discussed to be important mediators of pain and are under current investigation as targets
for developing new pain medications [12]. In addition to the role of maintaining tissue
homeostasis, some previous reports link malignant disease progression with responses
of these channels including for PAAD [13]. However, to our knowledge the relevance of
TRP from a translational viewpoint, interrogating NGS data of patient material and clinical
course, has been not been assessed.

In the present study, we constructed a TRPs-related gene expression signature to
predict the recurrence risk of PAAD patients, and validate its predictability by internal
and external validation. Moreover, in a forward-thinking clinical translational attempt, we
conducted a gene set enrichment analysis (GSEA) and molecular docking simulations for
FDA-approved substances to assume the cellular function of core genes of signature and as
a fundament for future therapy-oriented trials in the context of drug repurposing.

2. Materials and Methods
2.1. Data Obtain and Pre-Processing

A total of four public datasets were included in this study (TCGA, ICGC, GSE28735,
and GSE101448). The TCGA pancreatic adenocarcinoma (PAAD) dataset was used to
become the training set for signature construction. The external validation samples were
downloaded from the ICGC database. GSE28735 dataset, from the GEO database, which
includes 45 cancers and 45 adjacent tissues, was used to validate the core gene expression
of signature. GSE101448 dataset was used to validate the core gene expression difference
between tumors featuring lymph node invasion vs. tumors without lymph node invasion.
According to the clinical information, those patients without a completely recurrence time
and status, and recurrence time less than three months are excluded from the cohort.
Finally, 136 patients in the TCGA dataset and 111 cases in the ICGA dataset were enrolled
in this study. Expression profile data of 28 TRP-related genes were extracted from the
gene expression profiles of both datasets and then normalized. The workflow is shown
in Figure 1.
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Figure 1. The work flow of this study.

2.2. Signature Construction

To filter risk genes affecting postoperative recurrence in PAAD patients, we ana-
lyzed 28 TRP-related genes by using univariate cox regressions and then input signifi-
cant candidate genes into a multivariate Cox regression model to identify independent
prognosis risk factors. Finally, signature construction was performed based on the coeffi-
cients of the multivariate regression results. The model construction equation is as follows.
Risk score = coef × A + coef × B + coef × C.

2.3. Signature Validation

Randomly assigned extracted fifty percent samples from the training set and all PAAD
samples from the ICGC dataset were defined as the internal and external validation set,
respectively. In addition, we also defined overall survival (OS) and disease-specific survival
(DSS) as new endpoint events, then evaluated the predictive ability of the signature for the
new prognosis outcome.

2.4. Prognostic Value Evaluation of Signature

Clinical variables are also important for assessing clinical prognosis. To evaluate
whether the signature had an independent prognostic value, while compared with clinical
characteristics, we combined it with clinical factors and put them into univariate and
multivariate Cox regression for future analysis.

2.5. Core Gene Screening and Expression Analysis

The protein to protein interaction (PPI) network was used to identify core genes of
signature, and the GSE28735 dataset was used to validate the core gene expression between
tumor and normal tissues. GSE101448 dataset was used to validate the core gene expression
difference between invasion and no invasion tissues.

2.6. Core Gene Mutation Analysis

We downloaded the mutation data of the core genes from the TCGA database and
divided the samples into high and low groups based on the median expression value of
the core gene. Then we analyzed the somatic mutations in the high and low groups of
pancreatic patients, respectively, by using the maftools package [14].

2.7. GSEA Enrichment Analysis

The functional annotation and pathway enrichment analysis of a single gene can better
predict the biological functions that it may be involved in. Here, we performed a GSEA
enrichment analysis, including gene oncology (GO) and Kyoto Encyclopedia of Genes and
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Genomes (KEGG) analysis, on the core genes to clarify the mechanisms in disease. This
process is conducted by the R package cluster profile [15].

2.8. Virtual Screening

To discover new drug candidates for key proteins of targeting genes, virtual screening
was performed. The 3D structures of proteins were downloaded from the Protein Data Bank
(PDB) data set (https://www.rcsb.org/ (accessed on 25 January 2022)), and the binding
sites of targeting proteins were predicted by DoGSiteScorer from Proteins Plus Server
(https://proteins.plus/ (accessed on 25 January 2022)) [16,17]. FDA-approved drugs library
as a resource for potential drugs from the ZINC20 database (https://zinc20.docking.org/
(accessed on 25 January 2022)). For this project, the docking was performed and scored
using Autodock Vina 1.1.2.

3. Results
3.1. Risk Gene Identification and Model Construction

The results of univariate Cox regression suggested that eight genes were associated
with recurrence in PACA patients, they were MCOLN1, PKD1, TRPC7, TRPV4, MCOLN3,
TRPM1, TRPM4, and TRPC3 (Supplementary Table S1). The multivariate cox regression
model results demonstrated that four out of those genes, namely, MCOLN1, PKD1, TRPC3,
and TRPC7 were independent risk factors associated with the RFS of patients (Table 1).
Based on the coefficients of multivariate cox regression, a four-gene signature was con-
structed, and the model formula was as follows: Riskscore = (−0.048) × MCOLN1 +
(−0.042) × PKD1 + 1.072 × TRPC3 + (−2.621) × TRPC7.

Table 1. Four prognostic genes significantly associated with RFS.

Gene
Symbol Coef Hazard

Ratio 95%CI (Low) 95%CI
(High) p Value

MCOLN1 −0.048 0.953 0.913 0.995 0.030
PKD1 −0.042 0.959 0.910 1.010 0.115
TRPC3 1.072 2.922 1.230 6.940 0.015
TRPC7 −2.622 0.073 0.009 0.619 0.016

3.2. Evaluation Model Efficacy

The area under the curve (AUC) was 0.758, suggesting that the training set signature
has good predictive efficacy for RFS. Further Kaplan–Meier analysis revealed that, when
patients were divided into high-risk and low-risk groups according to the median value of
risk score, patients with the high-risk group had a significantly shorter RFS time, compared
to the low-risk patients (p < 0.001) (Figure 2A–C).

3.3. Model Validation

The internal validation results show that the AUC is 0.797, while two- and three-year
external validation results demonstrate that the AUC is 0.616 and 0.614, respectively. In
addition, for internal validation samples, patients with the high-risk score also have a short
RFS time when compared with patients with low-risk scores (p < 0.001). External validation
of two years survival data also supports the above conclusion (p = 0.044), However, for
the external validation of two years data, the comparison between two groups was not
statistically significant; although, the separation of RFS curves was indeed very significant
(p = 0.256) (Figure 2D–J).

3.4. Predict Overall Survival and Disease-Specific Survival

We applied the signature to predict the risk of OS and DSS and the results indicate
that the four-gene signature has good predictive efficacy for these outcomes of pancreatic
cancer patients (AUC = 0.680 vs. AUC = 0.739, respectively) and patients with high-risk
scores have more risk of recurrence, compared to patients with low-risk scores. (Figure 3).

https://www.rcsb.org/
https://proteins.plus/
https://zinc20.docking.org/
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3.5. Independent Prognosis Value Evaluation

A four-gene signature, as a variable, was included in the regression model together
with clinical variables. The univariate results showed that the histological grade of the
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tumor, age of patient, and our detected risk scores were independent risk factors for PAAD
recurrence. Those results are confirmed by multivariate regression results (Figure 4A). The
subgroup analysis results show that G1/2 staging of the tumor group has a significant
negative prognostic value predicting high recurrence risk (p < 0.001). This conclusion also
shows in age subgroups, no matter the patient is older or younger than 70 years old, a
low-risk score always means a better prognosis outcome, when compared with the high-risk
group (p < 0.001 vs. p = 0.004). However, when patients with the G3/4 stage, there were no
statistical differences between the two groups (p = 0.06) (Figure 4B).
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3.6. Model Core Genes and Expression Validation

PPI network analysis results indicate that TRPC3 and TRPC7 are the core genes of
the signature (Figure 5A). We firstly used an independent dataset, GSE28735, to verify
the expression validation of the genes, and the results suggest that TRPC3 is significantly
upregulated in tumor tissues compared to adjacent tissues, with statistically significant
differences between groups (p = 8.8 × 10−3). TRPC7 expression trend is opposite to TRPC3
revealing higher expression value is higher in adjacent samples than in tumor tissues
(p = 4.3 × 10−3) (Figure 5B). Future analysis results show that TRPC3 expression was
significantly higher in the tissues of patients with lymph node metastases when compared
to those with lymph node-negative (p = 3.7 × 10−3) (Figure 5C). The expression of TRPC7
was lower in tissues that invasion when compared with samples without invasion; although,
it shows no significance between the two groups (p = 0.09) (Figure 5D).
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3.7. Mutation Results

The waterfall chart of mutation analysis shows that in tumor samples positive for
TRPC3 expression, they are also often highly mutated in KRAS gene loci (89.7%), and
that the specific mutation type is missense mutation. This conclusion is also applicable
for samples with positive TRPC7 mRNA abundancy (89.0%), meaning that in any case of
positive signal for TRPC3 or TRPC7 expression in a given tumor, the tumor cells frequently
possesses the prominent mTOR pathway activating mutation. In addition, TP53 mutation is
also frequent in TRPC3/TRPC7 positive samples (74.5% vs. 74%, respectively). In the high
expression group of TRPC3 and lower expression group of TRPC7, missense mutations are
also the main mutation type of TP53. Of note, the difference in TP53 mutation frequency
between high- and low-expressing tumors of TRPC3 was not observed; however, this
difference was very significant between the high and low groups of TRPC7 (p = 0.86
vs. p = 0.02, respectively) further calling for investigation of the biological function of
TRPC7 in the context of an existing known prominent hallmark tumor mutation in TP53
gene. (Figure 6).

3.8. Functional Annotation

GO functional enrichment analysis suggested that the TRPC3 gene is associated with
mitochondrial translational termination and elongation, and regulation of the humoral im-
mune response. TRPC7 gene enrichment analysis results demonstrate that this gene could
be enriched due to the dysregulation of dephosphorylation, protein dephosphorylation,
and positive regulation of cytokine production (Supplementary Table S2).

3.9. Pathway Enrichment Analysis

Single-gene GSEA results show that up-regulated TRPC3 gene is associated with
activation of the ECM-receptor interaction networks as well as stem cell pathway Hippo
signalling. The down-regulated TRPC7 gene may activate the Ras signaling pathway and
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seems to be associated to dysregulations of cellular metabolic pathways (Supplementary
Table S3).
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3.10. Candidate Compound Interventions

Three-dimensional structures of TRPC3 and TRPC7 are shown in Figure 7A,B. The Top
10 substance drugs, ranked by affinity, are shown in Table 2, and the Top 3 docking structure
of hub proteins and small molecular drugs are shown in Figure 7C–H. Future analysis
results show that in TOP 10 highest bind score drugs, four small molecular compounds,
ZINC000001612996, ZINC000052955754, ZINC000003978005, and ZINC000006716957 are not
only potential binding for TRPC3 but also as a potential interacting agent of TRPC7 (Figure 7I).

Table 2. Top 10 potential binding substances to TRPC3 and TRPC7 protein.

Protein Name Affinity ZINC_ID Drug Name

TRPC3 −10.9 ZINC000008101127 Indocyanine Green
TRPC3 −10.7 ZINC000003978005 Dihydroergotamine
TRPC3 −10.6 ZINC000036701290 Ponatinib
TRPC3 −10.4 ZINC000000896717 Accolate
TRPC3 −10.2 ZINC000164760756 Olysio
TRPC3 −10.2 ZINC000052955754 Ergotamine
TRPC3 −10.2 ZINC000006716957 Nilotinib
TRPC3 −10.1 ZINC000068204830 Daclatasvir
TRPC3 −10.0 ZINC000001612996 Irinotecan
TRPC3 −10.0 ZINC000026664090 Sqv
TRPC7 −12.2 ZINC000001612996 Irinotecan
TRPC7 −11.8 ZINC000052955754 Ergotamine
TRPC7 −11.8 ZINC000003978005 Dihydroergotamine
TRPC7 −11.7 ZINC000006716957 Nilotinib
TRPC7 −11.6 ZINC000066166864 Alectinib
TRPC7 −11.6 ZINC000084668739 Lifitegrast
TRPC7 −11.4 ZINC000064033452 Lumacaftor
TRPC7 −11.3 ZINC000004214700 Paliperidone
TRPC7 −11.2 ZINC000000538312 Risperdal
TRPC7 −11.2 ZINC000003932831 Avodart



J. Pers. Med. 2022, 12, 478 9 of 13J. Pers. Med. 2022, 12, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 7. Virtual screening potential drugs for core protein: The 3D structures of TRPC3 and TRPC7 
protein (A,B); the Top 3 docking structure of hub proteins with small molecular drugs(C–H). 

4. Discussion 
TRPs are cationic channels that act as stimulation-induced signal transducers by 

altering the membrane potential or intracellular calcium (Ca2+) concentration. TRPC 
subfamily is most prominently known for containing the founding member of 
mammalian TRP channels[18,19,20]. TRP expression is widely distributed in neuronal 
tissues, but not limited to them, as reports on their role on epithelial and endothelial cells 
have been published[21,22]. They are described as acting as sensors for various 
environmental stresses including mechanostresses such as tissue injury, changes in 
temperature, pH value or osmolality, as well as volatile chemicals, cytokines, and plant 
compounds[23]. Given this pan-tissue relevance, and the emergence of selected TRP genes 
as molecular surgery targets and tumor-agnostic targets, we sought to investigate the 
relevance of the TRP class in molecular data on clinical cancer specimens focusing on 
PAAD. To do so, we interrogated the globally considered forefront genome datasets and 
applied various state-of-the-art computational methods. Our results enabled us to 

Figure 7. Virtual screening potential drugs for core protein: The 3D structures of TRPC3 and TRPC7
protein (A,B); the Top 3 docking structure of hub proteins with small molecular drugs(C–H). (I) Top
10 drugs intersection.

4. Discussion

TRPs are cationic channels that act as stimulation-induced signal transducers by
altering the membrane potential or intracellular calcium (Ca2+) concentration. TRPC sub-
family is most prominently known for containing the founding member of mammalian
TRP channels [18–20]. TRP expression is widely distributed in neuronal tissues, but not
limited to them, as reports on their role on epithelial and endothelial cells have been pub-
lished [21,22]. They are described as acting as sensors for various environmental stresses
including mechanostresses such as tissue injury, changes in temperature, pH value or
osmolality, as well as volatile chemicals, cytokines, and plant compounds [23]. Given this
pan-tissue relevance, and the emergence of selected TRP genes as molecular surgery targets
and tumor-agnostic targets, we sought to investigate the relevance of the TRP class in
molecular data on clinical cancer specimens focusing on PAAD. To do so, we interrogated
the globally considered forefront genome datasets and applied various state-of-the-art
computational methods. Our results enabled us to construct a TRPs-related gene signature
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to predict the recurrence risk of PAAD patients, classify selected candidates of this gene
signature’s possible therapeutic targets, and potentially predict the candidate drugs for
core genes of this signature.

The results of our work are novel in several aspects. On the one hand, this is the first
evidence showing TRP member genes to possess clinical predictive value, tested on clinical
samples of PAAD using expression sequencing. So far, TRP biology in PAAD was assessed
to some extent in preclinical models mostly. On the other hand, we show that elevated
expression of TRPC3 is associated with shortened RFS, OS, and DSS, is upregulated in
N1 compared to N0 tumor cases, and tends to be enriched in the invasive tumor area;
our data indicates TRCP3 may possess pro-tumorigenic potential in PAAD. To propose a
possible downstream mode of action, we want to point out the comparative results on gene
enrichment analysis in TRPC3-high and TRPC3-low cases. We identify a positive correlation
between elevated TRPC3 expression and Hippo stem cell pathway activation. Hippo
activation is emerging as a therapeutic target for treating PAAD as it is believed to promote
the maintenance of tumor stem cells [24]. Interestingly, from physiology-based research,
TRPC3 was identified as a prerequisite for the pluripotency and differentiation potential of
murine embryonic stem cells [25,26]. Regarding TRPC7, an interesting very recent study
by Hsu and colleagues found that TRPC7 acts as a mechanosensitive receptor in the skin
and transmits stress signal of ultraviolet B (UVB) to initiate skin aging by augmentation
of the production of cellular reactive oxygen [27]. Little is known if TRPC7 plays a role in
stem cell biology. In the context of cardiomyocyte research, it was found that low levels of
TRPC are associated with the pluripotency stage of the cells TRPC7 [28]. Yang et al. found
that TRPC7 expression is increased in epithelial differentiated cells during tooth sperm
development [29]. In addition, as we see the correlation of reduced expression of TRPC7
and shortened RFS and a trend to be reduced in the invasive tumor area, it let us speculate
that TRPC7 may have tumor-suppressive roles or be an activator regulatory network that
diminishes the tumor. In support, GSEA found a prominent cancer hallmark signaling
network of RAS signaling to be amongst the most inversely correlated to activation to
TRPC7 expression. Strikingly, we propose possible downstream pathways by our result
presentation. In our TRPC3 analysis, three out of the top four significant regulated gene
ontology networks reveal molecular signal transduction cascades controlling mitochondrial
functions, namely mitochondrial translational termination mitochondrial translational
elongation and ATP synthesis coupled electron transport (Supplementary Table S2), are
dysregulated. TRPC3 over-activation might manifest in the disturbance of the cellular
metabolism in pancreatic tumors, but a functional test with genetically engineered PAAD
cells to establish isogenic TRPC3 activation conditions similar as performed previously are
needed to test this hypothesis [30].

Needless to say, our introduced speculative-driven assumptions need mechanistic
validation in an experimental controlled setting to prove our hypothesis. Nevertheless,
our data taken together provide evidence that the relevance of TRPC3 over-activation as a
disease-agnostic therapeutic target expands to PAAD [31]. To our knowledge our report is
the first to introduce TRPC7 in the context of pancreas biology or pancreas carcinogenesis.
Applying TRPC7 activation strategies, similar to what has been established for TRPV1
as a molecular surgery target, might help to establish niche factors that combat PAAD
cell survival. Our in silico substance screen brought up several intriguing results. First,
TRPC3 seems to be able to interact with indocyanine green (ICG), a clinically established
dye for intraoperative fluorescence discrimination of target tissue during hepatocellu-
lar surgery. Recent clinical reports promote the use of ICG to detect pancreatic cancer
lesions [32,33]. Our prediction data suggests a novel possible contributing factor for a mech-
anistic explanation to establish fluorescence-guided pancreatic surgery. Moreover, in the
top suggested candidate genes, for both core genes, we find two prominent anti-migraine
drugs, ergotamine, and dihydroergotamine. Ergotamine is reported to have side effects
on neurotransmitter networks and might also act on TRPC activation. Ergotamine is well
tolerated in patients, offering interesting translational perspectives for clinical feasibly of
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potential repurpose as cancer therapy. To the best of our knowledge, no such repurposing
has been studied in a PAAD cancer model system. Previously, a chemical reduced version
of ergotamine, dihydroergotamine, was found to induce apoptosis and mitophagy in the
context of lung cancer by disrupting mitochondrial functionality [34].

Despite undertaking enormous efforts, clinicians and drug makers are due to establish
treatment options with long-lasting curative effects to patients suffering from advanced
pancreatic cancer [35,36]. Advances in technologies in molecular and cell biology have
enabled the scientific stakeholders to come up with novel targets that may overcome this
long-lasting dilemma. Our study confirmed that ZINC000001612996, ZINC000052955754,
ZINC000003978005, and ZINC000006716957 might be small molecule drugs acting as
co-ligands of TRPC3 and TRPC7 by the molecular docking technique, and this result
suggests that these four small molecule drugs have potential as targeted therapeutic agents
for pancreatic cancer. ZINC000001612996, also known as irinotecan, has been shown to
significantly prolong patient OS for the treatment of metastatic pancreatic cancer [37].
ZINC000006716957 (nilotinib), as a tyrosine kinase inhibitor, is currently used primarily
for the treatment of chronic myeloid leukemia [38]. Although the drug itself has not been
reported in pancreatic cancer, other members of tyrosine kinase inhibitors, such as erlotinib,
ruxolitinib, and trastuzumab, have demonstrated great superiority in targeted therapy for
pancreatic cancer [39–41]. This result indicates that nilotinib maybe also has the potential
valuable in the treatment of pancreatic cancer targeting. Furthermore, considering that
there is a co-activation mechanism of TRPC3 and TRPC7 protein [42] and the expression of
these two genes is negatively correlated in tumor tissues, we guess that the overlapping
small molecule anti-tumor drugs are likely to be agonists of TRPC7 protein and inhibitors
of TRPC3 protein. However, more evidence needs to be provided by follow-up experiments
on functional level. Moreover, a dedicated cell-type specific analysis of TRPC3/TRPC7
mRNA abundancy in different tumor types that constitute PAAD parenchyma, such as
peripheral nerve cells, immune cells, or vasculature compared to tumor cells, would be very
helpful to narrow down the potential mechanism underlying the clinical prognostic value of
our discovered biomarkers. Additionally, investigating whether an association of episodes
of pain symptoms of the cancer patients and their relative TRPC3/TRPC7 activation in
the tumor tissue exists is desirable. The results would surely be insightful to validate if
the identified molecules are associated with dysregulated sensory symptoms in patients
under disease burden. At this point, we are not in possession of such a dataset, but we have
initiated project activities to commence a prospective clinical in our center trail to obtain
one. Since we are strongly convinced about the diagnostic biomarker potential of TRPC3
and TRPC7 transcript abundancy in tumor specimens, targeted attempts via rapid-to-
apply technologies such as RT-qPCR or target-amplification free CRISPR/Cas diagnostics
instead of OMICS-acquisition would enable better applicability/dissemination potential of
our markers. Both assays for targeted mRNA expression test could be conducted either
on surgical resection of tumor or biopsies—both samples are retrieved during standard
surgical oncology care—with moderate infrastructure requirements. Such biomarker-based
stratification of tumors based on tumor tissue analysis may help to prospectively inform on
the need and selection optimal type of adjuvant/neoadjuvant therapy. On the other hand,
ideally clinical prediction would be achieved by analyzing biomarkers on patient material
that is acquired by minimal invasive interventions such in as body fluids. At this point
we do not know if informing blood signatures, either certain characteristics of routinely
assessed lab values or molecular traits, inform on TRPC-activation status in the tumor.
To test this shall be the focus of future projects aiming to enlarge our future portfolio of
PAAD-directed point of care testing options.

5. Conclusions

The transcriptional activation of members of sensory ion channels in PAAD tissue
possess predictive value for the clinical course of patients suffering from the disease and
may help to improve stratification of tumors according to invasive potential. Functional
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validation to test predicted drug repurposes and for validation of the prognostic value in
prospective trials are needed to prove our hypothesis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jpm12030478/s1, Table S1: Using batch cox regression to analysis TRPs-related genes with
prognosis factors, Table S2: Gene Oncology enrichment of TRPC3 and TRPC7 respectively, Table S3:
KEGG pathway enrichment of TRPC3 and TRPC7 respectively.
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