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Dopamine is an ancient signaling mol-
ecule. It is responsible for maintain-

ing the adaptability of behavioral outputs 
and is found across taxa. The following is 
a summary of the role of dopamine and 
the mechanisms of its function and dys-
function. We discuss our recent findings 
on dopaminergic control of behaviors in 
C. elegans and discuss its potential impli-
cations for work in the fields of C. elegans 
and Parkinson research.

A Ubiquitous Signaling Molecule

The monoamine dopamine is a small 
signaling molecule that can be synthe-
sized from the amino acid tyrosine by 
the enzyme tyrosine hydroxylase. In the 
absence of tyrosine hydroxylase, dopamine 
can be made inefficiently by tyrosinase 
(Fig. 1).1,2 The widespread use of dopa-
mine by different taxa hints at its ancient 
origin. Some photosynthesizing protists 
have daily vertical migrations in the water 
column triggered by the presence of day-
light. An antagonist dopamine-acetylcho-
line system has been shown to control this 
activity by affecting light sensitivity: with 
dopamine decreasing it.3,4 Dopamine is 
also found in fruits and vegetables where 
its oxidation results in the familiar brown 
spots on ripe bananas.5,6 Its role in plants 
appears to be as a strong antioxidant, 
providing protection from lipid peroxida-
tive damage caused by the intense heat 
and sunlight of the tropics.7 In bacteria, 
fungi, protozoans, cnidarians, nematodes, 
arthropods, mollusks, annelids and verte-
brates, dopamine seems present wherever 
it is sought (Fig. 2).8-17 

Although the main role of dopamine is 
in intraorganismal signaling, opportunis-
tic organisms sometimes exploit dopamine 
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signaling for inter-species interactions. For 
example, mammals release dopamine as 
part of their systemic response to infec-
tion; pathological organisms use this sig-
nal in an attempt to survive the immune 
response. Gram-negative bacteria respond 
to this dopamine signal by accelerating 
their division rate often overwhelming the 
host’s defenses.18 Pathogenic fungi respond 
to this signal by synthesizing melanin, 
making them resistant to ionic oxidants 
released by the host’s macrophages.19 Since 
many fungi use dopamine as a precursor 
for melanin synthesis, some fungi selec-
tively invade dopamine producing areas 
of the brain, causing meningitis.20 Other 
animals have cracked the dopamine code 
of their prey. Some wasps for example 
inject dopamine into the cockroach ner-
vous system forcing them to passively host 
their larvae.21,22

A wealth of specialized receptors 
has allowed the use of dopamine to be 
widespread across taxa as well as within 
organisms where it can modulate diverse 
processes.23,24 This diversity may have 
risen through processes of gene duplica-
tion and horizontal gene transfers begin-
ning with bacteria.25 In mammals, five 
serpentine dopamine receptors have 
been described in two pharmacologically 
distinct classes. The D1-like receptors 
(DOP1 and DOP5) act postsynaptically 
to increase cyclic adenosine monophos-
phate (cAMP) levels, while D2-like recep-
tors (DOP2, DOP3 and DOP4) act both 
pre- and postsynaptically to reduce cAMP 
levels.25-27 In addition to D1- and D2-like 
receptors, some invertebrates also have 
ionotropic dopamine receptors.28 The 
competing regulation of cAMP levels by 
the different D1-like and D2-like receptor 
types allows the use of dopamine in the 
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DOP-2 that operates in negative feedback 
loops.25 The parallel between the dopa-
minergic systems of C. elegans and mam-
mals extends to the role of dopamine in 
modulation of behavioral patterns by 
environmental cues, and to processes of 
learning and memory. A classical example 
of environmental modulation of behavior 
via D1- and D2-like receptor interactions 
comes from studies of DOP-3 and DOP-1 
receptors coexpressed in mechanosensory 
and motor neurons and that antagonisti-
cally mediate the decrease in locomotion 
by well-fed worms as they enter a patch of 
food.33

Evaluation of cost vs. benefit for envi-
ronmental cues is a crucial process. In 
mammals this process is tightly associated 
with balance between D1- and D2-like 
pathways whose chemical disruption can 
lead to addiction.41 C. elegans also uses 
dopamine to compare the quality of its 
environment against its internal physio-
logical state and re-evaluates its responses 
accordingly. For example, in the presence 
of food worms will habituate their escape 
response more rapidly; a behavior pre-
sumably mediated by their dopaminergic 
mechanosensory neurons that detect the 
texture of the food.42 In C. elegans, this 
kind of learning can be in response to 
both gustatory and odor information.43-46 
While some forms or learning (e.g., habit-
uation to mechanical stimuli) take place 
through the D1-like pathway, others (e.g., 
associative learning) are facilitated by pre-
synaptic changes in dopaminergic neu-
rons.47,48 Dopaminergic signaling appears 
to be influenced in C. elegans by com-
pounds that are addictive in humans such 
as ethanol and cocaine.49-51

In addition to learning and memory, 
dopamine also modulates many behav-
ioral patterns in C. elegans, inhibiting 
many behaviors that are promoted by sero-
tonin.52,53 Serotonin promotes a number 
of behaviors in C. elegans: including egg-
laying, through its action on command 
and motor neurons; pharyngeal pumping 
(feeding), through its action on motor 
neurons and muscles; and more recently 
swimming, through yet unspecified tar-
gets.52,53 Age-related locomotor changes 
have been correlated with changes in the 
dopamine/serotonin balance in older 
worms.54

and two posterior PDE neurons innervate 
the posterior cuticle.13

As in other animals, worm dopami-
nergic neurons express genes encoding 
tyrosine hydroxylase (TH/cat-2), dopa 
decarboxylase (bas-1), vesicular mono-
amine transporter (cat-1), dopamine 
transporter (dat-1), as well as autorecep-
tors (dop-2). The coordinated expression 
of each of these genes and others that typ-
ify differentiated dopaminergic neurons is 
initiated and maintained throughout life 
by a terminal selector (EST transcription 
factor) that binds a 10 base-pair promoter 
element that is conserved in mammals.31 
The eight dopamine neurons act both 
through classic synapses (429 synapses in 
total) as well as extrasynapticly by releas-
ing dopamine into the worm’s body cav-
ity.32,33 All worm dopamine neurons also 
express the mechanotransduction channel 
TRP-4 and are thought to be mechanore-
ceptive.34-37 C. elegans has D1-like recep-
tor genes (dop-1 and dop-4) and D2-like 
receptor genes (dop-2 and dop-3) similar to 
the ones found in mammals (in addition to 
some unique nematode receptors).25,28,38-40 

Depending on the type, dopamine 
receptors are expressed exclusively in 
neurons or also in non-neuronal cells.33 
D1-like receptors are expressed in neuronal 
and non-neuronal targets alike (e.g., mus-
cle, glia); D2-like receptors are restricted 
to neurons which is in keeping with a 
neuroregulatory role.25 Notably, dopami-
nergic neurons express the autoreceptor 

fine control of behavior. This is particu-
larly effective when rapidly changing envi-
ronmental forces require the modification 
of ongoing behavioral patterns, such as 
during locomotion or during risk-reward 
evaluations.23

In animals, one of the main roles of 
dopamine is to act as a behavioral switch 
in the transition from faster to slower 
motor patterns. This has been best dem-
onstrated in well-controlled electrophysio-
logical studies of fictive forms of rhythmic 
locomotion in reduced (semi-intact) prep-
arations. For instance, dopamine slows 
down locomotion in snails.29 Both in sea 
slugs and in leeches, dopamine inhibits 
swimming and induces crawling, while in 
lamprey, zebrafish and crabs it slows down 
locomotor rhythms.14-17,30 However, the 
role of dopamine in controlling locomo-
tion in these systems has not been demon-
strated in freely-behaving animals.

Dopamine Signaling in C. elegans

Dopaminergic signaling has been 
intensely studied in the nematode worm 
Caenorhabditis elegans. Hermaphrodite 
worms have eight (mechanosensory) dopa-
minergic neurons (the male has additional 
neurons but won’t be discussed here). 
Although developmentally distinct, these 
neurons are divided into three classes on 
the basis of their morphology: four CEP 
neurons innervate the tip of the nose, two 
ADE neurons innervate the head cuticle, 

Figure 1. Synthesis pathway for dopamine. Dopamine is primarily synthesized by tyrosine hy-
droxylase (A) but can also be made in its absence (B).2
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D1-like receptor genes (dop-1 or dop-4) 
caused worms to collapse upon exit from 
a puddle. While many worms stopped 
moving altogether for up to 45 min, other 
worms displayed unproductive crawling 
often by propagating a single dorsoventral 
bend from head to tail before stopping or 
initiating backward locomotion. Gently 
prodding these worms induced crawl-
ing. Conversely, raising dopamine levels 
caused worms to inappropriately switch 
from swimming to crawling in water (an 
effect also dependent on D1-like recep-
tors).57 In keeping with other behaviors, 
the transition to crawling depended not 
only on the balance between D1- and 
D2-like receptors (as mutants lacking 
both receptor types showed no phenotype, 
Fig. 3) but also on the balance between 
dopamine and serotonin. Altering the 
balance between these amines by means 
of exogenous drug application, endog-
enous photo-uncaging of the amines, or 
stimulating their release via optogenetic 
stimulation (of the producing neurons), 
induced gait transitions between swim-
ming and crawling. Our results suggest 
that as worms emerge from a puddle, 
ground contact is sensed through a sub-
set of mechanosensitive dopaminergic 
neurons. These in turn release dopamine 
into the anterior body cavity and trigger 

only ADE and PDE were required for 
worms to transition from swimming to 
crawling.57 This is consistent with how 
ADE and PDE neurons have mechanore-
ceptive endings on the sides of the worm 
that could detect firm contact with the 
ground, while the CEP neurons instead 
innervate the tip of the nose which the 
worm typically keeps off the ground. Our 
finding that both anterior (ADEs) and 
posterior (PDEs) dopaminergic mechano-
receptor neurons are required during gait 
transitions could seem surprising—dif-
fusion is thought to be very rapid in such 
small organisms. In fact, we found that 
injection of dopamine into the anterior 
and posterior regions of the worm’s body 
produced distinct results; with anterior 
injections alone being able to induce gait 
transitions.57 This suggests that (at least 
while swimming) worms can effectively 
compartmentalize their pseudocoelomic 
space. Both ADE and PDE neurons send 
processes to the anterior half of the body 
where they would presumptively release 
dopamine locally and effect a swim-to-
crawl transition.

Downstream from the dopamine neu-
rons we found that worms transitioned 
from distinct swimming to crawling 
gaits through the D1-like dopaminergic 
pathway.57 Elimination of dopamine or 

Our lab has recently discovered a new 
role for dopamine in transitioning between 
motor patterns on land and in water. In 
C. elegans, crawling on land consists of 
slow (~0.5 HZ) dorsoventral body bends 
of high angular amplitude that result in 
a persistent “S-like” body shape. By con-
trast, swimming in water is characterized 
by alternating dorsoventral body bends of 
high frequency (~1.5 HZ) and low angular 
amplitude that result in worms sequen-
tially alternating between “C-like” shapes. 
While both behaviors propel the animal 
forward, the spatial patterns of bending 
forces have been shown to be the result 
of differential patterns of muscular activ-
ity produced by the animal to locomote in 
environments with distinct drag coefficient 
ratios.55,56 When the speed of the worm is 
constrained by a range of viscous solutions, 
C. elegans displays discontinuous bouts of 
crawl- or swim-like kinematics rather than 
a simple continuous modulation of loco-
motory kinematics. This result, together 
with additional experiments that reveal 
bimodal switching of locomotory patterns, 
demonstrates that crawling and swimming 
represent mutually exclusive forms of loco-
motion, also commonly known as distinct 
“locomotory gaits.”

Of the three classes of dopaminergic 
neurons described above, we found that 

Figure 2. Evolutionary tree showing the presence of dopamine across different taxa as well as its use. Dopamine is generally involved in the produc-
tion of slower gaits often associated with feeding.
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dopaminergic system of C. elegans, Sulston 
et al. reported no less than a 62-fold 
increase in levels of L-dopa (the precursor 
of dopamine) for worms grown in liquid 
culture.13 Thus, it seems that culture of 
C. elegans in liquid is accompanied by a 
chronic—and significant—upregulation 
of dopamine production that may enable 
temporary reversal of the serotonin-dopa-
mine balance and allow animals to engage 
in feeding and other vital functions while 
immersed in liquid.

The dopaminergic effects described 
above primarily involve feeding and reduc-
tions in locomotory rates. These are consis-
tent with other known roles of dopamine. 
For instance, when worms enter a patch 
of food (bacteria) dopamine is responsible 
for a couple of well-characterized behav-
iors that facilitate food ingestion, namely 
“basal slowing” and “area-restricted 
search.” During basal slowing, dopami-
nergic neurons in non-starved worms are 
thought to mechanically sense surround-
ing bacteria and decrease crawling velocity 
(termed as basal slowing).37 At the same 
time dopamine is proposed to also increase 
the turning rate resulting in worms thus 
remaining in the vicinity of a food source 
(termed Area Restricted Search).63 Faced 
with adverse environmental conditions, 
C. elegans larva enter an alternative devel-
opmental stage known as dauer, dopa-
mine has also been implicated in reducing 

dopamine and other amines. For exam-
ple, swimming behavior seems to occur 
by the combined effects of a decrease 
in dopamine release (brought about by 
loss of ground contact), and an increase 
in serotonin release (brought about by 
entrance into an aquatic medium). It is 
perhaps through these interactions that 
dopamine seems to not just trigger one 
behavioral transition, but rather a whole 
host of behaviors associated with crawling 
on land; like foraging, feeding and defeca-
tion.62 One interesting method for study-
ing how the balance within dopaminergic 
signaling pathways and between dopa-
mine and other neurotransmitter signaling 
systems is maintained is in a comparison 
between land-grown and liquid-grown 
C. elegans. As mentioned above, worms 
entering a liquid environment experience 
a decrease in dopamine and an increase 
in serotonin that triggers transition into 
swimming and the inhibition of crawl-
ing as well as many other behaviors like 
feeding, defecation and egglaying which 
are crucial for survival. However, in order 
to survive and reproduce in a liquid envi-
ronment, worms would need to overcome 
this aquatically-induced shift toward sero-
tonin (by increasing dopamine produc-
tion, decreasing serotonin production, or 
a combination of the two) long enough to 
carry on the afore-mentioned vital func-
tions. In their original description of the 

crawling through the D1-like pathway. 
Conversely, immersion in water stimulates 
release of serotonin and inhibits dopamine 
release (caused by the removal from the 
substrate). This last finding is consistent 
with previous work on the leech where 
endogenous levels of serotonin were found 
in association with the induction of swim-
ming behavior.58 It should be noted that 
in our experiments we altered the balance 
between serotonin and dopamine without 
removing the underlying environmental 
context. Therefore worms swimming in 
water, once induced to crawl (by dopa-
mine release), remained nevertheless 
immersed in water (therefore receiving 
conflicting sensory information). This 
could account for the episodic nature of 
the behavioral inductions, where worms 
could be seen alternating between swim-
ming and crawling bouts as a result of the 
conflicting sensory inputs represented by 
the applied amine and the actual physical 
environment. Furthermore, under certain 
experimental conditions crawling waves 
induced in water failed to propagate all 
the way to the tail, suggesting that the full 
production of the behavior likely involves 
additional control systems as those pro-
posed by other groups.32,59-61

These findings suggest a combinato-
rial system for behavior selection where 
synergies between different dopaminer-
gic pathways interact with those between 

Figure 3. The dopaminergic system is required for swim to crawl transitions in C. elegans. The crawling frequency before and after swimming was 
compared for worms with impairments in their aminergic systems. Only worms deficient in dopamine production, or in the D1-like dopamine receptor 
pathway showed a significantly marked deficit transitioning from swimming to crawling. The plit shows the ratio of crawling head bends following 
swimming to that before swimming. The assay includes all available bioaminergic pathway C. elegans mutants. Bars report means and SEMs.
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already led to its profitable use in the field 
of PD research.88,89 Many studies have 
sought to establish C. elegans as a valid 
model system in this field by showing 
parallels between its dopaminergic system 
and that of mammals. Overexpression of 
the human gene encoding α-synuclein (a 
protein associated with a familiar form 
of PD) leads to dopamine neuron degen-
eration in the worm.90-93 Work on C. 
elegans has shown that 6OHDA causes 
degeneration of dopaminergic neurons 
through DAT-1, and that the chaperone 
molecule TorsinA can protect against this 
effect.94,95 C. elegans has also been used to 
study the roles of mitochondrial toxicity 
in the development of PD, MPTP toxic-
ity, or of calorie restriction in protection 
against neurodegeneration.96,97 Automated 
systems using C. elegans can now quickly 
screen thousands of putative drugs. Fast 
and economical high-throughput screens 
have already began yielding drugs and 
gene targets that can serve as potential 
therapeutic approaches for the treatment 
of human afflictions such as PD.98-104

The remarkable conservation in the 
dopaminergic pathway and function 
across phyla strongly hints to the impor-
tance of its role in the survival of organ-
isms. In evolutionary terms, no sooner is 
an organism capable of performing two 
incompatible tasks than it becomes sub-
servient of the need to determine which 
one is adaptive in which situation. For 
Parkinson research, this conservation 
means that there is much useful informa-
tion to be gained from studying extra-
mammalian dopaminergic systems. The 
diversity of motor outputs found in the 
animal kingdom, when compared with 
the conservation of the systems modulat-
ing them evidences how forgiving natural 
selection can be to one process and how 
strict to another.
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