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Adipose-derived stromal cells (ASCs) are being used extensively in clinical trials. These

trials require that ASCs are prepared using goodmanufacturing practices (GMPs) and are

safe for use in humans. The majority of clinical trials in which ASCs are expanded make

use of fetal bovine serum (FBS). While FBS is used traditionally in the research setting for

in vitro expansion, it does carry the risk of xenoimmunization and zoonotic transmission

when used for expanding cells destined for therapeutic purposes. In order to ensure a

GMP quality product for cellular therapy, in vitro expansion of ASCs has been undertaken

using xeno-free (XF), chemically-defined, and human blood-derived alternatives. These

investigations usually include the criteria proposed by the International Society of

Cellular Therapy (ISCT) and International Fat Applied Technology Society (IFATS). The

majority of studies use these criteria to compare plastic-adherence, morphology, the

immunophenotype and the trilineage differentiation of ASCs under the different medium

supplemented conditions. Based on these studies, all of the alternatives to FBS seem to

be suitable replacements; however, each has its own advantages and drawbacks. Very

few studies have investigated the effects of the supplements on the immunomodulation

of ASCs; the transcriptome, proteome and secretome; and the ultimate effects in

appropriate animal models. The selection of medium supplementation will depend on the

downstream application of the ASCs and their efficacy and safety in preclinical studies.

Keywords: adipose-derived stromal cells, fetal bovine serum, good manufacturing processes, in vitro expansion,

human serum, platelet rich plasma, platelet poor plasma, platelet lysate

INTRODUCTION

Adipose-derived stromal cells (ASCs) are multipotent and immunoprivileged, making them ideal
candidates for therapeutic purposes (Bourin et al., 2013; Ma et al., 2014; Kallmeyer and Pepper,
2015). ASCs can be isolated usingminimally invasive techniques from various adipose tissue depots
in the body (Zuk et al., 2001). They are characterized by their ability to adhere to plastic, a unique
surface marker profile and the capacity to differentiate into bone, fat and cartilage (Dominici et al.,
2006; Bourin et al., 2013). ASCs comprise ∼15–30% of the stromal vascular fraction (SVF) of
adipose tissue (Bourin et al., 2013; Zuk, 2013), and need to be expanded ex vivo in order to obtain
sufficient cell numbers for therapeutic purposes.
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Providing safe and regulated cell therapy products to patients
requires adherence to good manufacturing practices (GMP), and
GMP guidelines should be adhered to throughout the process of
isolating, expanding and differentiating ASCs (Giancola et al.,
2012). The numerous reagents used to isolate and expand
ASCs for research purposes are animal-derived or are not of
clinical-grade; therefore, these need to be replaced with more
suitable alternatives according to GMP standards (Halme and
Kessler, 2006; Riis et al., 2015). We review the choice of serum
supplementation that can be used for ASC expansion in lieu of
fetal bovine serum (FBS), and describe their effects in vitro and in
vivo as reported in the literature.

INTERNATIONAL SOCIETY OF CELLULAR
THERAPY (ISCT) AND INTERNATIONAL
FAT APPLIED TECHNOLOGY SOCIETY
(IFATS) GUIDELINES AND TECHNIQUES
USED TO ASSESS ADIPOSE-DERIVED
STROMAL CELL CHARACTERISTICS

A set of minimal criteria and guidelines have been recommended
by the International Society of Cellular Therapy (ISCT) and
International Fat Applied Technology Society (IFATS) for the
characterization of ASCs (Dominici et al., 2006; Bourin et al.,
2013). These criteria include the ability of the ASCs to adhere
to plastic, their surface marker profile and their trilineage
differentiation potential. The latest position paper describes
viability and proliferation as additional measurements to the
original characterization criteria. Furthermore, experimental
methods and assays have been defined to measure the
characterization criteria (Bourin et al., 2013). These criteria
have been shown to be affected by numerous factors such as
the liposuction technique, the SVF isolation technique and the
media and supplementation used during the expansion process
(Koellensperger et al., 2014; Bajek et al., 2015; Busser et al., 2015).
According to the ISCT and IFATS guidelines, it is recommended
and accepted research practice to confirm adherence to the above
guidelines for each isolation and culture condition in order to
classify the resulting cell population as ASCs.

Techniques and Methods Used to
Characterize ASCs
Morphology and Adherence
Once seeded, adherent ASCs display a distinct morphology,
which can be described as thin, elongated and spindle-shaped.
The morphological assessment of ASCs is usually preformed
using light microscopy (Trojahn Kølle et al., 2013).

Proliferation
The ISCT and IFATS guidelines have recommended that the
proliferation and frequency of progenitor ACSs are measured
by a fibroblastoid colony-forming unit assay (Bourin et al.,
2013). Other techniques used in the studies cited in this
review make use of counting viable cells or measuring the
proliferative capacity of ASCs using immunohistochemistry.
Counting methods include (1) counting the cells using a viability
dye and a hemocytometer, (2) counting the cells using either

counting beads or staining techniques and flow cytometric
analysis, and (3) using colorimetric assays that measure viable
cells in a spectrophotometer (Gharibi and Hughes, 2012; Trojahn
Kølle et al., 2013; Bogdanova et al., 2014; Atashi et al., 2015; Johal
et al., 2015; Oikonomopoulos et al., 2015).

Immunophenotype
The ISCT and IFATS guidelines have listed the expression
of multiple surface markers and their expected percentages
as a firm requirement in their position statement. They have
also recommended that surface marker expression should be
measured by multi-color antibody staining (Bourin et al., 2013).
Studies in this review made use of flow cytometric analysis to
measure surface marker expression (Müller et al., 2006; Lindroos
et al., 2009; Chieregato et al., 2011; Josh et al., 2012; Trojahn
Kølle et al., 2013; Bogdanova et al., 2014; Patrikoski et al.,
2014).

Trilineage Differentiation
Differentiation into adipose, bone, and cartilage has traditionally
been measured using histochemical staining techniques
visualized under microscopy; however, the ISCT and IFATS
guidelines have recommended that qualitative assessments
should be replaced or supplemented with quantitative
approaches such as measuring lineage-specific mRNA expression
using reverse transcription quantitative polymerase chain
reaction (RT-qPCR) techniques (Bourin et al., 2013). The
techniques that have been used to measure differentiation
capacity, described in the studies cited in this review, have varied
from histochemical staining, to conventional PCR and RT-qPCR.
Histochemical staining techniques include staining the cells with
either (1) oil red O and nile red for adipogenesis; (2) Alizarin red
S, alkaline phosphatase and von Kossa for osteogenesis; or (3)
Alcian blue and safranin for chondrogenesis (Müller et al., 2006;
Kocaoemer et al., 2007; Hebert et al., 2010; Rajala et al., 2010;
Koellensperger et al., 2014; Oikonomopoulos et al., 2015; Riis
et al., 2016).

SERUM SUPPLEMENTATION

Fetal Bovine Serum
FBS is the traditional serum supplement used for cell culture.
FBS contains growth factors (GFs) and other elements essential
for ASC attachment, expansion, maintenance, and proliferation
in vitro (Lennon et al., 1995, 1996; Zuk et al., 2001; van
der Valk et al., 2010). FBS is prone to batch-to-batch
variation, xenoimmunization, and possible contamination with
mycoplasma, viruses, endotoxins, and prions (van der Valk et al.,
2004, 2010; Chieregato et al., 2011; Kyllonen et al., 2013; Jin
et al., 2015). The source and quality of FBS may affect the
proliferation and differentiation of ASCs, and routine screening
for mycoplasma, endotoxins and viruses has become important
(Naaijkens et al., 2012). These factors may affect experimental
outcomes and render the cell product unsafe for clinical use (Zuk
et al., 2001; van der Valk et al., 2004; Witzeneder et al., 2013).

ASCs are immunoprivileged, lacking the expression of the
major histocompatibility complex class II as well as T and B cell
costimulatory molecules (CD80, CD86, and CD40). The in vitro
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immunogenicity and immunosuppressive properties of ASCs
are usually measured by co-culturing the ASCs with peripheral
blood mononuclear cells in mixed lymphocyte reactions and
measuring the T-cell proliferative response (McIntosh et al., 2006;
Patrikoski et al., 2014). ASCs demonstrate immunomodulatory
and immunosuppressive properties, as demonstrated by their
ability to regulate T-cell function and modulate cytokine
secretion in vitro and in vivo (Leto Barone et al., 2013;
Roemeling-van Rhijn et al., 2013; Patrikoski et al., 2014). These
properties arise from the low immunogenicity of ASCs. The
majority of ASC and other mesenchymal stem cell (MSC) clinical
trials (phase I, II, and III) use FBS supplemented media, and
it has been reported that immunogenic effects are elicited by
components of FBS in human subjects (Sundin et al., 2007; Riis
et al., 2015). For example, a clinical trial using bone marrow-
derived MSCs (BM-MSCs) expanded in FBS found antibodies
against components of FBS (Horwitz et al., 2002). Immune
responses to FBS such as Arthus and anaphylactic reactions
have been reported in clinical trials, where patients were treated
with dendritic cells and lymphocytes exposed to FBS (Selvaggi
et al., 1997; Mackensen et al., 2000). In contrast, a meta-analysis
of MSC clinical trials found that over 75% of experiments
used FBS in their cell expansion protocols and only one study
monitored and demonstrated adverse reactions to FBS (Lalu
et al., 2012). In vivo studies examining the immune response
of mice to ASCs showed preserved immunosuppression and
immunomodulation, low immunogenicity, and no reaction to
FBS (Cho et al., 2009; González et al., 2009). Although ASCs
are being extensively tested in clinical trials, their definitive use
as a therapeutic agent remains to be established. This is further
compounded by the use of preclinical models that may not be
biologically relevant (Monsarrat et al., 2016). Furthermore, FBS
may be less immunogenic in mice and other animal models
than in humans. Finally, the immune response elicited by FBS
(Selvaggi et al., 1997; Mackensen et al., 2000; Horwitz et al., 2002)
could conceivably influence the rejection of transplanted cells in
cell-based therapy.

Serum-Free Alternatives
The unknown and undefined composition of FBS is a major
drawback. A preferable alternative would be a chemically-defined
medium with a known composition such as commercially
available serum-free (SF) or XF media (Usta et al., 2014). These
serum-free media are erroneously presumed to be devoid of
any animal products since the terms SF and XF are often used
interchangeably. However, SF media are usually supplemented
with animal-derived or human serum albumin and GFs in
undefined amounts (Patrikoski et al., 2013). Xeno-free media,
on the other hand, are chemically-defined media containing
well-defined components at specific concentrations (Usta et al.,
2014).

Growth Factors
Another alternative to serum is the addition of GFs to culture
medium, either in isolation, or as a cocktail. These GFs can be
synthetic, animal-derived, or human-derived. Replacement with
synthetic GFs is preferable due their higher quality and as a result

of standardization between batches, which may not be possible
for animal- or human-derived GFs. Commonly used GFs are
fibroblast growth factor, epidermal growth factor and platelet-
derived growth factor (PDGF; Baer and Geiger, 2012; Ahearne
et al., 2014). The addition of GFs has been linked to an increase
in proliferation (Hebert et al., 2010; Gharibi and Hughes, 2012).
An improved adipogenic differentiation potential has previously
been reported in ASCs expanded in GF supplemented medium
(Hebert et al., 2010). However, another study observed a negative
effect on adipogenic and osteogenic differentiation in long term
cultured ASCs (Gharibi and Hughes, 2012).

Serum Albumin
Serum albumin is an abundant plasma protein and can be
isolated from humans and animals. Often SF media are
supplemented with serum albumin. Studies comparing human
serum albumin for ASC media supplementation have found
improved proliferation, a smaller spindle-like morphology and
preserved differentiation into adipose, bone and cartilage (Rajala
et al., 2010; Johal et al., 2015).

Chemically-Defined XF Medium
Xeno-free medium has been recommended as a replacement for
FBS and serum, as it contains the necessary components for ASC
expansion, does not involve donor or batch-to-batch variation, is
GMP compliant and has minimal immunogenicity and favorable
immunosuppression (van der Valk et al., 2004, 2010; Usta et al.,
2014). When compared to FBS, the use of XF medium for
the expansion of ASCs has led to better morphological quality,
increased proliferation, a comparable immunophenotype and
differentiation into adipose, bone and cartilage (Lindroos et al.,
2009; Patrikoski et al., 2013; Oikonomopoulos et al., 2015). The
use of XF media in ASC expansion results in ASCs losing their
ability to adhere to plastic (Kyllonen et al., 2013; Patrikoski
et al., 2013; Oikonomopoulos et al., 2015). Additional coating
agents are needed to maintain the inherent characteristic of
plastic-adherence associated with ASCs. Commercially available
XF medium is expensive and preparing in-house XFmedium can
be time-consuming and may increase the risk of batch-to-batch
variation (Lund et al., 2009; Baer et al., 2010; Rajala et al., 2010;
Yang et al., 2012; Kyllonen et al., 2013; Patrikoski et al., 2013;
Oikonomopoulos et al., 2015).

Human Alternatives
Human alternatives can replace FBS and SF/XF supplemented
media and can create a culture environment that more accurately
resembles the human environment (Azouna et al., 2012;
Koellensperger et al., 2014). Furthermore, the use of autologous
products (derived from the same individual) obviates the need for
testing for infectious and other disease causing agents.

Human Serum
After whole blood has been allowed to clot in the absence of an
anticoagulant and has been centrifuged, serum is the resulting
liquid portion that does not contain platelets, white blood cells
or red blood cells (Figure 1; Stedman, 2006). Human serum
(HS) can either be autologous (donor and recipient are the
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FIGURE 1 | Production of the different human alternatives. Serum is produced when whole blood is allowed to clot and centrifuged to pellet red and white blood

cells, and platelets. Plasma is produced by the prevention of clotting followed by centrifugation. Depending on the centrifugation speed, either platelet poor plasma

(PPP; rapid centrifugation) or platelet rich plasma (PRP; slower centrifugation) is produced. If the PPP is stored at −18◦C it is known as fresh frozen plasma. Platelet

concentrates can be produced either by taking the platelet poor plasma and 4 buffy coats and pooling them together or centrifuging multiple PRP’s and pooling the

platelet pellets (suspended in a small amount of plasma) together.

same individual) or allogeneic (derived from individuals who
are different from the recipient). Both autologous and allogeneic
HS are superior to FBS (Stute et al., 2004; Bieback et al., 2009,
2012; Bernardo et al., 2011; Kyllonen et al., 2013; Patrikoski et al.,
2013). ASCs expanded in HS have greater transcriptome stability
than those expanded in FBS, whereas genes responsible for
cell cycle prolongation, differentiation and extracellular matrix
and prostaglandin synthesis are upregulated and overexpressed
in FBS when compared with HS using microarray analysis
(Shahdadfar et al., 2005). ASCs expanded in FBS reached
senescence sooner and displayed telomere shortening when
compared to ASCs expanded in HS (Shahdadfar et al., 2005). The
choice of HS seems to have little effect on the immunomodulatory
properties of ASCs. ASCs expanded in either allogeneic HS or
FBS containing media had low immunogenicity and resulted in
immunosuppression (Patrikoski et al., 2014). ASCs expanded in
either autologous or allogeneic HS display greater proliferation
and an indistinguishable immunophenotype when compared to
ASCs expanded in FBS (Josh et al., 2012; Bogdanova et al.,
2014). ASCs expanded in allogeneic HS have been differentiated
into adipose, bone and cartilage, although the upregulation of
chondrogenic and osteogenic genes was favored compared to FBS
(Josh et al., 2012). ASCs expanded in autologous HS have been

differentiated into adipose and cartilage; however, the ability to
differentiate into bone was less-favored (Bogdanova et al., 2014).
Autologous HS may provide ASCs with better proliferation and
genomic stability as determined by microarray analysis when
compared to allogeneic HS (Shahdadfar et al., 2005; Bieback
et al., 2009; Bernardo et al., 2011). ASCs expanded in allogeneic
HS entered growth arrest and underwent cell death (Shahdadfar
et al., 2005; Lindroos et al., 2009), which limits the potential
advantages of allogeneic HS.While autologous HSmight be ideal,
its availability is limited and there may be significant variation
between patients in the ability of their own serum to support
growth of their own cells (Lange et al., 2007). Alternatively,
allogeneic HS can be pooled, yielding larger quantities for
laboratory experimentation and can undergo rigorous quality
testing by a blood bank (e.g., testing for the absence of infectious
agents and contamination with other blood cells) prior to use in
humans (Bieback et al., 2009).

Plasma
Plasma is the non-cellular liquid portion of blood that contains
water, electrolytes and proteins (clotting factors, fibrinogen, and
anticoagulants). Platelet poor plasma (PPP), fresh frozen plasma
(FFP), and platelet rich plasma (PRP; Figure 1) can be obtained
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from whole blood by centrifugation at different speeds, and
subsequent storage at different temperatures. GF secretion can
be enhanced by activating the platelets in the whole blood with
thrombin prior to centrifugation (Doucet et al., 2005; Kocaoemer
et al., 2007), thereby enhancing the activity of the plasma
products.

Platelet Poor Plasma
PPP is almost free of platelets and is produced from whole blood
by the addition of an anticoagulant during the collection process,
after which the plasma is separated using rapid centrifugation
(Figure 1; Koellensperger et al., 2006). This allows the platelets
and red blood cells to be pelleted. The resulting PPP is stored
at 4◦C and is referred to as fresh plasma. PDGF is secreted by
the aggregating platelets; however, negligible PDGF is released in
PPP as a result of the small number of residual platelets. GFs may
thus need to be added to PPP when used in media as is the case
when using SF medium (Müller et al., 2006; Gottipamula et al.,
2013). Using PPP without the addition of GFs has resulted in
lower proliferation rates and a smaller increase in DNA synthesis
as measured using thymidine incorporation, when compared
with HS and FBS (Vogel et al., 1980; Koellensperger et al., 2006).
PPP with added GFs resulted in increased proliferation rates
compared to HS (Koellensperger et al., 2006); however, these
differences could have arisen from different production protocols
of PPP and the addition of varying levels of GFs to each of
the PPP preparations in this study. Expansion of ASCs in PPP
results in improved proliferation when compared to FBS, and has
osteogenic differentiation which is comparable to that of ASCs
expanded in HS (Koellensperger et al., 2014). Chondrogenic
differentiation was decreased in ASCs expanded in PPP when
compared to ASCs expanded in PRP (Koellensperger et al., 2014).

Fresh Frozen Plasma
FFP is obtained in the same manner as PPP, but it is frozen
directly after separation at −18◦C (O’Shaughnessy et al., 2004;
Liumbruno et al., 2009). FFP has been used in the expansion
of BM-MSCs with positive results. These results include better
proliferation, immunosuppressive activity, and differentiation
into adipocytes and osteocytes; and an immunophenotype and
morphology that is comparable to cells expanded in FBS (Müller
et al., 2006; Mannello and Tonti, 2007). However, the use of
FFP as a serum substitute in ASC expansion requires further
investigation.

Platelet Rich Plasma
PRP is the portion of blood that is enriched in platelets.
PRP is produced by separating plasma from red blood cells
at slower centrifugation speeds, which prevents the pelleting
of the platelets (Figure 1). ASCs expanded in PRP maintain a
classic immunophenotype and morphology, and PRP increases
proliferation when compared to FBS (Kocaoemer et al., 2007;
Chieregato et al., 2011; Atashi et al., 2015). ASCs expanded in
PRP have improved differentiation efficiency toward adipogenic
and osteogenic lineages, while having comparable efficiency for
chondrogenic differentiation, when compared to ASCs expanded
in FBS (Kocaoemer et al., 2007; Chieregato et al., 2011). When

compared, HS was found to be slightly better than PRP in terms
of differentiation and proliferation of ASCs (Kocaoemer et al.,
2007; Chieregato et al., 2011). PRP is a poorly defined culture
medium supplement due to its high biological variability and
complicated extraction procedure, in which purifying the platelet
factor-rich supernatant from plasma membranes can be difficult.
The use of PRP is limited by the large quantities of whole blood
needed to yield enough PRP for experimentation (Chieregato
et al., 2011).

Platelet Lysate
Human platelet lysate (HPL) contains platelet GFs which are
obtained by lysing platelets concentrated in a small volume of
plasma (platelet concentrates; Figure 1) by temperature shock.
HPL contains a higher concentration of GFs than other serum
substitutes including human PRP and FBS (Doucet et al., 2005;
Bernardo et al., 2006, 2011; Bieback et al., 2009; Schallmoser
et al., 2010). HPL can easily be obtained and produced from
apheresis products and buffy coats, and can be resuspended in
either PRP or an additive solution (Schallmoser and Strunk,
2013; Iudicone et al., 2014). HPL is produced by freezing
platelets at between −30 and −80◦C for 24 h, followed by a
thawing and centrifugation step. The repeated freeze, thaw and
centrifuge cycles allow for the release of GFs and the removal
of platelet bodies (Bernardo et al., 2006; Schallmoser et al.,
2007). Another benefit of HPL supplementation is that platelets
can be used after the 4–5 day expiry date of banked blood
(Bieback et al., 2009). HPL is a better alternative than autologous
and allogeneic HS, as ASCs expanded in HPL maintain their
classic immunophenotype, differentiation, clonogenic efficiency,
cell purity, and cell viability (Trojahn Kølle et al., 2013; Riis
et al., 2016). HPL also supports long-term expansion without
compromising the immunomodulatory properties of ASCs, as
measured by flow cytometric analysis (Bieback et al., 2009).
Expansion in HPL results in a shorter population doubling time,
reducing the time required for cell expansion and lowering the
threat of senescence and transformation (Doucet et al., 2005;
Shahdadfar et al., 2005; Bernardo et al., 2006, 2011; Azouna
et al., 2012). The bio-safety of HPL has been assessed using array
comparative genomic hybridization and high sensitivity spectral
karyotyping, where it was found that ASCs expanded in HPL had
no chromosomal aberrations (Crespo-diaz et al., 2011; Trojahn
Kølle et al., 2013). Classic ASC morphology (thin, smaller,
elongated, and spindle-shaped) is maintained in HS and HPL,
whereas ASCs expanded in FBS are larger and less spindle-shaped
(Trojahn Kølle et al., 2013). Although this may indicate that
both HS and HPL select for primitive/immature ASCs (Doucet
et al., 2005; Bieback et al., 2009), it also suggests that cells grown
in FBS have reduced proliferation and progress more rapidly
toward senescence. HPL varies between individuals (Bernardo
et al., 2006; Crespo-diaz et al., 2011), and batch-to-batch variation
is reduced when HPL is pooled (Schallmoser et al., 2007; Trojahn
Kølle et al., 2013). Moreover, by pooling many donors, a large
quantity can be obtained for supplementation, which makes HPL
preferable to PRP (Kocaoemer et al., 2007; Bieback et al., 2009;
Chieregato et al., 2011).
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CONCLUSION

According to Riis et al. of all the registered clinical trials using

expanded ASCs that have listed their expansion conditions,

the majority make use of FBS, three trials use autologous

HS, one trial uses PRP, and one trial uses HPL (Riis et al.,
2015). These statistics are alarming, as FBS has the potential
to transmit zoonotic diseases following cell transplantation, and
immune reactions against FBS components have been reported
(Selvaggi et al., 1997; Mackensen et al., 2000). FBS is a non-GMP
compliant product, as it affects the safety and efficacy of the ASC
therapeutic, and thus needs to be replaced (van der Valk et al.,
2004; Kyllonen et al., 2013; Witzeneder et al., 2013). This has
been remedied by replacing FBS with chemically-defined human
derived alternatives. Changing from FBS to human alternatives
or XF/SF media in regenerative medicine has the important
advantage that the ASCs proliferate much faster in the latter,
resulting in a greater number of cells for transplantation in a
shorter time. However, the relative superiority of different culture
media is still widely debated. Studies comparing more than one
culture medium have reported varying results (Lange et al., 2007;
Bernardo et al., 2011; Koellensperger et al., 2014; Riis et al., 2016).
Koellensperger et al. compared the trilineage differentiation of
ASCs expanded in FBS, PRP, PPP, and HS (Koellensperger et al.,
2014). Their results revealed that each culture medium allowed
differentiation into one or more lineages, but never into all three
lineages. When XF media, FBS and HPL supplemented media
were compared, Riis et al. found that certain subpopulations
expressed specific surface markers depending on the culture
medium utilized (Riis et al., 2016). Studies comparing the
immunophenotype of ASCs expanded in FBS and the other
culture media, found little to no difference in cell surface
marker expression, irrespective of the markers studied (Table 1).
Seeding density, oxygen tension, confluency, dissociation, and
the choice of basal media may also influence experimental
outcomes (Sotiropoulou et al., 2006; Freshney, 2010; Bourin
et al., 2013; Inamdar and Inamdar, 2013; Feng et al., 2014;
Riis et al., 2015). The choice of culture medium depends on
the downstream application of these cells (administration of
differentiated or non-differentiated ASCs) and the condition
being treated. Additionally, the immunogenicity of the culture
medium used to expand the cells prior to clinical application
should be considered as a parameter that might influence the
clinical outcome.Most studies comparing different culture media
used the criteria specified by the ISCT and IFATS to validate the
use of an alternative to FBS. Most of these studies examine ASC
morphology, proliferation, immunophenotype, and the ability
of these cells to differentiate along osteogenic, chondrogenic,
and adipogenic lineages in different culture media. Few studies
have explored other aspects of ASCs, such as senescence, genetic
stability, transcriptome, proteome, immunogenicity, cytokine
secretion, and cell cycle (Shahdadfar et al., 2005; Bieback et al.,
2012). While the ISCT and IFATS criteria were an attempt
to unify the field in terms of standard operating procedures
(Dominici et al., 2006; Bourin et al., 2013), no consensus exists
around which properties of ASCs are relevant for clinical trials,
making the comparison of different culture media virtually
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impossible.While these criteria providemeasurable outcomes for
easy comparison, changing components used for the expansion
of ASCs may have different effects on the safety, efficacy and
reproducibility of ASC end products. Examining changes in
the transcriptome, proteome, and secretome of ASCs expanded
in various culture media is important, as is the use of cells
expanded under varying conditions in appropriate preclinical
models.
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