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Abstract.—Most existing measures of distance between phylogenetic trees are based on the geometry or topology of the trees.
Instead, we consider distance measures which are based on the underlying probability distributions on genetic sequence data
induced by trees. Monte Carlo schemes are necessary to calculate these distances approximately, and we describe efficient
sampling procedures. Key features of the distances are the ability to include substitution model parameters and to handle
trees with different taxon sets in a principled way. We demonstrate some of the properties of these new distance measures
and compare them to existing distances, in particular by applying multidimensional scaling to data sets previously reported
as containing phylogenetic islands. [Metric; probability distribution; multidimensional scaling; information geometry.]

Many methods for postprocessing phylogenetic trees
rely on some measure of distance between pairs of
trees. A variety of different distances are used, for
example: the Robinson–Foulds metric (Robinson and
Foulds 1979, 1981), quartet distance (Estabrook et al.
1985), path-length-difference metric (Penny et al. 1993),
Billera–Holmes–Vogtmann (BHV) metric (Billera et al.
2001; Owen and Provan 2011), and matching distance
(Lin et al. 2012), among others. These are generally
defined by directly comparing the branching pattern
(usually called topology) and/or edge lengths in a given
pair of trees. For example, the Robinson–Foulds metric
is defined by counting the number of splits present in
exactly one of a given pair of trees, while the BHV metric
is defined in terms of splits and edge lengths. However,
phylogenetic trees also represent probability models for
genetic sequence data, and for some applications it might
be more appropriate to use a distance measure which
compares the probability distributions on characters
induced by trees, rather than comparing the trees as
geometric objects. This article describes methodology
and software for calculating such distances and
explores their properties. The software is available from
www.mas.ncl.ac.uk/∼ntmwn/probdist.

The following simple example illustrates the
difference between the two approaches. Suppose
we have two trees T1 and T2 with a common leaf-set
such that the two trees differ only with respect to the
position of a single taxon x. In other words, the subtrees
of T1 and T2 obtained by removing x are identical. Then,
in the limit that the edge leading to x gets increasingly
long, distance measures which compare the topology
or geometry of the trees will generally view T1 and
T2 as being bounded away from each other (or getting
further apart). However, under the same limit, the
genetic sequence of x effectively becomes independent
of the other taxa. Since the relationships between the
other taxa are fixed, the probability distributions on
characters induced by T1 and T2 become identical in the
limit, and so the distance tends to zero.

This article describes simulation methods which
calculate (approximately) the Hellinger distance,
Jensen–Shannon distance, and Kullback–Leibler
divergence between trees when they are regarded as
sequence models. These distance measures also have a
natural extension to situations when trees do not share
the same set of taxa. Unlike existing distance measures,
the distance measures we propose can be defined
between pairs (Ti,θi), i=1,2, where Ti is a tree and θi is
a vector of DNA substitution model parameters, rather
than between trees alone. Phylogenetic trees are usually
inferred with an associated substitution model, and so
information is lost if comparison is only carried out
on inferred trees without the associated substitution
models.

The idea of identifying trees with points in a space of
distributions on characters was first considered by Kim
(2000). The space is usually referred to as the space of
“hyperdimensional oranges” or “phylogenetic oranges.”
Topological and combinatorial aspects of the space were
studied by Moulton and Steel (2004). The methods
developed in this article enable the computation of
metrics on this space, a first step towards more involved
geometrical methods such as computation of sample
means and variances.

METHODS

Probabilistic Distances
A binary character is an assignment of {0,1} to

each taxon, so there are 2n characters in total for
a tree with n leaves. Likewise, a DNA character is
an assignment of {A,C,G,T} to each taxon, giving 4n

characters in total. We let � denote the set of states
({0,1} or {A,C,G,T}) and use �n to denote the set of
all characters. Evolution over a tree is typically modeled
by a Markov substitution process on the edges of the
tree (Semple and Steel 2003). Any Markov process
substitution model induces a distribution on characters
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at the leaves, that is, a distribution on�n. When�={0,1},
we assume the Markov substitution process is the unique
symmetric process on two states. This Markov process
has no parameters. When �={A,C,G,T}, we assume
a general time-reversible (GTR) model with across-site
Gamma rate heterogeneity. The parameters θ for this
model determine the rates of character substitution and
the stationary distribution of the process. However,
the methodology we develop below can be applied
to arbitrary alphabets and substitution models, in
particular, to amino acid models.

We look at distances between probability distributions
on characters induced by the tree and substitution
model; that is, look at distances

d
(
(T1,θ1),(T2,θ2)

)
,

for trees Ti and substitution model parameters θi. (Note
that θ1 and θ2 are empty when the substitution process is
the symmetric two-state model). The distance d is either
(i) the Hellinger (H) distance, (ii) Kullback–Leibler (KL)
divergence, or (iii) Jensen–Shannon (JS) distance, and
these are defined below.

Let p(s) and q(s), where s ranges over the set
of characters, be probability mass functions for the
probability distributions p and q on characters associated
with two trees T1,T2 with common leaf-set of size n. The
Hellinger distance between p and q is defined by

dH(p;q)2 = 1
2

∑
s∈�n

(√
p(s)−

√
q(s)

)2
.

The Hellinger distance dH is a metric bounded above by
1 (Gibbs and Su 2002). The Kullback–Leibler divergence
of p from q is defined as

dKL(p;q)=
∑

s∈�n

p(s)log
(

p(s)
q(s)

)
,

where log denotes the natural logarithm. The Kullback–
Leibler divergence is not a metric because it is not
symmetric and does not satisfy the triangle inequality.
It is always non-negative (Gibbs and Su 2002). Finally,
the JS distance is defined via the Kullback–Leibler
divergence as

d2
JS(p;q)= 1

2
dKL

(
p; p+q

2

)
+ 1

2
dKL

(
q; p+q

2

)
. (1)

It is a metric with an upper bound of
√

log2.
Computing these distance measures exactly for large

trees is computationally expensive as there are |�|n
possible values for s. However, we can estimate these
distances via simulation since each can be expressed in
terms of expectations with respect to the distributions p
and q on characters. Suppose that sp,i, i=1,...,m are a set
of m characters simulated on tree T1, and sq,i, i=1,...,m
are a set of m characters simulated on tree T2. In other
words, the characters sp,i are independent samples from
distribution p and similarly for the characters sq,i. We
can think these samples as each being equivalent to a

simulated alignment with m independent columns from
the trees T1,T2, respectively. Then it can be shown that
the Hellinger distance can be estimated via

dH(p;q)2 �1− 1
2m

m∑
i=1

(√
q(sp,i)

p(sp,i)
+
√

p(sq,i)

q(sq,i)

)
.

A full derivation is given in the Supplementary
Appendix available on Dryad at http://dx.doi.org/
10.5061/dryad.69bb2. Similarly, the Kullback–Leibler
divergence can be estimated using

dKL(p;q)� 1
m

m∑
i=1

log

(
p(sp,i)

q(sp,i)

)

and this expression can be used to estimate the Jensen–
Shannon metric using Equation (1).

Fixing a choice of distance measure between
distributions, and given pairs (Ti,θi),i=1,2 of trees and
model parameters, we define the distance d((T1,θ1),
(T2,θ2)) to be the distance between the induced
probability distributions on characters �n. Since the
GTR model is identifiable (Allman et al. 2008), the map
from pairs (T,θ) to probability distributions on �n is
injective, that is, one to one, so that distinct trees always
induce distinct distributions. This is also the case for
the two-state symmetric model and GTR model with
across-site Gamma rate heterogeneity. It follows that
the Hellinger and JS metrics on distributions induce
metrics on pairs (T,θ).

The total variation metric between distributions is
defined by dTV(p,q)=∑s |p(s)−q(s)|. We did not explore
properties of this metric when preparing this paper,
but methods to compute the total variation metric are
included in the software.

Sample Size Calculation
When estimating the Hellinger, Kullback–Leibler, and

JS distances, it is helpful to determine the smallest size
sample needed to be reliably within a given tolerance of
the true distance. The estimate

Rm =1− 1
2m

m∑
i=1

(√
q(sp,i)

p(sp,i)
+
√

p(sq,i)

q(sq,i)

)

is unbiased for the squared Hellinger distance �0 =
dH(p;q)2. Also, for large m, Rm is approximately normally
distributed with variance �2

0/m, where �2
0 is the variance

of Rm=1. We can obtain provisional estimates �0 and �2
0

from a pilot run of size m0. Each of the m0 realizations
produces an estimate of R1 and so their mean and
variance are unbiased estimates for �0 and �2

0. Absolute
or relative error are standard criteria for determining an
appropriate sample size m in this situation. For example,
to require the estimate Rm to have an absolute error of �

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx080#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx080#supplementary-data
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FIGURE 1. A histogram of estimated values of m for the comparison
of every pair of gene trees in the data set of 106 gene trees due to
Rokas et al. 2003, using the two-state symmetric model and JS distance.
It can be seen that the distance between most pairs of trees in the
data set can be estimated accurately with fewer than 2000 samples. In
terms of computational cost, this is similar to the cost of computing the
likelihood for an alignment of length 2000 for each pair of trees.

with probability 1−� requires

m≥
z2
�/2�

2
0

�2(2
√

�0 −�)2 , (2)

where z� is the upper � point of the standard normal
distribution (e.g., z0.025 =1.96). If instead we require a
relative error of �, this is equivalent to using absolute
error �=�

√
�0. Estimated values of �0 and �2

0 from the
pilot run are used in (2) to estimate m.

The estimators described above can be improved using
the control variate method (Morgan 1984, Chapter 7,
p. 171) to give unbiased estimators which achieve the
same precision with fewer samples that is smaller values
of m. We have implemented these improved estimators
in the software and more information is given in the
Supplementary appendix available on Dryad. We found
the reduction in m varied very substantially with each
data set.

In order to explore the possible values for m that might
be required for experimental data sets, we estimated
m for the JS distance between every pair of gene trees
contained in the data set of 106 yeast gene trees on
8 yeast species (Rokas et al. 2003). Figure 1 shows a
histogram of estimated values for m. Estimation was
performed in order to achieve a relative error of �=5%
with probability 1−�=80%. The figure shows that fairly
accurate distances can be obtained using reasonably
small sample sizes.

Missing Taxa
Suppose TA and TB are trees with taxon sets A and

B. Let p and q denote probability mass functions on
characters induced by TA and TB, respectively. Very
commonly A �=B and A∩B �=∅ but many tree-metrics
cannot be computed under these assumptions. We
consider two approaches for computing distances when
taxon sets differ between trees.

Common taxa method.—The analysis is restricted to A∩B
by cropping the trees down to the common taxon set.
The resulting reduced trees can then used to obtain the
distance measures considered in this article.

Augmentation method.—This method can only be used for
our probabilistic distance measures and does not apply
to the BHV metric. The strategy here is that we extend the
definition of p from �|A| to �|A∪B| in such a way that the
extended distribution is uniform on �|B\A|. This is done
as follows. Any element s∈�|A∪B| can be decomposed
into three parts corresponding to the taxa in each of the
sets A\B, A∩B, and B\A and these parts are denoted
sA\B, sA∩B, and sB\A, respectively. Since there are |�||B\A|
possibilities for sB\A, the uniform assumption implies
that the probability of each possibility is |�|−|B\A|. If the
extension of p to �|A∪B| is denoted pA∪B, then we define

pA∪B(s)=pA∪B(sA\B,sA∩B,sB\A)= p(sA\B,sA∩B)

|�||B\A|

for all s∈�|A∪B| where p(sA\B,sA∩B) denotes the
original distribution on �|A|. Probabilistic distances
between TA and TB can be computed by extending p
and q to A∪B and basing the distance on these extended
distributions. The uniform distribution is used as it
represents a condition of maximal uncertainty of the
position on the trees of the missing taxa.

RESULTS

We now look at properties of the probabilistic distance
measures in several scenarios. The aim is to illustrate
possible advantages and disadvantages in comparison
to existing metrics, especially the BHV metric.

Scaling Edges
We consider two trees T1 = (�1,�1) and T2 = (�2,�2) on a

shared set of n taxa, where �i and �i are the topology and
vector of edge lengths on the trees respectively. Here the
two topologies were sampled from a Yule distribution
and the edge lengths were sampled from a Gamma
distribution with mean 0.1 and variance 0.005. The edge
lengths on both trees were then scaled by a factor s and
the quantity

d
(
(�1,s�1),(�2,s�2)

)

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx080#supplementary-data
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FIGURE 2. JS distance and BHV metric between two random
16-taxon trees T1 and T2 with branch lengths scaled by a factor s.

was computed for different values of s using the
probabilistic distances and the BHV metric: here s�i is
the vector of edge lengths �i multiplied by s. Dis-
tances were calculated using the two-state symmetric
substitution model. Figure 2 shows how the Jensen–
Shannon (JS) metric does not behave like the BHV metric
under this scaling. Note that the absolute values of JS
and BHV distances cannot be compared directly (in
fact the BHV axis has been rescaled). As we make the
edge lengths on both trees increasingly long, the BHV
metric increases linearly. However, under the same limit,
the distribution of sequence data at each leaf becomes
independent of the distribution at any other leaf, and
so (due to saturation) both trees give rise to the same
distribution on characters under this limit. Therefore,
the probabilistic distance between the trees reduces to
zero as s increases whereas BHV increases linearly. For
values of s which are more meaningful from a biological
perspective (e.g., s between zero and five) the JS metric
also depends non-linearly on s. Hellinger distance
and Kullback–Leibler divergence behave similarly to
JS distance. This clearly demonstrates the fundamental
difference between probabilistic distances and existing
distances which use edge-length information.

Probabilistic distances behave differently from
existing metrics when the trees contain long edges. This
is particularly relevant to situations when trees might be
subject to long branch attraction artefacts. To illustrate
this, we consider trees in the so-called Felsenstein zone
and Faris zone (Felsenstein 2008). The trees are shown
in Figure 3b. Each represents an alternative hypothesis
in the presence of two long edges. As the edge length
s increases, the probabilistic distances between the
trees decrease to a constant, as shown in Figure 3a. In

contrast, the BHV distance does not vary with s. The
probabilistic distances correctly capture the fact that
distinguishing one tree from the other as s increases
is difficult since they induce similar distributions on
sequence data.

Missing Taxa
We investigate the effect of missing taxa on tree

distances by first considering a tree with 100 taxa,
again with topology sampled from a Yule distribution.
Two copies of this topology were made and then trees
constructed by assigning edge lengths independently to
each topology from a Gamma distribution with mean
0.1 and variance 0.005. Each tree was then subjected
to random deletions of the same number of taxa. By
repeating the random deletion many times on the fixed
pair of trees, and computing the distance each time,
we obtain a distribution of distances between the two
trees for a given proportion of deletion on each tree;
see Figure 4. We also looked at the effect of random
deletions of the same number of taxa from two trees with
different topologies: the first being another tree with
100 taxa and the second being determined by applying
10 random subtree prune and regraft (SPR) operations
to the first; see Figure 5. In both figures, we compare
the augmentation method using Hellinger distance with
the common taxa method using the BHV metric. The
augmentation method cannot be applied to the BHV
metric, since the method is intrinsically probabilistic.

The figures show that as the number of missing
taxa increases, the Hellinger distance increases towards
its upper bound of 1 and the BHV metric decreases.
The decrease in the BHV metric is more substantial
in Figure 4 where both initial trees have the same
topology (before deletions). These trends were observed
in several replicate experiments and in different sizes of
trees; results are given in the Supplementary Appendix
available on Dryad. Overall these figures show a
desirable property of using the augmentation method
over the common taxa method, namely that distances
between trees increase as we have more uncertainty
about the trees due to missing taxa. The probabilistic
distance measures with common taxa method behave
similarly to the BHV metric with the same method:
results obtained with the Hellinger distance and
common taxa method are given in the Supplementary
Material available on Dryad.

Incorporating Substitution Model Parameters
We now investigate the distribution of distances

calculated over biologically plausible trees and their
substitution parameters for an experimental data set of
primate DNA data (Huelsenbeck and Ronquist 2001).
We analyzed the data set using the PHYML program
(Guindon and Gascuel 2003) assuming the GTR model
with Gamma rate heterogeneity. This gave us the
maximum likelihood (ML) tree and its model parameters

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx080#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx080#supplementary-data
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FIGURE 3. a) Hellinger distance between the two trees shown in b), as a function of s, the length of the long pendant edges. The BHV distance
does not vary with s.
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FIGURE 4. Sampling distribution of distance between two trees for different levels of random deletions of taxa using a) augmented method
with Hellinger distance, and b) common taxa method with the BHV metric. The initial pair of trees have the same 100 taxa with the same topology
but different (random) edge lengths. The dashed horizontal line is the distance/metric between the initial pair of trees (before any deletions).

θML together with a set of 100 bootstrap replicates of
trees Ti, each with their (ML) model parameters θi.
For each pair of trees in the bootstrap sample, we
calculated the Hellinger distance between trees using
the same (ML) model parameters, dH((Ti,θML),(Tj,θML))
and between trees using the tree-parameter pairs,

dH((Ti,θi),(Tj,θj)). Pairwise plots of these measures are
given in Figure 6. It is clear that the distances are
nearly always increased when taking proper account of
the substitution parameter values. Similar results were
obtained for Kullback–Leibler divergence and Jensen–
Shannon distance.
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FIGURE 5. Sampling distribution of distance between two trees for different levels of random deletions of taxa using a) augmented method with
Hellinger distance, and b) common taxa method with the BHV metric. Both trees have 100 taxa with different (random) edge lengths, with one
tree generated at random and the other tree determined using 10 subsequent SPR operations. The dashed horizontal line is the distance/metric
between the initial pair of trees (before any deletions).

FIGURE 6. Comparison of Hellinger distance between pairs of
trees Ti and Tj using overall ML substitution parameters θML with that
using individual ML substitution parameter θi. The trees used are ML
trees T1,...,T100 obtained from 100 bootstrap replicates of the primate
data set.

Phylogenetic Islands
The term phylogenetic island has been used to refer to

modes in multimodal posterior distributions, especially
when these modes correspond to distinct tree topologies.

In this section, we study two data sets for which
posterior samples have previously been found to contain
distinct clusters of trees when the samples are analyzed
with metrics based on topological differences between
trees. We compute probabilistic distances between trees
in posterior samples and perform multidimensional
scaling (MDS) using these distances (Hillis et al. 2005).
This leads to contrasting probabilistic interpretations of
the results for the two data sets.

The first data set consists of 1949 nucleotides from 27
tetrapod species (Hedges et al. 1990). The alignment was
analyzed in MrBayes (Huelsenbeck and Ronquist 2001)
using the GTR model with Gamma rate heterogeneity.
The analysis used a burn-in of 1 million iterations
followed by another 1 million iterations, sampled
every 1000 iterations, in order to obtain a posterior
sample of 1000 trees Ti and their associated model
parameters θi, i=1,...,1000. The Hellinger distance was
estimated for each pair (Ti,θi),(Tj,θj), i �= j, and these
distances were analyzed with MDS. The results are
shown in Figure 7a. The second data set consisted
of 1485 nucleotides from 17 dengue virus serotype
4 sequences (Drummond and Rambaut 2007). This
alignment was analyzed using a GTR model with
Gamma rate heterogeneity and invariant sites using an
uncorrelated lognormal distributed relaxed molecular
clock. The BEAST software was used to perform the
analysis (Drummond and Rambaut 2007), using an xml
file provided with the software, and 500 pairs (Ti,θi) were
sampled from the posterior. Figure 7b shows the results
of applying MDS to the Hellinger distances between
these pairs.
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FIGURE 7. MDS of the pairwise Hellinger distance between a) posterior sample of 1000 trees from the tetrapod data set under GTR+� model
and b) posterior sample of 500 trees from dengue fever data set under GTR+�+I substitution model with uncorrelated lognormal-distributed
relaxed molecular clock.

Previous analyses of these data sets have revealed
distinct clusters in posterior samples when distances
are measured using topological information alone.
Whidden et al. (2015) found clusters in the tetrapod trees
using the SPR metric. For the dengue fever sequences,
Kendall and Colijn (2015) considered a family of metrics
parametrized by 	∈[0,1]. In the case 	=0 the metric
retains only topological information, and using this
metric to perform MDS reveals several distinct clusters
in the posterior sample, described by Colijn and Kendall
as phylogenetic islands. A figure showing MDS with the
Kendall–Colijn metric is contained in the Supplementary
Material available on Dryad. MDS with the unweighted
Robinson-Foulds metric gives similar results for this data
set.

The MDS results obtained using the Hellinger distance
differ for the two data sets. For the tetrapod data
set, the MDS plot shows distinct clusters of trees.
The three clusters correspond to distinct topological
regions in tree-space. On the other hand, MDS for the
probabilistic distances between dengue fever trees did
not reveal any clusters in the posterior sample, as shown
in Figure 7b. The clusters obtained with the Kendall–
Colijn metric do not correspond to separate regions
in this plot (see Supplementary Material available on
Dryad). As seen in previous examples in this article,
two trees with different topologies can induce similar
distributions on sequence data for particular choices
of edge lengths and substitution model parameters.
The same phenomenon is at play for the dengue fever
trees: although the posterior sample contains distinct
clusters of topologies, trees in different clusters are in
fact giving rise to similar distributions of nucleotides.
The interpretation of the results is therefore different

in the two cases. First, for the tetrapod data, it appears
that a single tree together with the GTR model and
Gamma rate heterogeneity is not able to explain the
information in the sequence alignment. One possibility
is that the substitution model is misspecified and a more
sophisticated model is required; a second is that the
data have arisen from a nontree-like process, such as a
mixture of trees. Secondly, for the dengue fever data,
it appears that several distinct groupings of topologies
are consistent with the data, but regarding the trees as
probability models, these groupings lack meaning as
trees in different clusters represent similar distributions
on characters. If more sequence data were available,
and under the assumption that these sequences were
generated by the same evolutionary process, we would
expect the single cluster in Figure 7b to become tighter,
and correspondingly, for the variability in topology in
the posterior sample to be reduced.

Computing times
The time taken to estimate distances depends on the

sample size and hence on the degree of accuracy required
by the user. The time taken to compute all 5565 distances
for the yeast data in Figure 1 was 3 min. Similarly, the
time taken to compute all 4950 distances between trees
in the primate bootstrap sample using the GTR model
with Gamma rate heterogeneity was 151 minutes. In
both cases, the sample size was estimated to achieve
a relative error of �=5% with probability 1−�=80%.
Calculations were performed using a desktop computer
with an Intel(R) Core i7-4790S processor running at
3.20 HGz.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx080#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx080#supplementary-data
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CONCLUSIONS

We have provided methods for computing
probabilistic distances between phylogenetic trees
based on simulation that give qualitatively different
result from the BHV metric and other metrics. Unlike
other methods that are purely based on topology and/or
edge lengths on the trees, these methods are based
on the underlying probability distribution on genetic
sequence data induced by the trees. The methods have
been extended to deal with trees that do not share the
same set of taxa. We envisage probabilistic distances
being used as an alternative to existing metrics in any
postprocessing of phylogenies which involves a metric.

AVAILABILITY

Open source java software is available from
www.mas.ncl.ac.uk/∼ntmwn/probdist and the source
code is also included in the online supplementary
material. The software runs under Mac OSX,
Gnu/Linux, and Windows.
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Data available from the Dryad Digital Respository:
http://dx.doi.org/10.5061/dryad.69bb2.
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