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Abstract. Transmembrane movement of phosphatidyl- 
serine (PS) and various PS analogs at the plasma 
membrane is thought to occur by an ATP-dependent, 
protein-mediated process. To isolate mutant CliO cells 
defective in this activity, we first obtained conditions 
which inhibited the endocytic, but not the non- 
endocytic pathway of lipid internalization since PS 
may enter cells by a combination of these two path- 
ways. We found that acidic treatment of cells, which 
blocks clathrin-dependent endocytosis, enhanced the 
energy-dependent uptake of 1-palmitoyl-2-(6-[{7- 
nitrobenz-2-oxa-l,3-diazol-4-yl}amino]caproyl-sn- 
glycero-3-phospboserine (C6-NBD-PS) in CHO cells 
from donor vesicles (liposomes) by about twofold. 
Control experiments demonstrated that the enhanced 
uptake of C6-NBD-PS at acidic pH was not due to: 
(a) an increase in the capacity of the plasma membrane 
to incorporate C6-NBD-PS from the donor vesicles; 
(b) a decrease in the rate of loss of C6-NBD-PS from 
the cells; or (c) fusion or engulfment of the donor 
vesicles. When cytosolic acidification (to pH 6.3) was 
imposed without acidification of the extracellular me- 

dium, C6-NBD-PS uptake by intact cells was increased 
by about 50% compared to control values determined 
in the absence of acidification. These results suggested 
that a protein and energy dependent system(s) for 
transbilayer movement of the fluorescent PS was stim- 
ulated by cytosolic acidification. 

A screening method for mutant cells defective in the 
non-endocytic uptake of fluorescent PS analogs with 
replica cell colonies at acidic pH was then devised. 
After selection of mutagenized CHO-K1 cells by in 
situ screening, we obtained a mutant cell line in 
which uptake of fluorescent PS analogs was reduced to 
about 25 % of the wild type level at either pH 6.0 or 
7.4. Control experiments demonstrated that the re- 
duced uptake of fluorescent PS analogs in the mutant 
cells was unrelated to multidrug resistance, and that 
endocytosis of another plasma membrane lipid marker 
occurred normally in the mutant cells. These results 
suggested that a non-endocytic pathway responsible for 
uptake of fluorescent PS analogs was specifically af- 
fected in the mutant cells. 

T 
HE membranes of all mammalian cells contain numer- 
ous classes of glycerolipids and sphingolipids. How- 
ever, these molecules are not randomly distributed in 

all intracellular membranes, but rather, different organelles 
have different lipid compositions (reviewed in White, 1973; 
Voelker, 1991). Furthermore, an asymmetric distribution of 
lipid types across the membrane bilayer is sometimes ob- 
served, particularly in the plasma membrane where the 
choline-containing phospholipids, phosphatidylcholine, and 
sphingomyelin, are highly enriched on the exoplasmic leaflet 
of the membrane bilayer while the aminophospholipids such 
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as phosphatidylserine (PS) ~ and phosphatidylethanolamine 
are enriched on the cytoplasmic leaflet (reviewed in Schroit 
and Zwaal, 1991; Devaux, 1992; Zachowski, 1993). Al- 
though the physiological significance of lipid asymmetry is 
still unclear, a number of plausible roles for lipid asymmetry 
have been suggested. For example, in model membrane sys- 
tems it has been shown that PS or phosphatidylethanolamine 

1. Abbreviations used in this paper: ABS, acetate-buffered saline containing 
20 mM Na acetate/acetic acid, 137 mM NaCI, 2.7 mM KCI, 0.32 mM 
Na2HPO4, 1.3 mM CaCI2, 0.8 mM MgSO4 and 5.5 mM D-glucose; C6- or 
Ct2-NBD, 6- or 12-[(7-nitrobenz-2-oxa-l,3-diazol-4-yl)amino]caproyl or 
dodecanoyl; C~-NBD-PS, 1-palrnitoyl-2-C6-NBD-sn-glycero-3-phospho- 
serine; I-C6-2-CI2-NBD-PS, l-hexanoyl-2-Ci2-NBD-sn-glycero-3-phos- 
phoserine; C6-NBD-SM, N-C6-NBD-sphingosylphosphoryleholine; DOPC, 
dioleoyl phosphatidylcholine; HBS, Hepes-butfered saline containing 20 
mM Hepes/NaOH, 137 mM NaCI, 2.7 mM KCI, 0.32 mM Na2HPO4, 1.3 
mM CaCI2, 0.8 mM mgSO4 and 5.5 mM D-glucose; HMEM, Hepes- 
buffered MEM; PS, phosphatidylserine. 
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are fusogenic (reviewed in Diizgiines et al., 1987). Thus, the 
preferential distribution of these phospholipids at the cyto- 
plasmic face of membranes may be important in promoting 
intracellular fusion events during transport of intracellular 
vesicles, and in preventing unnecessary fusion between ceils. 
The asymmetric distribution of PS at the plasma membrane 
may also be relevant to activation of protein kinase C which 
plays a central role in signal transduction (Nishizuka, 1992). 
In addition, it is interesting to note that when certain cell 
types lose their asymmetric distribution of PS and that lipid 
is exposed on the cell surface, they are efficiently cleared by 
macrophages, suggesting that cell surface PS molecules may 
serve as one of the markers of dying cells (Savill et al., 
1993). It has been demonstrated that PS exposure on mem- 
branes accelerates formation of tenase and prothrombinase 
complexes, thereby activating the coagulation cascade in 
blood clotting processes (Schroit and Zwaal, 1991; Esmon, 
1993). These examples indicate that the regulation of lipid 
asymmetry may have significant physiological consequences 
and thus represents an important problem in cell and mem- 
brane biology. 

In artificially generated lipid vesicles the transbilayer 
movement ("flip/flop") of charged phospholipids is very slow 
(tt/2 =hours to days; reviewed in Dawidowicz, 1987), pre- 
sumably because transport of the charged head group 
through the hydrophobic core of the membrane bilayer rep- 
resents a high energy barrier. By contrast, in biological 
membranes, certain phospholipids can undergo rapid trans- 
bilayer movement, suggesting the existence of a facilitated 
transport mechanism for this process (reviewed in Voelker, 
1991; Devaux, 192; Zachowski, 1993). Indeed, a protein- 
mediated transport for PS was originally proposed to explain 
the inward transbilayer movement of a spin-labeled PS ana- 
log in human erythrocytes which could be inhibited by ATP 
depletion (Seigneuret and Devaux, 1987). Subsequent re- 
ports documented the facilitated transbilayer movement of 
PS or other analogs, in various cell types (reviewed in 
Schroit and Zwaal, 1991; Devaux, 1992; Zachowski, 1993). 
The ATP-dependent PS transport system is unlikely to be a 
simple passive transporter facilitating an equal distribution 
of PS between both leaflets of the plasma membrane bilayer, 
but rather seems to mediate the active accumulation of PS 
from the exoplasmic leaflet to the cytoplasmic one. It is 
thought that this transport system is involved in the main- 
tenance of PS asymmetry. 

Although several recent reports have suggested the iden- 
tification of the PS transporter (Morrot et al., 1990; Schroit 
et al., 1990; Zimmerman and Daleke, 1993), the molecular 
characteristics of the PS translocating system are not yet un- 
derstood, and, in particular, little is known about the physio- 
logical factors which regulate the transporter. In addition, al- 
though a genetic approach would be useful for investigating 
PS transport, to date there are no reports on mutant cells 
defective in PS transport. Since plasma membrane PS can 
enter cells in principle by a combination of endocytic and 
non-endocytic pathways, conditions in which the former is 
inhibited are required when one wants to select mutant cells 
defective in the non-endocytic pathway. In the present study, 
we examined the effects of pH on the uptake of 1-palmi- 
toyl-2-Ct-NBD-sn-glycero-3-phosphoserine (C~-NBD-PS), 
a well-characterized probe for the PS-translocating system, 
because treatment of the cells at low pH blocks clathrin- 

dependent endocytosis (Davoust et al., 1987; Sandvig et al., 
1987; Heuser, 1989). We found that acidification of the cyto- 
sol stimulated Ct-NBD-PS uptake in CHO-K1 fibroblasts 
and used this result as a basis for developing a screening 
method for isolation of CHO mutants defective in the non- 
endocytic uptake of fluorescent PS analogs. 

Materials and Methods 

Cell Culture 
CHO-K1 fibroblasts (ATCC CCL 61; American Type Culture Collection, 
Rockville, MD) were cultured in Ham's F-12 medium (Biofluids Inc., Rock- 
ville, MD) supplemented with 2 mM L-glutamine 5% fetal bovine serum, 
penicillin G (100 U/ml), and streptomycin sulfate (100/~g/ml). For bio- 
chemical studies, 8 x 105 cells in 5 ml of medium were seeded into each 
60-mm-diam tissue culture dish and grown for 24 h. For fluorescence mi- 
croscopy, cells were grown on 25-ram-diameter glass coverslips (No. 1 
thickness), placed inside of 35-mm-diam tissue culture dishes. For micros- 
copy, cells were grown to =50-75 % confluency. For measurements of cyto- 
solic pH, 5 × 10 s cells in 2 ml of culture medium were seeded into each 
35-mm-diam culture dish containing a rectangular (4 x 9 mm) glass cover- 
slip and cultured for 24 h. All cells were grown at 37°C in a water-saturated 
atmosphere of 5% CO2 in air. However, when UPS-1 mutant cells were 
characterized, the mutant and the control cells were routinely maintained 
at 330C. A multidrug-resistant CHO cell variant, ALLN r5° cell line 
(Sharma et al., 1992) was kindly provided by Dr. Robert Simoni (Depart- 
ment of Biological Sciences, Stanford University, Palo Alto, CA). The sen- 
sitivity of CHO cells to colchicine was examined as described previously 
(Rosenwald and Pagano, 1994). 

Lipids and Miscellaneous Reagents 
Ct-NBD-SM was from Molecular Probes, Inc. (Eugene, OR). Other 
NBD-phospholipids and dioleoyl phosphatidylcholine (DOPC) were from 
Avanti Polar Lipids, Inc. (Alabaster, AL). All lipids were stored in CHCI3 
at -20°C. NAN3, 2-deoxy-o-glucose, NEM, amiloride, and colchicine 
were purchased from Sigma Chemical Co. (St. Louis, MO); nigericin was 
from Calbiochem-Novabiocbem Corp. (La Jolla, CA). 

Preparation of Fluorescent Phospholipid 
Donor Vesicles 
Small unilamellar vesicles containing C6-NBD-PS/DOPC (1:2, mol/mol), 
(or Ct-NBD-PS/C~-NBD-sphingosylphosphorylcholine[SM]/DOPC [1:1:2, 
mol/mol/mol]) were typically prepared by ethanol injection (Kremer et al., 
1977) as follows. Aliquots of the appropriate lipid stock solutions were 
mixed in a glass tube and dried under N:. The dried lipids (0.6 #mol total 
lipid [0.8/~mol for DOPC/C6-NBD-PS/C6-NBD-SM]) were then dissolved 
in 50 txl absolute ethanol, and this solution was injected into 5 ml of 
deionized water while vortex mixing. An equal volume of a twofold concen- 
trated saline solution at the appropriate pH value was then added. The final 
concentration of C6-NBD-PS in the uptake buffer was 20 t~M. 

Incubation of C~-NBD-Phospholipids with Cells and 
Analysis of Fluorescent Lipids 
Unless noted otherwise, all manipulations were performed at 37°C. 
Monolayers cultures were rinsed twice with 2 ml of HBS (pH 7.4) or ABS 
(pH 6.0), and then further incubated in 2 ml of the same buffer for 5 min. 
The cells were then incubated with 1 ml of donor vesicles (20/~M C6- 
NBD-PS/ml) in HBS (pH 7.4) or ABS (pH 6.0) for 10 min. The monolayer 
was then rinsed with 1 ml of ice-cold defatted 2% BSA/Hepes-buffered 
MEM (HMEM) and then incubated (3 × 10 mitt) with 2 ml of defatted 2% 
BSA/HMEM at 4°C to remove Ct-NBD-PS from the cell surface (referred 
to as "back-exchange;" Mohandas et al., 1982; Martin and Pagano, 1987; 
van Meer et al., 1987). The cells were then rinsed three times with 4 ml 
of ice-cold PBS, and harvested in 2.5 ml of PBS by scraping. The cells were 
collected by centrifugation (300 g, 5 rain at 4°C), washed with 3 ml of PBS, 
and resuspended in 900 #1 of ice-cold PBS. Aliquots were removed for pro- 
tein content determination (Lowry et al., 1951), using BSA as a standard 
and for lipid extraction (Bligh and Dyer, 1959), using 0.9% NaCI and 10 
mM HC1 in the aqueous phase. The relative fluorescence of the lipid ex- 
tracts was measured using an SLM-8000C spectrophotofluorometer (SLM/ 
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Aminco, Urbana, IL) and the absolute amounts of fluorescent lipid were 
determined from calibration curves generated from known amounts of 
C6-NBD-PS. 

In experiments using lipid vesicles containing both C6-NBD-PS and 
-SM, lipid extracts were analyzed by TLC on silica gel 60 plates (E. Merck, 
Darmstadt, FRG) using CHCI3/CH3OH/CH3COOH/H20 (90:40:12:2, 
vol/vol/vol/vol) as the developing solvent. The chromatograms were ob- 
served under UV illumination and the individual fluorescent lipids were 
quantified by image processing (Koval and Pagano, 1989). 

ATP Depletion and NEM Treatment of 
Cell Monolayers 
To deplete intracellular ATP, glucose-free ABS (pH 6.0) and I-IBS (pH 7.4) 
containing 5 mM NaN3 and 50 mM 2-deoxy-D-glucose), designated 
ABS +inhib and HBS +inhib, respectively, were used. Monolayer cultures were 
praincubated in ABS +inhib o r  H B S  +inhib for 5 min at 37°C, after which 
incubations were performed with 20 /~M C6-NBD-PS donor vesicles in 
ABS +inhib or HBS +inhib. To determine cellular ATP levels CHO monolayers 
incubated in various media for 10 rain at 37°C were harvested in ice-cold 
PBS by scraping, and the ATP levels in aliquots of the cell suspension ('~1 t~g 
protein) were determined using a luciferin-luciferase assay kit (Technical 
Bulletin No. BSCA-1; Sigma Chemical Co., St. Louis, MO), except that a 
scintillation counter (Phillippy, 1994) was used in place ofa bioluminometer. 

To examine the effects of NEM treatment on C6-NBD-PS uptake, cells 
were incubated with 2 ml of HMEM containing 0.2 mM NEM for 30 rain 
at 4"C, and subsequently incubated with 2 ml of HMEM containing 0.2 mM 
dithiothreitol for 5 rain at 4°C to quench unreacted NEM. The NEM- 
treated cells were then rinsed twice with ABS (pH 6.0) or HBS (pH 7.4), 
incubated in the same medium for 5 rain at 37°C, and the uptake of C6- 
NBD-PS was determined as described above. 

Fluorescence Microscopy 
Cells were incubated with fluorescent lipids as described above, except that 
the volume of the solutions used was reduced by one half. After back ex- 
change, the cells were rinsed three times with 1 ml of ice-cold HMEM and 
observed and photographed under the fluorescence microscope. Micros- 
copy was performed with a Zeiss IM-35 inverted microscope equipped with 
a Planapo 100x (1.3 NA) objective and a filter pack appropriate for NBD 
fluorescence. All exposures were 4 s using Kodak Tri-X film which was 
processed at ASA 1600 with Diafine developer. 

Monitoring Cytosolic pH 
Cytosolic pH was monitored with BCECE a pH-sensitive fluorescent dye 
(Rink et al., 1982; Negulescu and Machen, 1990). All manipulations were 
at 37°C unless noted otherwise. Cell monolayers were rinsed with 1 ml of 
serum-free F-12 medium and then incubated in the dark for 15 rain at room 
temperature with 2 ml of serum-free F-12 medium containing 4 /~M 
BCECF-acetoxylmethyl ester (Molecular Probes Inc., Eugene, OR). The 
latter was prepared from a 2 mM BCECF acetoxmethyl ester/dimethyl- 
sulfoxide solution. The cells were then rinsed twice with 1 mi of serum-free 
F-12 medium, and then further incubated with 2 ml of serum-free F-t2 
medium for 15 min at room temperature in the dark to generate intracellular 
BCECF from the BCECF acetoxymethyl ester. 

When cytosol acidification was imposed by the NH3 load and release 
method (Boron, 1983) the BCECF-loaded monolayers were rinsed with 1 
ml of HBS (pH 7.4) containing 30 mM NI-hCI and incubated in 1 ml of 
the same buffer for 5 rain. Then, after attachment to a positioning device 
(Di Virgilio et al., 1988), the cover slip was transferred to a cuvette contain- 
ing 2.2 ml of 30 mM NH4CI in HBS (pH 7.4) and fluorescence intensity 
(~x = 490 urn; )~m = 542 nm) of the monolayer was monitored with a 
spectrofluorometer. To impose an NH3 gradient, the coverslip with holder 
was transferred to another cuvette containing "exchange medium" (2.2 ml 
HBS, pH 7.4, in the presence or absence of 1 mM amiloride), and the 
monitoring was resumed. In some cases, 30 mM NI-14C1 was also added to 
the exchange medium so as not to impose an NH3 gradient. For calibration 
of the cytosolic pH, the BCECF-loaded monolayer was incubated in 20 mM 
sodium phosphate buffer containing 50 mM KCI, 0.8 mM MgSO4, 0.1% 
glucose, and 10 t~M nigericin at various pH values. Intraceilular BCECF 
was normalized by measurement of fluorescence intensity at pH-insensitive 
wavelengths (~x = 439 nm; hem = 542 nm). 

Isolation of CHO Mutant CeU Line, UPS-1 
CHO-K1 cells were mutagenized with ethyl methanesulfonate and replica 
colonies of the cells on polyester disks were formed at 33°C as described 
previously (Hanada et al., 1990; Raetz et al., 1982). After incubation of 
replica disks at 39°C for 1 d in 5 ml modified F-12 containing 5% fetal bo- 
vine serum, the disks were washed three times with 4 ml ABS and then incu- 
bated in 4 ml ABS containing 20 ~M 1-C6-2-(12-[7-nitrobenz-2-oxa-l,3- 
diazol-4-yl)amino]dodecanoyl-sn-glycero-3-phosphoserine (1-C6-2-(CI~- 
NBD)-PS)/40 pM DOPC for 1 h at 37°C. The disks were then transferred 
to dishes containing 10 ml of ice-cold PBS containing 50 mM Na2S~O4, 
1.3 mM CaCI2, and 0.8 mM MgSO4 for 30 s and washed four times with 
5 ml of ice-cold PBS containing 1.3 mM CaCI2 and 0.8 mM MgSO4. This 
procedure destroys extracellular and cell surface (but not intraceUular) 
NBD-fluorescence (Mclntyre and Sleight, 1991). After the disks were dried 
the fluorescent signal on the disks was photographed under UV illumination 
and subsequently colonies on the disks were visualized by Coomassie blue 
staining (Raetz et al., 1982). Candidates for mutant clones were identified 
as colonies showing faint fluorescent spots and retrieved from the master 
dish maintained at 33°C with cloning cylinders. A mutant clone, UPS-I, 
was isolated in this manner and purified by limiting dilution. The phenotype 
of UPS-1 cells, described in this paper, has been stable for more than three 
months since the isolation of this clone. 

Results 

Effects of pH on C~-NBD-PS Uptake 
We first wanted to find conditions which inhibited endocytic 
uptake but not the non-endocytic uptake of fluorescent PS 
analogs. Since acidic treatment of cells had been shown to 
block clathrin-dependent endocytosis (Davoust et al., 1987; 
Sandvig et al., 1987; Heuser, 1989), we examined the effect 
of pH on C6-NBD-PS uptake by CHO-K1 fibroblasts. CHO 
cell monolayers were incubated with C6-NBD-PS/DOPC 
vesicles for 10 min at 37°C at various pH values, and subse- 
quently back exchanged at 4°C to remove fluorescent lipid 
from the outer leaflet of the plasma membrane bilayer. The 
amount of intraceUular fluorescent lipid was then determined 
by lipid extraction and analysis. Interestingly, C6-NBD-PS 
uptake was enhanced at acidic pH (Fig. 1). The uptake ap- 
proached a plateau value with decreasing pH, and at pH 6.0 
was more than twice that at pH 7.4, the typical pH for cell 
culture (Fig. 1 A). More than 95 % of the fluorescent lipid 
extracted from the cells following incubation at low pH was 
C6-NBD-PS as determined by TLC analysis (data not 
shown), demonstrating that the low pH incubation condi- 
tions did not produce large amounts of other fluorescent 
lipids which might be preferentially incorporated by the 
cells. The uptake of C6-NBD-PS was nearly linear during 
the first 10 min of incubation with 20 #M C6-NBD-PS at 
either pH 6.0 or 7.4, and was directly proportional (at 10 
min) to C6-NBD-PS concentration, up to about 40 ~tM, at 
either pH (Fig. 1, B and C). Based on these data, we adopted 
standard incubation conditions in which 20 #M C6-NBD- 
PS was incubated with cells for 10 min at 37°C. Non-specific 
permeabilization of the plasma membrane did not occur un- 
der these conditions since more than 95 % of the cells ex- 
posed to pH 6.0 (or 7.4) excluded trypan blue. 

Inhibition of C6-NBD-PS Uptake 
Translocation of various PS analogs across the plasma mem- 
brane bilayer has been studied in various cell types and is 
thought to be a protein-mediated process which is ATP- 
dependent and sensitive to sulfhydryl reagents (reviewed in 
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Figure 1. Effect of pH on 
C6-NBD-PS uptake in CHO- 
K1 cells. (A) Cells were incu- 
bated with 20 #M C6-NBD- 
PS for 10 min at 37°C in HBS 
(o) or ABS (e) at the indi- 
cated pH and the uptake quan- 
tiffed. (B) Time course for 
uptake of 20 #M C6-NBD-PS 
in I-IBS (pH 7.4) or ABS (pH 
6.0) at 37°C. (C) Concentra- 
tion dependence of C6-NBD- 
PS uptake. Cells were incu- 
bated in HBS (pH 7.4) or ABS 
(pH 6.0) with C6-NBD-PS/ 
DOPC (1:2, mol/mol) donor 
vesicles to give the indicated 
concentration of C6-NBD-PS. 

Schroit and Zwaal, 1991; Devaux, 1992; Zachowski, 1993). 
To learn whether C6-NBD-PS uptake at acidic pH was also 
protein mediated, we studied the effects of various inhibitors 
on C6-NBD-PS uptake. Cells were pretreated with deoxy- 
glucose and NaN3 in glucose-free medium at pH 6.0 or 
7.4, and then incubated with C6NBD-PS donor vesicles in 
the presence of the inhibitors. Under these conditions C6- 
NBD-PS uptake was about 20% of that seen in control cells 
at either pH (Fig. 2). The ATP level in cells incubated in 
ABS (pH 6.0) was 93 + 12% (n = 4) of that in cells in- 
cubated in HBS (pH 7.4), while incubation of cells in 
ABS ÷~"h~b or HBS +~"h~b for 10 min at 37°C reduced cellular 
ATP levels to about 10% of control values. NEM-treatment 
also clearly inhibited C6-NBD-PS uptake (Fig. 2) although 
uptake in NEM-treated cells might be overestimated since 

Figure 2. Inhibition of C6-NBD-PS uptake. Untreated control 
cells, ATP-depleted, or NEM-treated cells (see Materials and 
Methods) were incubated with 20 gM C6-NBD-PS in ABS (pH 
6.0) or HBS (pH 7.4) for 10 min at 37°C, and the uptake quantified. 
Uptake at low temperature (10 min at 4°C) in untreated cells was 
also quantified following a 5 min preincubation at 4°C in ABS (pH 
6.0) or HBS (pH 7.4). Values are expressed as a percentage of the 
uptake seen in untreated cells at either pH at 37°C, and are the 
means +SD (n = 3). 

fluorescence microscopy demonstrated that NEM treatment 
induced non-specific permeablization in about 5 % of the 
cells. C6-NBD-PS uptake was almost completely abolished 
at 4°C although transfer of the fluorescent lipid from donor 
vesicles to the plasma membrane readily occurred at 4°C 
(data not shown; see also Martin and Pagano, 1987). These 
results indicated that C6-NBD-PS uptake at pH 6.0, as well 
as pH 7.4, was mediated by an energy-dependent and NEM- 
sensitive system(s). 

Effects of  pH on the Capacity of  the Plasma 
Membrane to Accept C6-NBD-PS and on the Loss of 
C6-NBD-PS from Cells 

We next determined whether the capacity of the outer leaflet 
of the plasma membrane bilayer to accept C6-NBD-PS 
from donor vesicles was pH dependent, since alterations in 
the amount of C6-NBD-PS which could partition into the 
plasma membrane might affect the amount of fluorescent 
lipid incorporated into intracellular membranes. To estimate 
the amount of C6NBD-PS associated with the outer leaflet 
of the plasma membrane bilayer, cells were incubated with 
donor vesicles for 10 min at 37°C at either pH 7.4 or 6.0, and 
then the size of the "back-exchangeable" pool of C6-NBD- 
PS was determined (see Materials and Methods). As shown 

Table L Effect of pH on the Amount of C6-NBD-PS 
Associated with the Outer Leaflet of the Plasma 
Membrane Bilayer 

Cell associated C~-NBD-PS$ 
Back-exchangeable 

pH* -Back-exchange +Back-exchange C6-NBD-PS§ 

(nmol/mg protein) 

7.4 5.99 -4- 0.79 1.73 + 0.03 4.26 
6.0 7.56 + 0.49 3.64 -t- 0.14 3.92 

* CHO-K1 cells were incubated with 20 ~M C6-NBD-PS donor vesicles at the 
indicated pH for 10 rain at 37"C. 

(+Back-exchange) After rinsing with DF-BSA, the cells were subjected to 
the back-exchange protocol (see Materials and Methods), washed with PBS, 
and the fluorescent lipids extracted, quantified, and normalized to cellular 
protein. (-Back-exchange) Values were obtained in the same manner, except 
the back-exchange procedure was omitted. Data represent the means +SD 
(n = 3). 
§ Determined by subtracting the amount of cell-associated C6-NBD-PS ob- 
tained in the presence of back-exchange from that found in the absence of back- 
exchange. 
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in Table 1, the amount of C6-NBD-PS available for back- 
exchange was nearly the same at both pH values. In addition, 
we measured the spontaneous transfer of C6-NBD-PS from 
donor to acceptor vesicles (Nichols and Pagano, 1982), and 
found that the half-time for equilibration between vesicle 
populations at pH 6.0 (t~a ,~ 35 s) was nearly identical to 
that at pH 7.4 (t~ '~ 37 s). 

We also examined the effect of pH on the loss of 
NBD-lipid fluorescence from cells, which might occur 
through degradation and/or secretion of the lipid. Cells were 
labeled with C6-NBD-PS for 10 min at 37°C (pH 7.4), 
back-exchanged at 4°C, and then chased at 37°C in the pres- 
ence of defatted BSA at either pH 6.0 or 7.4. The time course 
for the disappearance of the fluorescent lipid from the cells 
at pH 6.0 was nearly identical to that obtained at pH 7.4 
(data not shown). 

Simultaneous Labeling with C6-NBD-PS 
and C6-NBD-SM 

We examined the possibility that the enhanced uptake of 
C6-NBD-PS under acidic conditions might result from the 
induction of fusion or engulfment of donor vesicles by the 
cells. In these experiments, donor vesicles containing both 
C6-NBD-PS and C6-NBD-SM were used. Previous studies 
using CHO-K1 cells and C6-NBD-SM at neutral pH showed 
that the lipid could be integrated into the outer leaflet of the 
plasma membrane bilayer at low temperature and subse- 
quently be internalized into the cells via endocytosis at 37°C 
(Koval and Pagano, 1989). Furthermore, acidic treatment 
of cells is known to block clathrin-dependent endocytosis 
(Davoust et al., 1987; Sandvig et al., 1987; Heuser, 1989). 
Thus, if the pathway of C6-NBD-SM uptake by the cells un- 
der acidic conditions was limited to endocytosis, acidic 
treatment would inhibit C6-NBD-SM uptake. Conversely, if 
fusion or engulfment of donor vesicles by the cells caused 
the enhanced uptake of C6-NBD-PS, the acidic treatment 
would induce enhanced uptake of C6-NBD-SM as well as 
C6-NBD-PS from the doubly labeled donor vesicles. As 
shown in Fig. 3, acidic treatment inhibited C6-NBD-SM 
uptake to 40% of control values at pH 7.4, while the uptake 
of C6-NBD-PS was enhanced, as shown in Fig. 1 A. These 
results demonstrate that acid-induced fusion or engulfment 
of the donor vesicles by the cells was negligible under the 
experimental conditions used in this study. The enhanced 
C6-NBD-PS uptake at acidic pH was also not due to a sec- 
ondary effect on the inhibition of endocytosis since a hyper- 
tonic treatment which blocks clathrin-dependent endocyto- 
sis (Daukas and Zigmond, 1985; Heuser and Anderson, 
1989) also reduced C6-NBD-SM uptake, but did not affect 
C6-NBD-PS uptake (Fig. 3). 

lntracellular Distribution of  C6-NBD-PS 

The effect of pH on the intracellular distribution of C6- 
NBD-PS was examined by fluorescence microscopy. When 
the cells were incubated at 37°C and pH 7.4 with C6-NBD- 
PS/DOPC vesicles various intracellular organelles including 
the endoplasmic reticulum and the nuclear envelope were la- 
beled (data not shown; refer to Fig. 7 A). A similar pattern 
of intracellular fluorescence was seen when cells were in- 
cubated at pH 6.0, except that the specimen was more in- 
tensely labeled (data not shown). The intracellular distribu- 

Figure 3. Cellular uptake of fluorescent lipids from donor vesicles 
containing both C6-NBD-PS and C6-NBD-SM. CHO-KI cells 
were preincubated in the indicated media (HBS, ABS, or HBS + 
0.45 M sucrose) for 5 min at 37°C, incubated for 10 min 37°C with 
80 /~M donor vesicles comprised of C6-NBD-PS/C6-NBD-SM/ 
DOPC (1:1:2, mol/mol/mol) in the indicated media, and then sub- 
jected to back exchange at 4°C. The cellular lipids were then ex- 
tracted, separated by TLC, and the amount of C6-NBD-PS and 
C6-NBD-SM quantified (see Materials and Methods). Data are 
the means +SD (n = 3). 

tion of C6-NBD-PS can best be explained by a mechanism 
in which this fluorescent lipid is internalized by transbilayer 
movement at the plasma membrane rather than by endocyto- 
sis (Sleight and Pagano, 1985; Martin and Pagano, 1987; 
Kobayashi and Arakawa, 1991). Once present at the cytosolic 
leaflet of the plasma membrane, C6-NBD-PS can transfer 
into other intracellular membranes since it exhibits rapid 
spontaneous transfer between membranes in vitro (Tanaka 
and Schroit, 1986). 

Effects of Cytosolic Acidification on 
C6-NBD-PS Uptake 

Incubation of cells with acidic medium is known to cause 
acidification of the cytosol (UAllemain et al., 1984; Davoust 
et al., 1987). Indeed, we observed that the cytosolic pH ap- 
proached 6.0 after incubation of the CHO-K1 cells in ABS 
(pH 6.0). To learn if C6-NBD-PS uptake could be enhanced 
by intraceUular acidification in the absence of extracellular 
acidification, we next used a "NH3 load and release" pro- 
tocol (Boron 1983). When CHO-K1 cells preincubated in 
HBS (pH 7.4) containing 30 mM NI-LC1 were transferred 
to NHrfree HBS (pH 7.4), the cytosol was rapidly acidi- 
fied to about pH 6.6, however, this value returned to almost 
the original pH within 3 rain (Fig. 4 B). When the NH3- 
loaded cells were transferred to NH3-free medium contain- 
ing 1 mM amiloride, an inhibitor of the Na÷/H ÷ exchanger 
which is the main machinery for pH homeostasis (Grinstein 
et al., 1989), the cytosol was acidified to about pH 6.3, and 
the acidification remained stable for at least 10 min (Fig. 4 
C). As expected, when the NH3-1oaded cells were trans- 
ferred to 30 mM NtLCl-containing HBS (pH 7.4) to elimi- 
nate any NH3 gradient, there was no significant acidification 
of the cytosol even in the presence of amiloride (Fig. 4 D). 

As shown in Fig. 5, when the ceils were incubated with 
C6-NBD-PS under conditions which induced a transient 
acidification of the cytosol, C6-NBD-PS uptake increased 
by about 20 %, compared with the control value determined 
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Figure 4. Cytosolic acidifica- 
tion by NH3 load and release. 
CHO-K1 cell monolayers 
loaded with BCECF were pre- 
incubated in HBS (pH 7.4) 
containing 30 mM NI-I4CI for 
5 min at 37°C and the cyto- 
solic pH was monitored as de- 
scribed (see Materials and 
Methods). At the times indi- 
cated by the arrows the mono- 
layers were transferred to the 
following buffers. (A) HBS 
(pH 7.4) containing 30 mM 
NH4CI; (B) HBS (pH 7.4); 
(C) HBS (pH 7.4) containing 
1 mM amiloride; (D) HBS 
(pH 7.4) containing 30 mM 
NH4CI and 1 mM amiloride. 

without the NH3-gradient or amiloride. Under the condi- 
tions inducing a stable acidification of the cytosol, C6- 
NBD-PS uptake was further enhanced by about 50%. This 
enhancement was not due to "secondary" effects of amilo- 
ride, since addition of amiloride in the absence of a NH3- 
gradient did not affect C6-NBD-PS uptake (Fig. 5). These 
results demonstrate that the C6-NBD-PS uptake was en- 
hanced by acidification of the cytosol even when this oc- 
curred in the absence of acidification of the extracellular 
medium. These results also eliminate the possibility of a 
simple equilibrium mechanism for C6-NBD-PS uptake at 
acidic pH in which protonated PS molecules more easily 

Figure 5. Effects of cytosolic acidification on C6-NBD-PS uptake. 
CHO-K1 monolayers were preincubated in HBS (pH 7.4) contain- 
ing 30 mM NI-I4CI for 5 min at 37°C. The cells were then rinsed 
with 2 ml of I-IBS (pH 7.4) in the presence (+) or the absence ( - )  
of an NH3 gradient and/or 1 mM amiloride, and further incubated 
for 10 min at 37°C in 1 ml of HBS (pH 7.4) containing 20 #M C6- 
NBD-PS donor vesicles in the presence (+) or the absence ( - )  of 
an NH3 gradient and/or 1 mM amiloride. The nature of the cyto- 
solic acidification, determined from the results in Fig. 4, and the 
amount of cell-associated C6-NBD-PS determined after back- 
exchange are shown. Data are the means +SD (n = 3). 

cross the plasma membrane and are subsequently trapped 
there once de-protonation occurs. Such a mechanism is very 
unlikely since acidification of the cytosol in the absence of 
acidification of the extraceUular medium should result in an 
unfavorable transmembrane pH gradient to trap acidic mole- 
cules like C6-NBD-PS in the interior of the cell (Eastman et 
al., 1991). 

Selection of  Mutant Cells Defective in 
Non-endocytic Uptake of  Fluorescent PS Analogs 
under Acidic Conditions 

Taking advantage of our findings that acidic conditions in- 
hibited the endocytic membrane flow and enhanced C6- 
NBD-PS uptake by a non-endocytic pathway in CHO-KI 
cells, we developed a screening system to isolate mutant cells 
defective in the uptake of fluorescent PS analogs by the non- 
endocytic pathway. After formation of replica colonies of 
CHO-K1 cells on polyester disks, the replica disks were in- 
cubated with fluorescent PS analogs under acidic conditions. 
As shown in Fig. 6, fluorescence was associated with colo- 
nies visualized by Coomassie staining whereas there was no 
appreciable fluorescent signal when the incubation was car- 
ried out at 4°C (data not shown) indicating that these proce- 
dures were useful as an in situ assay of fluorescent PS analog 
uptake. 1-C6-2-C~2-NBD-PS was routinely used as the stan- 
dard probe in the screening since we found that 1-C6-2-C~2- 
NBD-PS produced a stronger signal than other fluorescent 
PS analogs including C6-NBD-PS. 

Isolation of  UPS-l, a CHO Mutant Cell Line Defective 
in Uptake of Fluorescent PS Analogs 

After screening about 20,000 colonies of mutagenized CHO- 
K1 cells, we obtained one clone partially defective in uptake 
of 1-C6-2-C,2-NBD-PS and named it UPS-1 (uptake of 
fluorescent PS analogs). Uptake activity of 1-C~-2-C,2- 
NBD-PS in UPS-1 cells at pH 6.0 was only 30% of that of 
the wild type (Table II). To compare energy-dependent up- 
take, we also determined the "ATP-dependent uptake activity" 
by subtracting the activity under ATP-depletion conditions 
from that under standard conditions. The ATP-dependent 
uptake of 1-C6-2-C,2-NBD-PS in UPS-1 cells was less than 
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Figure 6. In situ assay for up- 
take of a fluorescent PS ana- 
log with replica colonies. A 
polyester disk forming replica 
colonies of the wild type CHO 
ceils was incubated with 20 
ttM 1-C6-2-Ct2-NBD-PS at 
pH 6.0 at 37°C for I h. After 
quenching extracellular fluo- 
rescent lipids with Na2S204, 
fluorescence on the disk was 
photographed under UV il- 
lumination (left), and subse- 
quently colonies on the disks 
were visualized by Coomassie 
blue staining (right). 

25 % of the wild type level (Table II). In addition, when C6- 
NBD-PS and 1-oleoyl-C6-NBD-PS were used as probes, 
UPS-1 cells showed similar deficiencies in ATP-dependent 
uptake of these fluorescent PS analogs, while there was no 
difference in uptake of 1-palmitoyl-2-C6-NBD-sn-glycero- 
3-phosphocholine between UPS-1 and the wild type cells. 
Although the PS transbilayer transport system is thought 
to also transport phosphatidylethanolamine (reviewed in 
Schroit and Zwaal, 1991; Devaux 1992; Zachowski, 1993), 
a defect in uptake of 1-palmitoyl-2-C6-NBD-sn-glycero- 
3-phosphoethanolamine in UPS-1 cells was not obvious (Ta- 
ble II) apparently because this probe was not efficiently rec- 
ognized by the PS transbilayer transport system (Colleau et 
al., 1991; Connor et al., 1992). When CHO-K1 cells were 
labeled with 1-palmitoyl-2-C6-NBD-sn-glycero-3-phospho- 
ethanolamine or 1-palmitoyl-2-C6-NBD-sn-glycero-3-phos- 
phocholine at pH 7.4 at 37°C for 10 min, a punctate pattern 
of intracellular fluorescence was observed by fluorescence 
microscopy which was inhibited under acidic conditions 
(data not shown), suggesting that these fluorescent phospha- 

tidylethanolamine and phosphatidylcholine analogs were in- 
ternalized in CHO-K1 cells mainly by the endocytic pathway 
at pH 7.4 at 37°C. Moreover we found that 1-hexanoyl-2- 
C6-NBD-PS was not appreciably incorporated by the wild 
type or UPS-1 cells, supporting the idea that the acyl chain 
composition as well as the nature of polar head group are im- 
portant in determing the transbilayer movement of PS. These 
results suggest that a non-endocytic pathway for fluorescent 
PS analogs was specifically impaired in UPS-1 cells. It 
should also be noted that there was no difference in tempera- 
ture sensitivity of either uptake activity of fluorescent PS 
analogs or cell growth between UPS-1 cells and the wild type 
cells when they were examined at 33 °, 370, and 39°C (data 
not shown). 

A Specific Defect in a Non-endocytic Pathway 
Was Responsible for Uptake of  Fluorescent PS 
Analogs in UPS-1 Cells 

To confirm that the deficiency in UPS-1 cells was restricted 
to the non-endocytic pathway for uptake of fluorescent PS 

Table II. Uptake of Various Fluorescent Analogs of Phospholipids in CHO-K1 and UPS-1 Cells under Acidic 
Conditions 

NBD-lipid uptake activity* 

NBD-lipids Cells ABS ABS +i~'ib ATP-dependent 

1-C6-2-CI2-NBD-PS 

1-Palmitoyl-2-C6-NBD-PS 

1-Oleoyl-2-C6-NBD-PS 

1-Hexanoyl-2-C6-NBD-PS 

1-Palmitoyl-2-C6-NBD-PC* 

1-Palmitoyl-2-C6-NBD-PE§ 

(nmol/mg protein/lO rain) 

CHO-K1 4.00 5 :0 .26  0.56 5- 0.07 3.44 
UPS-1 1.27 5:0 .33 0.48 5:0 .05 0.79 

CHO-K1 2.95 5 :0 .40  0.29 5- 0.10 2.66 
UPS-1 1.19 5 :0 .16  0.40 5 :0 .10  0.79 

CHO-K1 1.28 5 :0 .10  0.29 5 :0 .10  0.99 
UPS-1 0.51 5:0 .03 0.26 5:0 .05 0.25 

CHO-K1 <0.02 not tested - 
UPS-1 <0.02 not tested - 

CHO-K1 0.36 5:0.01 0.10 5:0.03 0.24 
UPS-1 0.35 5- 0.04 0.10 5:0.03 0.24 

CHO-K1 0.78 5:0.26 0.11 5:0.05 0.67 
UPS-I 0.67 5:0.20 0.10 5:0.05 0.57 

* Monolayers of CHO-KI and UPS-1 cells were incubated with 20/~M NBD-lipid donor vesicles at 37°C for 10 min in ABS (pH 6.0) for standard conditions 
or in ABS +~°h~b (pH 6.0) for ATP-depletion conditions. After back-exchange, NBD-lipid fluorescence in the cells was quantified, and is shown as the mean :i: SD 
(n = 3). ATP-dependent uptake activity was estimated by subtracting the uptake activity under ATP-depletion conditions from that under standard conditions. 

1 -palmitoyl-2-C6-NBD-sn-glycero-3-phosphocholine. 
§ 1 -palmitoyl-2-C6-NBD-sn-glycero-3-phosphoethanolamine. 
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analogs, cells were labeled with three different types of 
NBD-phospholipid analogs at pH 7.4 and observed under the 
fluorescence microscope. When the cells were incubated 
with 1-Cr-2-Cn-NBD-PS, various intracellular organelles 
of the wild type cells were strongly labeled (Fig. 7 A) while 
the intracellular fluorescece of the UPS-1 ceils was much 
fainter (Fig. 7 B), consistent with the results of the uptake 
assay at pH 6.0 (Table II). In contrast, when the cells were 
incubated with Cr-NBD-SM to monitor endocytic mem- 
brane flow, UPS-1 cells showed no significant difference in 
the distribution of punctate, intracellular fluorescence, com- 
pared to the wild type cells (Fig. 7, C and D). This obser- 
vation indicated that lipid internalization by the endocytic 
pathway in UPS-1 cells was normal. We also used 1-palmi- 
toyl-2-Cr-NBD-sn-glycero-3-phosphate, a fluorescent phos- 
phatidic acid analog to make a qualitative comparison of 
other intracellular membranes in UPS-1 and the wild type 
cells. This lipid is dephosphorylated to fluorescent diacyl- 
glycerol at the cell surface, and after spontaneous trans- 
bilayer movement at the plasma membrane, labels various 
intracellular membranes such as the nuclear envelope and 
endoplasmic reticulum (Pagano and Longmuir, 1985). Incu- 
bation of cells with the fluorescent phosphatic acid analog 
showed similar labeling patterns in both cell types (Fig. 7, 
E and F), indicating that there were no obvious differences 
in the amount or distribution of these intracellular mem- 
branes in the two cell types. 

The UPS-1 Phenotype Was Unrelated to 
Multidrug Resistance 
Overexpression of P-glycoprotein (mdrl gene product) is 
known to give the host cells a multidrug-resistant phenotype, 
which results from accelerated efflux of various amphipathic 
drugs from the cells (reviewed in Gottesman and Pastan, 
1993). To test whether the phenotype of UPS-1 cells was 
related to multidrug resistance, intracellular labeling with 
1-Cr-2-C,2-NBD-PS at physiological pH was compared 
among the wild type CHO-K1, UPS-l, and ALLN rS° cells, a 
P-glycoprotein-overproducing CHO variant (Sharrna et al., 
1992). As shown in Fig. 8, the fluorescence intensity of la- 
beled ALLN rS° cells was similar to that of the wild type 
CHO-K1 cells while intracellular labeling of UPS-1 cells was 
much fainter. Moreover, exposure of these cells to 0.1 mM 
verapamil, which competitively suppresses drug efflux via 
the P-glycoprotein (Yusa and Tsuruo, 1989), did not affect 
the labeling of these ceils with 1-Cr-2-Cn-N-BD-PS (Fig. 8). 
We further confirmed that the wild type CHO-K1 and UPS-1 
ceils showed similar sensitivity to colchicine, while ALLN ~° 
cells were much more resistant to colchicine (data not 
shown). These results indicated that the uptake deficiency of 
fluorescent PS analogs by UPS-1 cells was unrelated to the 
multidrug resistance conferred by overproduction of P-gly- 
coprotein. 

Discussion 

Cytosolic Acidification Stimulates Uptake of 
C6-NBD-PS by a Non-endocytic Pathway 
In the present study, we showed that acidic treatment of CHO- 
KI cells enhanced the uptake of C6-NBD-PS without induc- 
ing non-specific permeabilization of the cells or altering the 

rate of disappearance of C6-NBD-PS from cells. The major 
pathway for C6-NBD-PS uptake in CHO-K1 cells at 370C 
under acidic (as well as neutral) conditions was most likely 
through the ATP-dependent PS transporter. This conclusion 
is supported by our observations of: (a) the intracellular dis- 
tribution of Cr-NBD-PS fluorescence; (b) the inhibition of 
Cr-NBD-PS uptake by ATP depletion and NEM treatment; 
and (C) the differential uptake of C6-NBD-PS and Cr-NBD- 
SM from doubly labeled lipid vesicles. Furthermore, we 
demonstrated that cytosolic acidification, without extracel- 
lular acidification, also enhanced C r o N B D - P S  uptake. These 
results suggest that cytosolic acidification stimulates the PS 
translocase system at the plasma membrane of CHO-K1 
cells. 

The physiological significance of the stimulation of the PS 
translocase at acidic pH is not known. It has been suggested 
that this transporter may play a crucial role in maintaining 
an asymmetric distribution of PS at the plasma membrane 
(reviewed in Schroit and Zwaal, 1991; Devaux, 1992; Za- 
chowski, 1993), and it is likely that plasma membrane lipid 
asymmetry may be perturbed during vesicle fusion and 
fission events which occur as normal consequences of en- 
docytosis, secretion, and cell division. Various organelles 
including endosomes, secretory vesicles, and the trans- 
Golgi network are mildly acidic (pH 5.5-6.5) (reviewed in 
Anderson and Orci, 1988; Forgac, 1989). The perturbation 
of lipid asymmetry at the plasma membrane during secretion 
and endosome recycling events might be accompanied by 
leakage of protons from these acidic compartments into the 
cytosol, causing a "local acidification" which enhances PS 
translocase activity. It is unknown whether low cytosolic pH 
directly activates the PS translocase or indirectly affects 
other factor(s) which can stimulate its activity. If there is an 
interaction between the PS transporter and membrane 
cytoskeleton, such interaction might participate in regula- 
tion of the PS transport activity since cytosolic acidification 
is known to cause redistribution of fodrin in MDCK cells 
(Eskelinen et al., 1992). 

A Mutant Cell Line Partially Defective in the 
Non-endocytic Uptake of Fluorescent PS Analogs 
Although genetic approaches can be very useful for biologi- 
cal studies, no successful report of the isolation of mutant 
ceils defective in the uptake of PS or its analogs has been 
reported. Furthermore, if one wants to select mutant cells 
defective in the non-endocytic pathway of PS uptake, it is im- 
portant to use a screening method which minimizes un- 
wanted background due to endocytosis of the PS probe. Al- 
though energy depletion or chemical modification of cells 
and low temperature conditions are known to block endocy- 
tosis, these treatments are difficult to employ in mutant 
screening since they also inhibit the non-endocytic uptake 
pathway (Fig. 2). Anucleated cells such as human erythro- 
cytes, in which endocytosis does not occur, are advantageous 
to investigate the transbilayer movement of PS in the absence 
of endocytosis, however, these cells cannot serve as the pa- 
rental cells for mutant selection. Our finding that acidic con- 
ditions inhibited internalization of membrane lipids by the 
endocytic pathway and enhanced uptake of Cr-NBD-PS by 
the non-endocytic pathway in CHO-K1 cells allowed us to 
develop a convenient screening method for mutants in the 
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Figure 7. Fluorescence microscopy of CHO-K1 and UPS-1 cells labeled with various NBD-phospholipids. CHO-KI (A, C, and E) and 
UPS-1 (B, D, and F) cells were incubated with NBD-phospholipid donor vesicles in I-IBS (pH 7.4) for 10 rain at 37°C, back-exchanged 
at 4°C, and observed under the fluorescence microscope. (A and B) 20/zM 1-C6-2-C~2-NBD-PS; (C and D) 20/zM C6-NBD-SM; (E and 
F) 10 tzM l-palmitoyl-2-C6-NBD-sn-glycero-3-phosphate. Each pair of photomicrographs (A and B) (C and D), and (E and F) was ex- 
posed and printed identically. Bar, 10 #m. 

non-endocytic pathway and led us to obtain one mutant 
clone, UPS-l, which is defective in the uptake of fluorescent 
PS analog by the non-endocytic pathway. 

Several lines of evidence suggested that a non-endocytic 
pathway responsible for uptake of fluorescent analogs was 
specifically impaired in UPS-1 cells. First, substrate spec- 

ificity of NBD-phospholipid uptake revealed that UPS-1 
cells showed a deficiency in uptake of NBD-PS analogs 
which are known to be good probes for transbilayer PS 
movement, but no deficiency in uptake of other NBD- 
phospholipids (Table II and Fig. 7). Second, fluorescence 
microscopy demonstrated that UPS-1 cells internalized C6- 
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NBD-SM like the wild type cells (Fig. 7, C and D) indicating 
that UPS-1 cells sustained normal membrane flow by en- 
docytosis. It is therefore unlikely that non-specific membrane 
perturbations resulted in the UPS-1 phenotype. Last, since 
UPS-1 cells showed an uptake deficiency of fluorescent PS 
analogs at both acidic and neutral pH (Table II and Fig. 7), 
the UPS-1 phenotype was not due to an impairment of acidic 
stimulation of PS uptake. While uptake of NBD-PS was sub- 
stantially impaired in UPS-1 cells, some ATP-dependent up- 
take of fluorescent PS analogs by UPS-1 cells relative to the 
wild type cells was still observed (Table II). These observa- 
tions might imply that there were at least two different types 
of PS transport systems in the wild type cells and only one 
of these putative isotypes was impaired in UPS-1 ceils. Alter- 
natively, only a partial inactivation of the responsible protein 
may have occurred in UPS-1 cells. It is also possible that one 
gene of a functional diploid of the same PS transport system 
might be disrupted in the UPS-1 cells. However, this possi- 
bility seems unlikely since ATP-dependent uptake activity of 
fluorescent PS analogs in UPS-1 was much less than half 
of the wild type levels (Table II). Since the net uptake of 
fluorescent PS represents a balance between the influx and 
efltux of the fluorescent lipid, another possible explanation 
for the UPS-1 phenotype is that it results from an enhanced 
efltux of fluorescent PS from the cells. We could not com- 
pletely eliminate this possibility because no specific inhibi- 
tors of PS influx via transbilayer movement are currently 
available. However, we were able to demonstrate that mdr-1 
overproduction did not confer the UPS-1 phenotype (Fig. 8). 

Overproduction of mdrl P-glycoprotein confers resistance 
to various chemotherapeutic agents since the P-glycoprotein 
can function as an ATP-driven transmembrane efllux pump 
of these drugs (reviewed in Gottesman and Pastan, 1993). 
Based on observations that the P-glycoprotein recognizes 
various types of compounds without significant structural 
similarities but with a common amphipathic property, it has 
been hypothesized that the P-glycoprotein might be a trans- 
bilayer lipid flippase with no strict substrate specificity (Hig- 
gins and Gottesman, 1992). Although the phenotype of 
UPS-1 cells was clearly unrelated to multidrug resistance 
conferred by overproduction ofmdrl P-glycoprotein (Fig. 8), 
the machinery for PS transbilayer movement could be a 
member of "ATP-binding cassette transporters (Higgins, 
1992)." Indeed, the hypothesis of lipid transbilayer move- 
ment by ATP-binding cassette transporters was recently sub- 
stantiated. The mouse mdr2 gene had been initially isolated 
as a gene highly homologous to mdrl gene, however, over- 
production of the mdr2 protein in cells did not cause any ap- 
preciable drug resistance (Gros et al., 1988). A recent study 
with homozygous mutant mice demonstrated that disruption 
of the mdr2 gene resulted in dysfunction of excretion of phos- 
phatidylcholine from the apical membrane (bile canalicular 
membrane) of hepatocytes into bile ducts and strongly sug- 
gested that the mdr2 protein functioned as an outward trans- 
porter of phosphatidylcholine at the apical membrane in he- 

patocytes (Smit et at., 1993). On the other hand, an inward 
transbilayer movement of phosphatidylcholine at the plasma 
membrane has also been suggested to occur in some cultured 
mammalian cells as seen with fluorescent analogs of phos- 
phatidylcholine (Sleight and Abanto, 1989), and a similar 
uptake system for phosphatidylcholine at the plasma mem- 
brane in yeast cells was recently demonstrated (Kean et at., 
1993). Hopefully, mutant cells like UPS-1 will be useful not 
only for investigation of the physiological meaning of these 
lipid transport systems but also for cloning the genes respon- 
sible for them by functional rescue methodology. 
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