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Abstract

The lensless optical fluid microscopy is of great significance to the miniaturization, portability

and low cost development of cell detection instruments. However, the resolution of the cell

image collected directly is low, because the physical pixel size of the image sensor is the

same order of magnitude as the cell size. To solve this problem, this paper proposes a

super-resolution scanning algorithm using a dual-line array sensor and a microfluidic chip.

For dual-line array sensor images, the multi-group velocity and acceleration of cells flowing

through the line array sensor are calculated. Then the reconstruction model of the super-

resolution image is constructed with variable acceleration. By changing the angle between

the line array image sensor and the direction of cell flow, the super-resolution image scan-

ning and reconstruction are achieved in both horizontal and vertical directions. In addition, it

is necessary to study the row by row extraction algorithm for cell foreground image. In this

paper, the dual-line array sensor is implemented by adjusting the acquisition window of the

image sensor with a pixel size of 2.2μm. When the tilt angle is 21 degrees, the equivalent

pixel size is 0.79μm, improved 2.8 times, and after de-diffraction its average size error was

3.249%. As the angle decreases, the image resolution is higher, but the amount of informa-

tion is less. This super-resolution scanning algorithm can be integrated on the chip and used

with a microfluidic chip to realize on-chip instrument.

Introduction

Collecting and analyzing cell images of biological tissues is an important basis for disease diag-

nosis, health monitoring, and new drug development in medicine today [1,2]. Flow cytometry

can quickly and accurately perform cell detection. However, its promotion and application are

harmed by cost and portability. With the popularization of concepts such as smart medicine

and telemedicine, the lensless optical fluid microscope technology for miniaturization, auto-

mation, and low cost of cell image acquisition instruments were proposed in 2006 [3]. Since

the pixel size of the image sensor and cell size is on the same order of magnitude as cell size,

the resolution of the image collected by the lensless optical fluid microscope is low. Then the

method of passing the target through a special aperture array is proposed to reduce the pixel

size and achieve super-resolution imaging to solve this problem [4,5].
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Scholars from all over the world are trying to solve the problem of low resolution of the

imaging results of lensless systems by implementing super-resolution reconstruction. A method

of real super-resolution reconstruction by generating a micro-lens effect above or on the surface

of the object has been proposed [6,7]. In order to obtain more details of cells, the multi-angle

micro-displacement of the optical path is generated, and the cells are scanned for micro-dis-

placement [8,9]. Then the high-resolution image is synthesized into a group of low-resolution

sub-pixel-shifted images. But at the same time, an accurate optical path system is required, and

the implementation cost is high. Similarly, the fluid flow first generates low-resolution images

of multiple frames of targets and then reconstructs a single super-resolution image through a

multi-frame super-resolution algorithm [10–12]. Different from this, the convolutional neural

network structure is improved to establish the feature mapping relationship between low-reso-

lution images and high-resolution images [13–15]. The multi-wavelength phase recovery and

multi-angle light source diffraction tomography was used to realize the high-resolution imaging

of the lensless system and restores the depth image [16,17]. Also, an up-sampling phase retrieval

scheme is proposed to bypass the resolution limit of the pixel size of the imager [18]. This

method introduces some optical devices and improves the resolution through the correspond-

ing phase recovery algorithm. Our research team has proposed a method of super-scan imaging

using a single-line array detector, which sets an oblique linear array image sensor under the

microfluidic channel to scan the flowing cells. After reconstruction, a super-resolution scan of

the cells can be obtained. Compared with the area array image sensor, its method greatly

reduces the power consumption occupied by the pixel unit. However, this method requires very

high control accuracy of the cell flow rate, and the reconstructed image is easily distorted.

In this article, our proposed solution is to build a super-resolution scanning system using a

dual-line image sensor. It can accurately calculate cell flow velocity and acceleration. Firstly,

two single-line array detectors with micro-pitch and parallel structure are adopted to construct

the double-line array structure. The time difference between the cells flowing through two

independent linear array sensors is used to accurately calculate the instantaneous flow velocity

and acceleration of the cells. Secondly, the single-line scan imaging process is re-modeled, and

the transformation relationship between the line scan image and the object image coordinates

is pushed to reconstruct the line scan image and restore the super-resolution image of the

object. In addition, the foreground separation of the line scan image, speed calculation, and

other issues have been studied in depth. Based on the mean background modeling, a multi-

threshold foreground coarse segmentation method is proposed to update the background

model, and the foreground model of the line scan image is extracted by the background

model. Feature detection and feature matching algorithms are used to match the time differ-

ence and displacement difference of cells as they pass through two linear array sensors, and

accurately calculate the instantaneous flow velocity and acceleration information of the cells.

Materials and methods

System structure and basic model

The system structure (Fig 1A) of the dual-line array image sensor consists of a 405nm laser plane

wave source, a microfluidic chip, and a CMOS plane array image sensor MT9P031. In the system,

when the pixel size of the image sensor is smaller, the resolution of the reconstructed image will be

higher and the image will be clearer. However, the current commercial linear array image sensor

has too large pixels, so we choose a smaller pixel and a high sampling rate area array image sensor.

This sensor can adjust the size of image acquisition window through the function of a region of

interest (ROI), so as to replace the two-wire array sensor, and its pixel size is 2.2μm. In this func-

tion, only the pixel reading of the window area will be activated, so the row rate can be greatly
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improved. The schematic diagram of the dual-line array sensor structure is shown in Fig 1B, and

the two linear array sensors are placed in parallel with a space of d. When the linear array sensor is

at an acute angle to the direction of cell flow, the lateral resolution of scanning imaging can be

increased, and that is the principle of super-resolution scanning imaging. In this section, the basic

mathematical modeling of its structure will be carried out, including the establishment of the coor-

dinate system, speed model, resolution model and distance model.

As shown in Fig 1B, the acquisition resolution in the inclined placement mode is smaller

than that in the vertical placement mode. Taking the first intersection of the object flow direc-

tion and the linear array sensor as the origin, the object flow direction of the channel as the

axis y, the flow direction as the positive direction, the direction perpendicular to the channel as

the axis x, and the direction pointing to the channel one measurement as the positive direction,

the rectangular coordinate system of the channel object image is established, named C1. By a

similar process, the rectangular coordinate system of the linear scanning image, called C2, is

established. Special attention should be paid to the fact that the intersection of the axis x0 and

the axis y0 is not the zero point of the axis y0, but the coordinate of the axis y0 when the cell is

passing through the linear array sensor.

Fig 1. The structure and imaging principle. (A) The system structure of the dual-line array image sensor. (B) The process of acquisition by the dual-line array sensor.

https://doi.org/10.1371/journal.pone.0235111.g001

Fig 2. Some model of the tilted linear array sensor. (A) The velocity decomposition model. (B) The super-resolution

model.

https://doi.org/10.1371/journal.pone.0235111.g002
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Suppose that there is an object flowing at a speed V in the channel, as shown in Fig 2A. As

calculated using Eq (1), the velocity Vx, Vy, Vx0 and Vy0 can be obtained by decomposing the

velocity in the coordinate system C1 and C2 respectively. Similarly, the transformation rela-

tionship of acceleration between two coordinate systems is determined in Eq (2).

Vx0 ¼ Vy � cosðyÞ þ Vx � sinðyÞ

Vy0 ¼ Vy � sinðyÞ � Vx � cosðyÞ

Vx ¼ Vx0 � sinðyÞ � Vy0 � cosðyÞ

Vy ¼ Vx0 � cosðyÞ þ Vy0 � sinðyÞ

y ¼ arctanðVx=VyÞ

ð1Þ

8
>>>>>>>><

>>>>>>>>:

ax0 ¼ ay � cosðyÞ þ ax � sinðyÞ

ay0 ¼ ay � sinðyÞ � ax � cosðyÞ

ax ¼ ax0 � sinðyÞ � ay0 � cosðyÞ

ay ¼ ax0 � cosðyÞ þ ay0 � sinðyÞ

ð2Þ

8
>>>>><

>>>>>:

Fig 2B is an enlarged view of the intersection of axes. When the pixel spacing of the linear

array sensor is d, the imaging resolution of the axis x0 direction is d, that of the axis x direction

is dx. Then the transformation formula between d and dx can be deduced in Eq (3). To ensure

that the scale of the reconstructed image is the same as that of the real object, the resolution in

the axis x direction should be equal to the resolution in the axis y direction.

dx ¼ d � sinðyÞ

dy ¼ dx

ð3Þ

(

When the imaging sample reaches the origin, the linear array sensor starts acquiring

images, and suppose there is a point P1 on the object this time. As shown in Fig 3, its coordi-

nate is (x,y). The distance from the axis x and the axis y is Sx and Sy. If the object without a lat-

eral velocity flows, the pixel corresponding to point P1 on the linear array sensor is L1, else is

L2 and the lateral flow distance is SVx
. Then the coordinate of the corresponding point P2 on

the linear scanning image is (x’,y’). The ordinate y’ represents the number of frames since the

object starts imaging when P1 is acquired. The true distance between point P2 and the axis y is

Sx’. According to the relationship between imaging resolution, pixel size and pixel coordinates,

the Eq (4) can be obtained.

Sx ¼ x � dx

Sy ¼ y � dy

Sx0 ¼ x0 � d

ð4Þ

8
>><

>>:

Methods of cell foreground extraction

When the linear array sensor scanning is used to image cells in microfluidics, the influence of

background impurities in microfluidics can be avoided, and only the dynamic change infor-

mation of cells flowing can be collected. However, because of the noise of image sensor pixels

and the non-uniformity of the light source, the uneven fringe noise will be formed on the
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scanned image. After the system is started, the noise will remain stable. In the linear scanning

image, the pixels and light intensity of each line are the same. As a result, for a continuous,

short period of time, it can be considered that the background is almost the same. Based on

this assumption, the pixel value of background can be obtained by simple mean modeling that

build without cells flow. Further in this paper, the background model is updated in real-time

by identifying pixels with cells flow through the multi-threshold method, which reduces the

interference to the background model.

Firstly, i is the current number of collected times, and when the sensor first collects, i is 1. N

rows of background images, from i-N to i-1, are buffered to establish a background initial

mean model. Pi is the line pixel value of the Fi row collected currently, and �Pi is the mean

value of the rows from Fi-N to Fi-1. Meanwhile, Pi,j is a pixel value of the column j in the Fi row,

so the formula of background initial mean model is

�Pi;j ¼
1

N

Xi� 1

k¼i� N

Pk;j ð5Þ

Then the initial foreground difference information EPi of line Fi will be obtained after line

Fi is cached in Eq (6).

EPi ¼ Pi �
�Pi ð6Þ

Based on this information, the background mask MPi of line Fi is

MPi ¼
0 EPi < T1;EPi > T2

1 other
ð7Þ

(

where T1 and T2 are the lower and the upper threshold of the background, respectively. The

pixels in which cells are present will be filtered by this mask, and the new value of background

Fig 3. The distance calculation model in the case of the tilted linear array sensor.

https://doi.org/10.1371/journal.pone.0235111.g003
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mean model �Pi
0 of rows Fi-N+1 to Fi will be re-calculated by

�Pi
0 ¼

�Pi � ðN � 1Þ þMPi � Pi

N � 1þMPi
ð8Þ

Finally, the new foreground difference information EP0i of cells is

EP0i ¼ Pi �
�Pi � ðN � 1Þ þMPi � Pi

N � 1þMPi
ð9Þ

Methods of instantaneous velocity

The accuracy of cell velocity calculation determines the distortion of reconstructed scanned

images. In lensless imaging, when the object is far from the imaging surface, the light will be

diffracted through the object to form a diffraction ring, each ring of gray level is uniform.

Therefore, the maximally stable extremal regions (MSER) algorithm is used to detect the alter-

nating light and dark diffraction rings, and then the feature points on the boundary of the

maximally stable extremal regions are screened out. Finally, the scanning matching of feature

points in another linear array sensor acquisition image is carried out by the sum of squared

differences (SSD) algorithm. Then the set of feature points on two linear array sensors is

obtained for calculating cell flow velocity.

MSER, similar to the watershed, can detect connected regions such as diffraction rings in

cell diffraction images. Under the obvious detection effect, we compressed the dynamic range

of the image before MSER detection to reduce the calculation time. According to the charac-

teristics of diffraction rings, the corner features are mostly distributed in the upper and lower

vertex positions of the MSER region. So the coordinates of the Corner point are quickly deter-

mined, its ordinate is the extremum of the MSER area’s ordinate, and the value of its abscissa

is the mean value of the abscissa at the extremum of the ordinate. Then each MSER region can

extract two corner features, and select the appropriate corners to match. It is necessary to ana-

lyze the coordinates of each corner after the initial extraction of corner features. Each corner

point must be not too close, and a corner point with a more obvious corner feature should be

selected while the distance is relatively close. The minimum distance between the corners’

ordinates can be determined by extracting the maximum difference of the ordinates of corners.

The corner points with more obvious features can be screened by the calculation matrix of the

corner point features in Eq (10).

Vcorner ¼ absðsumðMdata: �McornerÞÞ ð10Þ

Mdata is a window matrix of the corner point, and Mcorner is a corner feature calculation

matrix, which is related to the actual line array direction and is obtained by experiments. Mcor-

ner and Mdata are the same size, and the larger the Vcorner, the more obvious the feature.

Assume that K feature points are extracted from the scanned image of the first linear array

sensor, and an image of size (H+1)×(W+1) is extracted around the feature point k. The feature

point, that is the center point of this image, is denoted as ML1(0,0,k). Then the SSD matching

algorithm on the image of the second linear array sensor is

VSSDði; j; kÞ ¼
XH=2

m¼� H=2

XW=2

n¼� W=2

ðML2ðiþm; jþ nÞ � ML1ðm; n; kÞÞ
2

ð11Þ

where ML2(i,j) is the pixel value of the coordinates (i,j) on the scanned image of the second lin-

ear array sensor, and VSSD(i,j,k) is the SSD value of the pixel point and the feature point k on

the scanned image of the first linear array sensor. The large the SSD value, the higher the

PLOS ONE A super-resolution scanning algorithm for lensless microfluidic imaging

PLOS ONE | https://doi.org/10.1371/journal.pone.0235111 June 25, 2020 6 / 20

https://doi.org/10.1371/journal.pone.0235111


matching degree between the two feature points. During the search process, the feature point

with the largest SSD value is selected as the final matching point.

The difference in the displacement of cell images acquired by the dual-line array sensors is

small because of the short distance between the first and the second linear array sensor. So an

SSD matching search area of the second linear array sensor is set up based on the coordinates

of the feature points of the first linear array sensor, to reduce the search efficiency of the SSD

matching algorithm. Assume that the line rate of the line array sensor is f, the pixel size is spixel,
and the line array pitch is d. The coordinates of two adjacent feature points on the first linear

array sensor are (xi,yi), (xi+1,yi+1), and the coordinates of corresponding matching points on

the second linear array sensor are ðx0i; y
0
iÞ, ðxiþ1

0; yiþ1
0Þ. Then the time difference between the

first and the second linear array sensor of the point on the cell is ðy0i � yiÞ=f , and the lateral dis-

placement is xi � x0i. Therefore, the lateral velocity Vx0i
and longitudinal velocity Vy0i

of this

point in the coordinate system C2 are

Vx0i
¼ spixel � f � ðxi � x0iÞ=ðy

0
i � yiÞ

Vy0i
¼ d � f =ðy0i � yiÞ

ð12Þ

8
<

:

Similarly, the lateral velocity Vxiþ1
0 and longitudinal velocity Vyiþ1

0 of this point in the coor-

dinate system C2 can be calculated. Then the lateral acceleration ax0 and longitudinal accelera-

tion ay0 during this period can be calculated by the two adjacent feature points Vx0, Vy0. The

time difference between the two feature points on the cell after passing the first linear array

sensor is (yi+1−yi)/f, and the acceleration ax0i
of the cell during this period is

ax0i
¼ f � ðVxiþ1

0 � Vx0i
Þ=ðyiþ1 � yiÞ

ay0i
¼ f � ðVyiþ1

0 � Vy0i
Þ=ðyiþ1 � yiÞ

ð13Þ

8
<

:

In this way, the velocity and acceleration information of the coordinate system C1 can be

obtained. By a similar process, the K velocities and the K−1 accelerations of all feature points

are calculated.

The reconstruction with variable acceleration

Suppose that an object flows in the microchannel, with Vx and Vy as the initial velocity of the

axis x and axis y, ax and ay as the acceleration of the axis x, and axis y. According to the physical

relationship of distance, speed and acceleration, the Eq (14) can be obtained

Sx0 � sinðyÞ ¼ Sx þ SVx

y0 �
1

f
� Vy þ

1

2f
� y0 � ay

� �

¼ Sy þ
Sx

tanðyÞ
þ

SVx

tanðyÞ
ð14Þ

8
><

>:

where

SVx
¼ y0 �

1

f
� Vx þ

1

2f
� y0 � ax

� �
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Then the coordinate transformation formula of the object coordinate system mapping in

the line scanned coordinate system is

x0 ¼ xþ
y0 � ðVx þ ax �

y0

2 � f
Þ

d � f � sinðyÞ

Ay02 þ By0 þ C ¼ 0

ð15Þ

8
>>><

>>>:

where

A ¼
ay0

2 � f
B ¼ Vy0

C ¼ � d � f � sinðyÞ � ðy � sinðyÞ þ x � cosðyÞÞ

8
>>><

>>>:

So the solution y0 of the one-variable quadratic equation can be written as

y0 ¼
� B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

2A
when B2 � 4AC � 0 ð16Þ

In reality, it is difficult for small objects to maintain a constant acceleration flow, which is

mostly variable acceleration flow. It is assumed that the object is running at speed V0 as shown

in Fig 4A, and the linear array sensor starts to acquire at time t0. So the instantaneous flow

velocity of the object at t1, t2 and t3 are V1, V2 and V3, respectively. That is mean, the object has

three acceleration a0, a1 and a3 for three time periods when flowing through the linear array

sensor. In this case, this paper adopts an iterative mapping method to map the acceleration

change time in the linear scan coordinate system on the object coordinate system, so that the

different acceleration areas of the object correspond to the linear scan area one by one. Then

the object coordinate system maps the reconstructed image on the line scan coordinate system.

As shown in Fig 4B, it is a schematic diagram of an object passing through a linear array sensor

at this speed change, which respectively shows the position of the linear array sensor on the

object at each time point. At the moment, the object and the linear array sensor intersect at

two points a and b respectively, and the area between the original point on the object and the

two points a and b flows through the linear array sensor with V0 as the initial speed and a0 as

the acceleration. Similarly, the area between the four points a, b, c, and d on the object flows

through the line array sensor with V1 as the initial speed and a1 as the acceleration. If the object

Fig 4. The situation with the variable speed. (A) Object flows at the variable speed. (B) The position of the line array

sensor on the object.

https://doi.org/10.1371/journal.pone.0235111.g004
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collects data from line y0 from t0 to t1, the distance the object moves along the axis y0 is

Sy0
0
¼ Vy0

0
� y0

0
�
1

f
þ

1

2
� a0 � y0

0
�
1

f

� �2

ð17Þ

Then the distance from the point b to the axis x is

by0
¼

Sy0

dy
¼

Sy0
0

d � sinðyÞ � sinðyÞ
¼

Sy0
0

d � sin2ðyÞ
ð18Þ

Considering the linear array sensor as a straight line, the equation of the straight line at

time t1 can be obtained by the slope of the linear array sensor in the coordinate system C1.

y0 ¼ �
1

tanðyÞ
� x0 þ by0

¼ �
1

tanðyÞ
� x0 þ

Sy0
0

d � sin2ðyÞ
ð19Þ

Similarly, the equation at time t2 is

y0 ¼ �
1

tanðyÞ
� x0 þ by0

¼ �
1

tanðyÞ
� x0 þ

Sy0
1

d � sin2ðyÞ
ð20Þ

where

Sy0
1
¼ Sy0

0
þ Vy0

1
� ðy0

1
� y0

0
Þ �

1

f
þ

1

2
� a1 � ðy

0

1
� y0

0
Þ �

1

f

� �2

Then the three acceleration regions can be mapped to the coordinate system of the object.

a ¼ a0 x=tanðyÞ þ y � by0

a ¼ a1 by0
< x=tanðyÞ þ y � by1

a ¼ a2 by1
< x=tanðyÞ þ y

ð21Þ

8
><

>:

To generalize it to K accelerations, the Eq (22) can be written as

byi
¼

Syi
dy
¼

Sy0 i
d � sin2ðyÞ

; i ¼ 1; 2; 3; . . . ;K ð22Þ

where

Sy0i ¼ Sy0i� 1
þ Vy0i

� ðy0i � y0i� 1
Þ �

1

f
þ

1

2
� ai � ðy

0

i � y0i� 1
Þ �

1

f

� �2

The Eq (23) can be written as

a ¼ ai when byi
< x=tanðyÞ þ y � byiþ1

; i ¼ 1; 2; 3; . . . ;K ð23Þ

Then the coordinates of the object coordinate system are mapped to the linear scanning

imaging coordinate system, and the speed information of the corresponding area is brought

into the corresponding pixel value. By solving the quadratic equation of each acceleration

region, the coordinates ðx0i; y
0
iÞ of the linear scan coordinate system, mapped by the coordinates

(xi,yi) of the object coordinate system, can be obtained. It should be noted that ðx0i; y
0
iÞ are the

coordinates relative to each acceleration segment, and the coordinates ðx@i ; y
@
i Þ in the coordinate
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system C2 should be

x@i ¼ x0i

y@i ¼
Xi

s¼0

y0i
ð24Þ

8
>><

>>:

Then the pixel value of coordinates (xi,yi) can be calculated from the pixels around the coor-

dinate ðx@i ; y
@
i Þ.

Results and discussion

Analysis of cell foreground extraction

We used 20μm microspheres as test objects, and the angle of the dual-line array sensor is 21

degrees. When the number of acquisition lines of the sensor is set to 10 lines, the frame rate is

1230fps. The flow rate of the solution is related to the sampling rate of the image sensor. When

the sampling rate of the image sensor is higher, the more samples can be processed per unit

time. After considering these issues, this paper chooses a suitable flow rate of solution, which is

5 μL/min ~ 10 μL/min. We extract an image every 10 frames in Fig 5, and the microsphere flo-

wed in 0.12s. In our system, only two lines of pixels are used to reconstruct super-resolution

images. This chapter explains the foreground extraction of the scanned image.

Fig 6A is the image of 500 lines which are scanned pixels from the first linear array sensor. Due

to the unevenness of the light source, there are vertical stripes with uneven brightness and width on

the scanned image. When the number of cache lines N is taken as 20, the background mean model

and the algorithm in this paper are tested. Fig 6B is the extracted microsphere scanned image by the

background mean model, and the background part does not eliminate the uneven noise very well,

although the microsphere foreground part can be separated. Differently, the pixel value of fore-

ground difference information is firstly assigned 1, when is between 15 and -15, otherwise is 0, as

shown in Fig 6C. Obviously, it roughly divides the white background part and the black foreground

part. After avoiding the influence of the foreground part on the background mean model, the

microsphere scanned image is shown in Fig 6D. Compared with the image extracted by the back-

ground mean model, the algorithm proposed in this paper has less background noise. Therefore,

background interference can be largely reduced, and cell images can be more accurately extracted.

Fig 5. Test results of cell foreground extraction for 20μm microspheres.

https://doi.org/10.1371/journal.pone.0235111.g005
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Analysis of speed calculation

The detection effect of MSER is mainly affected by the parameters of Amax and Δ. Of course, the

limitations of the connected regions also can be further filtered. In this paper, the Amax is set to a

larger value of 20 to detect more diffraction rings. First, the dynamic range of the image is com-

pressed in 10 steps, when Amax is 20 and Δ is 1. As shown in Fig 7A, each color is an MSER area.

And only the first and second diffraction rings can be detected, when the dynamic range is below

190. When above 190, the third-order diffraction ring can appear. However, after 200, there will

be too many subdivided detection areas, which will increase the processing burden. Therefore,

the dynamic range of the diffraction image collected by scanning imaging can be compressed to

190, and then better MSER detection can be performed. Second, Δ is tested in steps of 0.3 in Fig

7B, when the dynamic range is below 190. With the increase of Δ, the detection effect of diffrac-

tion ring becomes worse. And with the decrease of Δ, more and more detection areas are subdi-

vided. When between 2 and 2.3, the detection effect is in an intermediate state.

Finally, corner features are extracted from MSER features directly in the first left of Fig 8

when the dynamic range is 190 and Δ is 2. According to the scanning image of the experiment

structure and through the experimental analysis, the window radius of Mcorner is 4 pixels in Eq

(25) and the results are shown in Fig 8 on the far right. As you see, our method can extract and

screen better corner features that meet the requirements easily and quickly.t

Mcorner ¼

0 0 0 0 0 1 1 1 0

0 0 0 0 0 1 1 1 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 � 1 � 1 0 0 0 0 0

0 � 1 � 1 � 1 0 0 0 0 0

0 � 1 � 1 � 1 0 0 0 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð25Þ

Fig 6. Test results of cell foreground extraction for 20μm microspheres. (A) The 500 lines of raw images from the first linear sensor are connected to one image. (B)

The extracted microsphere image directly by background mean model. (C) The mask image with the threshold of plus-minus 15. (D) The foreground image extracted by

the improved method.

https://doi.org/10.1371/journal.pone.0235111.g006
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To reduce the search efficiency of the SSD matching algorithm, this paper sets up the SSD

matching search area of the second linear array sensor based on the feature point coordinates

of the first linear array sensor. Using this algorithm when H = W = 20, 11 feature points are

detected and matched on the scanning image (Fig 9A). The first and third lines are the images

corresponding to the feature points on the first linear array, and the second and fourth lines

are the images corresponding to the feature points on the second linear array. As you see the

feature points matching is accurate in Fig 9B.

Then the velocities of all 11 feature points and 10 acceleration information, shown in

Table 1, can be calculated by applying formulas (1), (2), (12), (13). When the microspheres

flow in the channel, the maximum change of the transverse velocity along the channel direc-

tion is about 216 μm/s, and the longitudinal velocity is about 514 μm/s. It is obvious that the

horizontal and vertical velocity are not stable in the process of cell flow, and the instantaneous

velocity of cell flow can be accurately calculated using the method presented in this paper.

Fig 7. The analysis of MSER. (A) MSER with the different values of image dynamic range. (B) MSER with the different Δ.

https://doi.org/10.1371/journal.pone.0235111.g007
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Reconstruction results

Having gathered the information of the velocity of the microsphere, the scanned image of the

20μm microsphere was reconstructed. To compare the superiority of the algorithm of the vari-

able acceleration, we use the algorithm of the variable acceleration and the uniform velocity to

reconstruct the microsphere, and the results are shown in Fig 10A and 10B. Significantly, the

latter is much better than the former, and the multi-order diffraction ring of the 20μm

Fig 8. The feature point after extracted and screened from MSER when the value of the image dynamic range is

190, Amax is 20 and Δ is 2.

https://doi.org/10.1371/journal.pone.0235111.g008

Fig 9. The analysis of the matching feature points. (A) The feature maps of this point in the image of the dual-line array sensor

by the SSD algorithm. (B) The corresponding feature points in the image of the second linear array sensor.

https://doi.org/10.1371/journal.pone.0235111.g009
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microsphere with little distortion, can be observed from the reconstruction image. This shows

that the algorithm of the variable acceleration is necessary in the case that the actual flow direc-

tion of the cell is variable and the speed is variable. The resolution is related to the pixel size

and the tilt angle of the linear array sensor. According to the Eq (3), the equivalent pixel size is

0.79μm, which is 2.78 times higher than the pixel size of the area array sensor. When the

microsphere is collected by the area array sensor with the same pixel size 2.2μm, its resolution

is very low as shown in in Fig 10C. The details are much fuzzier than that in Fig 10B, when we

enlarge the image to 2.78 times in Fig 10D.

The reconstructed super-resolution image is a diffraction image of the microsphere, and

the image of the microsphere can be recovered by the de-diffraction algorithm. This algorithm

Table 1. Velocity and acceleration information of each characteristic point of the microsphere.

Feature point Vx0(μm/s) Vy0(μm/s) ax(μm/s2) ay0(μm/s2) Vx(μm/s) Vy(μm/s)

1 1040.771 416.308 15.679 -831.264 -7.852 1120.917

2 996.431 386.571 -128.123 6792.612 -7.292 1040.852

3 1353.003 541.200 4695.305 -5043.000 -10.208 1457.192

4 1353.002 451.000 -14346.766 15409.167 73.773 1424.280

5 1353.003 676.500 13324.547 -11346.750 -136.180 1506.561

6 1476.003 492.000 -475.913 -2909.423 80.480 1553.760

7 1248.925 416.308 -3624.000 1641.213 68.098 1314.720

8 1127.502 451.000 0.000 0.000 -8.507 1214.327

9 1127.502 451.000 -38.049 2017.200 -8.507 1214.327

10 1230.003 492.000 5728.734 2881.714 -9.280 1324.720

https://doi.org/10.1371/journal.pone.0235111.t001

Fig 10. The comparison of the reconstructed image of the dual-line array sensor and the image of the area array

sensor. (A) The image reconstructed by the algorithm derived from the uniform velocity hypothesis. (B) The image

reconstructed by the algorithm derived from the variable acceleration hypothesis. (C) The area array sensor image. (D)

2.78x magnification of the image (C) using a cubic spline interpolation algorithm.

https://doi.org/10.1371/journal.pone.0235111.g010
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has been studied in the paper [19], and is cited directly here. Fig 11A shows an image of a

20μm microsphere under a 10x microscope. After being magnified four times, the de-dif-

fracted image of Fig 10D is shown in Fig 11B, and the de-diffracted image of Fig 10D is shown

in Fig 11C. The pixel values of the white line are plotted in Fig 11D, by comparing these

images, the recovery results in this paper has smoother edges and clearer details.

We calculated the peak signal-to-noise ratio (PSNR) and the structural similarity index

(SSIM) about the enlarged image of area array sensor and the de-diffraction image of dual-line

array sensor. In Table 2, because the ideal image is used as the reference image, the PSNR and

SSIM of all images are relatively low. However, the de-diffraction image of the dual-line array

Fig 11. The analysis of de-diffraction image. (A) The microscope image under a 10x microscope. (B) The de-diffraction image of Fig 10D. (C) The de-diffraction image

of Fig 10B. (D) The pixel values of the white line in (B) and (C) are plotted.

https://doi.org/10.1371/journal.pone.0235111.g011

Table 2. The PSNR and contrast of the image of the different sensor, before and after de-diffraction.

Image PSNR (dB) SNR (dB) SSIM

Bilinear Interpolation 11.945 10.623 0.053

Cubic Spline Interpolation 11.981 10.659 0.054

Dual-line Array Sensor 19.301 17.979 0.210

https://doi.org/10.1371/journal.pone.0235111.t002
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sensor has a higher PSNR (Improved 1.62 times), and its SSIM is closest to 1 (Improved 3.96

times).

After de-diffraction, the size of this microsphere is 20.7375μm, and the error of microsphere

size in our experiment is less than 10%. We calculated the size and its error of 50 microsphere

images of dual-line array sensor in Fig 12. Their diameter calculated is shown in Fig 12A, and

the white column represents the more part, the black column represents the less part. So it can

be seen that the error between the calculated diameter and the real diameter is small, almost

within 2μm. Meanwhile, the diameter error of each microsphere is also calculated in Fig 12B,

Fig 12. The analysis of the 50 microsphere images of dual-line array sensor. (A) The dimensions. (B) The dimensions

error.

https://doi.org/10.1371/journal.pone.0235111.g012

PLOS ONE A super-resolution scanning algorithm for lensless microfluidic imaging

PLOS ONE | https://doi.org/10.1371/journal.pone.0235111 June 25, 2020 16 / 20

https://doi.org/10.1371/journal.pone.0235111.g012
https://doi.org/10.1371/journal.pone.0235111


and the reconstructed dimensions error are within the error range of the microspheres, and

the average error is 3.249%.

In the above test, the angle between the micro-channel and the linear array sensor is 21

degrees, and the sensor pixel size is 2.2μm. If a smaller pixel sensor or a smaller angle is used,

the method in this paper is still applicable, and the equivalent pixel size is smaller, as shown in

Fig 13. The resolution magnification is only related to the tilt angle, not the pixel size.

We have done the same experiment when the angle is 15 or 10 degrees and the pixel size is

2.2μm (Fig 14). As the angle is 15 degrees, the equivalent pixel size is 0.569μm. As the angle is

10 degrees, the equivalent pixel size is 0.382μm. It is smaller than the equivalent pixel size of

0.775μm in paper [8] and 0.770μm in paper [20] by the pixel size image sensor (1.67μm).

The quantity of information can be evaluated by image entropy, and the higher the value,

the more information. In Table 3, with the decrease of angle, the image entropy becomes less

and less at the real size. When these image is enlarged to same size, the image entropy

decreases greatly. This means that when the angle is smaller, the image resolution is higher,

but the amount of information is less. Therefore, the tilt angle can be selected to meet you dif-

ferent needs conveniently, just rotating the microfluidic chip.

Conclusion

In summary, the super-resolution scanning system, using the dual-line array image sensor, is

demonstrated to obtain the super-resolution image of cells. Firstly, the method, combined by

background mean model and a multi-threshold foreground coarse segmentation method, is

designed to extract the cells foreground information from the line of scanning image. Sec-

ondly, the multiple sets of velocities and accelerations of cells passing through linear array

Fig 13. The relationship between the equivalent pixel size and the angle between the linear array and the micro-channel, as the

different pixel size of the dual-line array sensor.

https://doi.org/10.1371/journal.pone.0235111.g013
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sensors can be calculated with the MSER and SSD algorithm. Then the reconstruction model

of scanning image is deduced with uniform speed, uniform acceleration and variable accelera-

tion flow. Finally, the super-resolution image of the cells can be reconstructed. When the pixel

size of the linear array sensor is 2.2μm and the angle is 21 degrees, the equivalent pixel size is

0.79μm (Improved 2.8 times, and improved 2.15 times in paper [8,20]). After de-diffraction,

the size error of 20μm microsphere was 3.249%, and the PSNR was improved 1.62 times, the

SSIM was improved 3.96 times. With the same system structure, the equivalent pixel size can

be 0.382μm as the angle is 10 degrees, but the image entropy also decreases. Furthermore, the

resolution and the flow rate of solution can be improved by using image sensors with smaller

pixels and higher sampling rates, or using the high-throughput microfluidic chips of the

multi-channel, and high-throughput analysis can be achieved in the paper [21]. Therefore, it is

sufficient to demonstrate that the proposed super-resolution scanning algorithm and system is

Fig 14. The super-resolution image reconstructed and its de-diffraction image as the different angles between the linear array and the micro-channel.

https://doi.org/10.1371/journal.pone.0235111.g014

Table 3. The image entropy in the different angles.

Image size Angle Image entropy (bit/pixel)

Real size 10˚ 1.6469

15˚ 2.1064

21˚ 2.3829

Be enlarged to same size 10˚ 1.6469

15˚ 1.6455

21˚ 1.6176

https://doi.org/10.1371/journal.pone.0235111.t003
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effective. The application of the algorithm in lensless optical fluid microscopy can provide a

more convenient method of cell detection instruments.
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