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Abstract Minimally invasive surgery (MIS) reduces
patient trauma and shortens recovery time, but also
limits the dexterity of the surgeon because degrees
of freedom are lost due to the fulcrum eVect of the
entry incisions. Visual feedback is also limited by the
laparoscope, which typically provides two-dimensional
feedback and is constrained by the entry incision.
Developments within surgical robotics aim to mitigate
these constraints. However, these developments have
primarily included large external machines that aug-
ment vision and improve dexterity, but are still funda-
mentally constrained by the use of long tools through
small incisions. An alternative concept is the use of
miniature in vivo surgical robots that can be placed
entirely into the peritoneal cavity through either an
abdominal incision, or, after insertion into the stomach
through the esophagus, can enter through a gastrot-
omy. This paper reviews the development of Wxed-base
camera robots for providing auxiliary views of the sur-
gical Weld and of mobile robots with a movable plat-
form for vision and task assistance in laparoscopic
procedures. Moreover, the progress towards the appli-
cation of similar robots for natural oriWce transluminal
endoscopic surgery (NOTES) and forward environ-
ments is discussed.
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Introduction

Surgical robotics has become an exciting new Weld
within medicine and surgery over the past decade. A
number of devices have been built and used in humans
to aide the surgeon or the physician in performing deli-
cate and complex tasks. From robots for orthopedic
surgery to robots for general surgery, and all surgical
subspecialties in between, the designs have primarily
been large externally powered machines that insert end
eVectors into the human body to accomplish a thera-
peutic or interventional task. Approximately three
years ago, we proposed the use of an active totally
intracorporeal miniature surgical device to circumvent
the obvious constraints that large complicated
machines pose. The main advantage is the ability to
externally control a robot that is located completely
inside a cavity to accomplish interventional therapeutic
goals. In this article we will review the three year his-
tory of miniature robotics, what has been shown in ani-
mal studies, and how close we are to human trials. We
will speculate on future applications of this type of
technology and discuss the possibility of surgical inter-
vention that exists with total intracorporeal surgical
machines.

Background

The development of techniques within minimally
invasive surgery (MIS) allows surgeons to perform
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procedures through small incisions or natural oriWces,
thereby oVering beneWts to the patient including
reduced trauma and quicker recovery times. However,
the visual and dexterous constraints imposed, including
two-dimensional visual feedback and constrained
motion, often limits minimally invasive surgeries to less
complicated procedures. The use of robotics attempts
to alleviate these constraints and further advance MIS.

Commercially available MIS robotics, such as da
Vinci (Intuitive Surgical), generally have multiple arms
that are teleoperated by the surgeon. These robots
attempt to augment surgical dexterity and visual feed-
back through features including articulating end eVec-
tors, tremor Wltering, motion reversal correction,
stereoscopic vision, and motion scaling [1–3]. Chal-
lenges remain in the universal usage of robotic systems
for laparoscopic MIS. These robotic systems are imple-
mented from outsidethe body, and therefore remain
constrained to some degree by the entry-point inci-
sions. Robotic arms are long and bulky to allow the
necessary range of motion for maneuverability of the
tools. Moreover, large excursion arcs of the arms result
in frequent collisions outside of the patient, and if ports
are incorrectly positioned collisions can occur inside
the patient as well [1]. The widespread use of these
robotics for laparoscopic MIS remains limited due to
high cost, large size, and the diminished impact of the
dexterous improvements in the performance of less-
complex laparoscopic procedures.

Applications of robotic technologies for areas
outside of laparoscopy are also being explored. Endo-
scopes with articulating distal tips have been experi-
mentally developed for enhancing maneuverability and
vision [4–7]. Accompanying advancements in locomo-
tion techniques based on the inch worm motion
scheme or rolling stents [8–12] will potentially lead to
the development of a fully autonomous robot for explor-
ing natural oriWces. Smaller endoscopic microcapsules

with stopping and locomotion capabilities are also
being developed to assist in the diagnosis and treat-
ment of gastrointestinal diseases [13]. Finally, develop-
ments have been made in cardiac applications for
providing a stabilized platform for heart manipulation
[14]. Despite the successes, the application of these
technologies in laparoscopy remains limited because
the problems addressed are fundamentally diVerent
than those encountered for surgical procedures within
the peritoneal cavity.

Laparoscopic in vivo miniature robotics

A novel approach to address the visual and dexterous
constraints associated with laparoscopic MIS is the use
of in vivo miniature robots that Wt entirely inside the
peritoneal cavity. The robots can be categorized as
having either a Wxed-base or mobile platform.

Fixed-base robots

The primary objective of laparoscopic robots with a
Wxed-base platform is to provide auxiliary viewpoints
of the surgical Weld, thereby augmenting vision and
improving depth perception. These robots are placed
by the surgeon using traditional laparoscopic tools and
can be relocated throughout a procedure without the
need for a new incision. Initial work within this area
has led to the development of a miniature pan and tilt
camera robot [15, 16].

The miniature camera was designed and built using
only oV-the-shelf components. The robot, shown in
Fig. 1, rotates the camera about two independent axes,
allowing for panning of 360° and tilting of §45°. Illumi-
nation of the surgical Weld is accomplished using two
light-emitting diodes (LEDs). The platform of this
robot consists of legs that are abducted by torsion

Fig. 1 Pan and tilt camera robot (left) provides visual feedback during cholecystectomy (right )
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springs. The platform design and the 15 mm diameter
housing allows for the insertion of the robot using a
standard laparoscopic port.

The pan and tilt camera robot was used in combina-
tion with a standard laparoscope to provide video feed-
back during a porcine cholecystectomy. The additional
views provided by this robot aided the surgeon in the
planning and placement of trocars and provided views
from alternative angles throughout the procedure.

Mobile robots

Mobile robots provide a remotely controlled movable
platform for vision and surgical task assistance. The
basic design of a mobile robot consists of two indepen-
dently driven wheels that provide for forward, reverse,
and turning motion. A tail prevents counter-rotation
while allowing the robot to reverse directions. Visco-
elastic modeling together with bench top and in vivo
testing led to the development of a helical wheel design
for the mobile robot [17]. A helical wheel design robot
with a 15 mm diameter, as shown in Fig. 2, has proven
maneuverable on all of the pelvic organs (liver, spleen,
small and large bowel) and capable of climbing highly
deformable structures two to three times its height
without causing any visual tissue damage in a porcine
model.

A similar mobile robot with the addition of an
adjustable-focus camera for vision assistance has also
been developed. The adjustable-focus capabilities of
the camera allows for a greater understanding of depth
within the peritoneal cavity and the views provided are
comparable to those from currently available laparo-
scopes. Similar to the Wxed-base robots, the mobile
adjustable-focus robotic camera aided the surgical
team with the planning and vision for additional trocar
insertions, and with tool placement during a laparo-
scopic gallbladder removal in a porcine model, as
shown in Fig. 3 [18]. Throughout this procedure, the
mobile camera robot provided the sole visual feed-

back, thereby demonstrating the potential for reducing
patient trauma through the removal of the third cam-
era port incision.

The ability to provide task assistance, in addition to
the vision assistance previously discussed, has been dem-
onstrated with a biopsy camera robot, as shown in Fig. 4
[19]. This robot is based on the camera system and
mobility design of the mobile camera robot. The adapta-
tion of a biopsy forceps device provides for biopsy capa-
bilities. Successful biopsy of three samples of hepatic
tissue in a porcine model has been demonstrated. The
onboard camera was used to locate an adequate biopsy
site as the robot traversed the peritoneal cavity. The
robot was then driven using remote control to the cho-
sen site. The grasper was used to cut almost all of the tis-
sue with the remainder being pulled free by driving the
robot slowly away from the biopsy site. The tissue sam-
ple was then extracted and retrieved. The successful
completion of this porcine test demonstrated the capa-
bility to perform a one-port laparoscopic biopsy.

The feasibility of the application for in vivo minia-
ture robots for natural oriWce transluminal endoscopic
surgery (NOTES) procedures has been successfully
demonstrated using a mobile robot in a porcine model

Fig. 2 The 15 mm mobile robot (left) successfully navigates within the peritoneal cavity (right)

Fig. 3 Mobile camera robot provides visual feedback for chole-
cystectomy as viewed by laparoscope
123



48 J Robotic Surg (2007) 1:45–49
[20]. A 12 mm diameter in vivo mobile robot, as shown
in Fig. 5, was able to traverse within the gastric cavity
under esaphagogastroduodenoscopic (EGD) control
upon insertion using a sterile overtube. SuYcient trac-
tion for movement within the gastric cavity without
causing visible tissue damage was obtained using the
helical wheel design developed for laparoscopic proce-
dures. The robot was then inserted into the peritoneal
cavity through a gastrotomy. The ability to traverse the
entire peritoneal cavity was demonstrated. For this
procedure, the robot was observed using an endoscope.
Future work will include the incorporation of onboard
cameras, similar to the laparoscopic mobile robots,
capable of providing visual feedback for endoluminal
procedures. After successfully demonstrating the
mobility within the peritoneal cavity, the endoluminal
robot was retracted into the gastric cavity and retrieved
using an endoscopic snare.

Future applications of miniature robots

Current work is focused on the continued development
of miniature robots for forward environments and
NOTES applications. The further development of
wireless capabilities and the design of a biopsy grasper
capable of clamping a severed artery are important for
the application of in vivo robotics as a remote Wrst
responder in forward environments such as battle-
Welds. Additional focus is placed on the continued
development of miniature robots for NOTES applica-
tions to further reduce patient trauma. With the inte-
gration of a camera and a manipulator, the
endoluminal mobile robot could provide assistance
during procedures within the peritoneal cavity. Even-
tually, minimally invasive procedures will incorporate
a team of miniature in vivo robots equipped with sen-
sors and manipulators to cooperatively assist the surgi-
cal team from within the gastric or peritoneal cavity.
Human trials are being planned for the near future to
test these machines and deWne their role in the future
of robotic surgery.

Discussion

The role of miniature robots in medicine will surely
change how we see and treat patients. The technology
today exists to deliver a small, agile, remotely
controlled machine with the ability to perform simple
surgical tasks. Demonstrations have shown the eVec-
tiveness of these devices for biopsy, investigation, and
as an assist device for complex surgical procedures. It is
conceivable that smaller robots with more-complex

Fig. 4 Mobile biopsy camera robot performs biopsy of hepatic
tissue as viewed by laparoscope

Fig. 5 The 12 mm mobile robot successfully traverses within the gastric (left) and peritoneal (right) cavities
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control functions will be used in a variety of applica-
tions from intravascular to intracranial. Perhaps future
robots will even be small enough to be used on a cellu-
lar basis. Such machines would be delivered through
needles or would be swallowed instead of being
inserted through large incisions. These robots will not
replace the surgeon who is treating a patient with a
large complex tumor. Perhaps what they will do is
allow surgeons to investigate patients and remove the
tumor when it is at the cellular level. New technology is
already allowing earlier detection of diseases and it is
important that we develop concomitantly interventions
that are less invasive to the patient so we can take full
beneWt of this early detection.

Robotic surgery is just at the dawn of its develop-
ment. Many issues remain. Miniaturization of optical
components and more-robust batteries are the Wrst few
areas that would have to be tackled. Much more
human experience will be needed to determine if the
increased complexity and costs will be outweighed by
greater safety and utility.
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