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Abstract

MicroRNA regulates cellular responses to ionizing radiation (IR) through translational control of target genes. We analyzed
time-series changes in microRNA expression following c-irradiation in H1299 lung cancer cells using microarray analysis.
Significantly changed IR-responsive microRNAs were selected based on analysis of variance analysis, and predicted target
mRNAs were enriched in mitogen-activated protein kinase (MAPK) signaling. Concurrent analysis of time-series mRNA and
microRNA profiles uncovered that expression of miR-26b was down regulated, and its target activating transcription factor 2
(ATF2) mRNA was up regulated in c-irradiated H1299 cells. IR in miR-26b overexpressed H1299 cells could not induce
expression of ATF2. When c-Jun N-terminal kinase activity was inhibited using SP600125, expression of miR-26b was
induced following c-irradiation in H1299 cells. From these results, we concluded that IR-induced up-regulation of ATF2 was
coordinately enhanced by suppression of miR-26b in lung cancer cells, which may enhance the effect of IR in the MAPK
signaling pathway.
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Introduction

MicroRNAs are transcribed by RNA polymerase II and bind to

the 39 untranslated region (UTR) to suppress translation of target

mRNAs [1]. At the posttranscriptional level, microRNAs are

involved in many biological processes, including development [2],

proliferation, cell death [3], and tumorigenesis [4]. Many studies

have analyzed the transcriptional regulation of mRNAs and

microRNAs in c-irradiated cells to understand cellular responses

to ionizing radiation (IR) [5,6,7].

The mitogen-activated protein kinase (MAPK) pathway plays

an important role in various biological processes, such as

apoptosis, proliferation, differentiation, WNT signaling, and p53

signaling. MAPK signaling is often deregulated in human cancers,

leading to uncontrolled cell proliferation and survival [8]. IR can

induce activation of MAPK pathways to control cell survival in a

cell type-dependent manner [9]. The IR responsive activation of

MAPK signaling pathways is related to cell proliferation [10].

Most cellular signaling pathways can be regulated by transcrip-

tional and posttranslational control of genes. The microRNAs

miR-7, miR-4, miR-79, miR-2, and miR-11 are involved in Notch

signaling pathways by targeting the regulatory sequence motifs in

the 39 UTR of target genes [11]. miR-15 and miR-16 are involved

in the Nodal signaling pathway [12]. Nuclear factor of kappa light

polypeptide gene enhancer in B-cells 1, a DNA damage-signaling

mediator, is regulated by miR-9 and let-7 g in response to IR in

lung cancer cell lines [7]. In the present study, we examined the

time-series expression profile of microRNAs in c-irradiated lung

cancer cell lines. We tried to identify IR-responsive microRNAs

that regulate expression of MAPK signaling genes through

concurrent analysis of microRNA and mRNA profiles. We

demonstrated the coordinated regulation of activating transcrip-

tion factor 2 (ATF2), which is encoded by a MAPK signaling gene,

by miR-26b in response to IR.

Results

To understand posttranscriptional control of cellular responses

to IR by microRNAs, the genome-wide expression profile of

microRNA was examined in H1299 human lung cancer cells at 0,

4, 8, 12, and 24 hours after treatment with 2Gy of c-radiation.

The microRNA expression profile was analyzed by one-way

analysis of variance (ANOVA) to select IR-responsive microRNAs.

Among 328 human microRNAs on the microarray, the expression

of 56 (17.1%: 30 up-regulated and 26 down-regulated) was

significantly changed in H1299 cells (p,0.05; Figure 1 and Table

S1). Prominent changes were observed at 8 hours after c-

irradiation in most of the IR-responsive microRNAs.

To explore the physiological meaning of IR-responsive micro-

RNA, we listed predicted target mRNAs of IR-responsive

microRNAs and the enriched signaling pathways were selected

based on enrichment and statistical analysis of predicted target

mRNA by DIANA-microT-3.0. Among the listed signaling

pathways, we focused on the top 10 pathways based on the

statistical significance (Table 1). We especially chose the MAPK
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signaling pathway for further analysis because this signaling

pathway is essential for survival in response to DNA damage [13].

To validate regulation of the MAPK signaling pathway by IR-

responsive microRNAs, we meta-analyzed mRNA expression profiles

of the same c-irradiated H1299 cells from our published datasets

[14]. In concurrent analysis of target mRNA and IR-responsive

microRNA, we applied two criteria: 1) statistically significant changes

(p,0.05) in mRNA expression upon c-irradiation by ANOVA

analysis and 2) the high inverse correlation value (r,20.4) between

mRNA and microRNA expression. As summarized in Figure 2 and

Table S2, we identified 35 pairs of IR-responsive microRNAs and

target mRNAs, including 19 microRNAs and 23 non-overlapping

mRNAs for MAPK signaling pathway genes in H1299 cells.

We validated the expression patterns of IR-responsive micro-

RNAs and target mRNAs for the MAPK signaling pathway.

Among 35 pairs, we selected and analyzed four (miR-26b: ATF2,

miR-7: FOS, miR-20a: MAP3K5, and miR-128: PPARG) pairs

by reverse transcription-polymerase chain reaction (RT-PCR;

Figure 3A,B, C and D). As detected in microarray datasets

(Figure 2), we found that ATF2, FOS, and MAP3K5 were up

regulated and PPARG was down regulated upon IR exposure.

MicroRNAs such as miR-26b, miR-7, and miR-20a were down

regulated, and miR-128 was up regulated upon IR exposure. By

real-time RT-PCR, we demonstrated that the expression patterns

of selected IR-responsive microRNAs and target mRNAs were

well matched with those of the microarray expression data.

Down-regulated IR-responsive microRNAs may augment the

function of target mRNAs. To test the relationship between down-

regulated IR-responsive microRNAs and target mRNAs, we

selected the pair of ATF2 and miR-26b among 35 pairs to

demonstrate coordinated regulation between microRNAs and

target mRNAs upon IR exposure. One predicted target was

identified for miR-26b at position 112–118 of the ATF2 39 UTR, as

shown in Figure 3A. Overexpression of miR-26b in H1299 cells

could suppress the expression level of ATF2 mRNA. In addition,

the protein level of ATF2 was decreased in miR-26b-overexpressed

cells (Figure 4A). In luciferase assays, miR-26b suppressed the

translation of luciferase in constructs with the 39 UTR of ATF2, but

not those without the 39UTR (Figure 4B). The suppressive effect of

miR-26b on ATF2 was also observed in c-irradiated H1299 cells

(Figure 4C), which was sustained until 12 hours after IR exposure.

Next, we wanted to confirm the effect of MAPK signaling on

down-regulation of miR-26b in c-irradiated cells. We inhibited the

MAPK signaling pathway using SP600125, a c-Jun N-terminal

kinase (JNK) inhibitor, in c-irradiated H1299 cells. Treatment

with SP600125 did not change the basal expression level of ATF2;

however, induction of ATF2 upon c-irradiation was markedly

blocked in SP600125-treated H1299 cells until 12 hours after IR

exposure (Figure 5A). Expression of ATF2 requires activation of

MAPK signaling, which was inhibited at JNK by the chemical

inhibitor. Conversely, expression of miR-26b was induced by

Figure 1. Heatmap illustrating expression of microRNAs in
response to c-irradiation in H1299 cells. Reverse transcribed small
RNAs from each time point were labeled with Cy5. The color code
represents the relative expression of indicated microRNAs for each time
point. A list of all microRNAs is available in Table S1.
doi:10.1371/journal.pone.0023802.g001

Table 1. Enrichment analysis for signaling pathways on
target mRNAs of IR-responsive miRNAs.

KEGG pathways -ln[p value]*

Ribosome 25.8

MAPK signaling pathway 23.5

Axon guidance 22.8

Focal adhesion 20.7

Oxidative phosphorylation 20.1

Ubiquitin mediated proteolysis 17.9

TGF-beta signaling pathway 17.7

Adherens junction 17.2

Wnt signaling pathway 16.9

Regulation of actin cytoskeleton 16.2

*p value based on DIANA analysis.
doi:10.1371/journal.pone.0023802.t001
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treatment with SP600125 in H1299 lung cancer cells (Figure 5B).

The effects of SP600125 on the expression of ATF2 mRNA and

miR-26b were also confirmed in A549 lung cancer cell line

(Figure 5).

Discussion

Cellular responses to exogenous stimulation can be monitored

by alterations in gene expression, including expression of

microRNAs. IR can induce progressive changes in cell survival,

growth, and proliferation by affecting gene expression. Previous

reports have suggested that radiation can change the expression

pattern of genes [15,16]. We analyzed microRNA profiles to

understand the mechanism of microRNA-mediated cellular

responses to IR, and to identify regulation of the MAPK signaling

pathway by IR-responsive microRNAs. In the present study, we

have elucidated the JNK-mediated transcriptional suppression of

miR-26b in c-irradiated cells, for which microRNA can suppress

the translation of target ATF2 mRNA, a member of the MAPK

signaling pathway. From these findings, we suggest that the

Figure 2. Heatmap illustrating the pairs of microRNAs and target mRNAs for the MAPK signaling pathway in response to c-
irradiation in H1299 cells.
doi:10.1371/journal.pone.0023802.g002
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cellular response to IR is coordinately regulated by the interaction

between the MAPK signaling pathway and microRNA.

ATF2 is a cAMP-response element-binding (CREB) protein

with a basic leucine zipper (bZIP) domain, through which ATF2

interacts with other bZIP proteins such as JUN, FOS, CREB, and

ATF1 [17,18]. DNA damage and pro-inflammatory cytokines can

induce activation of ATF2 transcriptional activity by JNK [19].

The role of diverse signaling in activation of ATF2 is also

illustrated by heterodimeric partners of ATF2, which are also

activated in a stimulus-specific manner. Thus, a particular stimulus

can lead to different ATF2 complexes, thereby activating or

repressing distinct sub-sets of target genes [20].

miR-26b is an intronic microRNA residing in intron IV of

CTDSP1, C-terminal domain small phosphatase 1. The tran-

Figure 3. Expression patterns of IR-responsive microRNAs and MAPK signaling target mRNAs in c-irradiated H1299 cells. The
expression of four pairs of microRNA and target mRNA such as (A) miR-26b:ATF2, (B) miR-7:FOS, (C) miR-20a:MAP3K5, and (D) miR-128:PPARG) were
quantitated using real-time reverse transcription-polymerase chain reaction (RT-PCR) at the indicated time. The values were normalized with
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA for target mRNAs and U6B small RNA for microRNAs. All values are presented as means
6 standard deviation (SD) from triplicate experiments.
doi:10.1371/journal.pone.0023802.g003
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scriptional control of host CTDSP1 mRNA is not fully

understood, but many putative binding sites exist for transcription

factors such as CREB in ENCODE Transcription Factor Binding

Analysis [21]. ATF2 could suppress transcription of target genes

through dimerization with other bZIP transcription factors.

Overexpression of bZIP proteins such as ATF2 and CREB

altered the gene expression in human myometrial cells [22]. Meta-

analysis on this microarray datasets in GEO (GSE1059) revealed

down-regulation of CTDSP1 in ATF2-overexpressed cells. We

need further study regarding the transcriptional control of miR-

26b by ATF2 in lung cancer cells; however, JNK activity and

expression of ATF2 repressed expression of miR-26b is performed

in the current study.

Deregulation of the MAPK signaling pathway can be induced

by IR-induced DNA damage [23]. In the present study, it was

found that MAPK signaling is induced in c-irradiated H1299 cells,

which might mediate the survival of H1299 lung cancer cells upon

IR exposure. Furthermore, activation of MAPK signaling led to

down-regulation of miR-26b, which supported the maintenance of

ATF2 activity in turn. From these results, we could demonstrate

that exposure of H1299 lung cancer cells to IR induced MAPK

signaling followed by suppression of miR-26b expression, which

led to the escape of ATF2 mRNA from posttranslational

suppression by miR-26b. We propose that miR-26b mediates

coordinate regulation of ATF2 and the MAPK signaling pathway

in response to IR.

Materials and Methods

Cell culture
H1299 human lung cancer cells were maintained in RPMI

1640 and A549 cells were cultured in Dulbecco’s Modified Eagle’s

medium (DMEM, Sigma Aldrich, St Louis, MO, USA) supple-

mented with 10% fetal bovine serum, 100 U/ml penicillin,

100 mg/ml streptomycin, and 2 mM L-glutamine [both cell lines

were purchased from ATCC]. The cultured cells were either

exposed to 2 Gy of radiation using a 4-MV linear accelerator

(Clinac 4/100; Varian, Palo Alto, CA, USA) or left unirradiated as

a negative control. The specific JNK inhibitor SP600125 was

purchased from Santa Cruz Biotechnology (Santa Cruz, CA,

USA). H1299 cells were incubated with 10 mM SP600125 for

30 min, and then exposed to IR (2 Gy) followed by total RNA

isolation at indicated times.

MicroRNA microarray
MicroRNA from each cell line was extracted using the mirVana

microRNA isolation kit (Ambion, Austin, TX, USA) according to

the manufacturer’s protocols. Purified microRNAs were labeled

using the mirVana microRNA Array Labeling Kit and coupled to

the Cy5 Post-Labeling Reactive Dye (Amersham, GE Healthcare

Bio-Sciences, Piscataway, NJ, USA). The labeled samples were

washed and hybridized in duplicate to mirVana microRNA

Bioarrays (Ambion) using the mirVana microRNA Bioarray

Essentials Kit. Fluorescence intensities were processed and

measured using the GeneChip scanner 3000 7G (Agilent

Technologies, Santa Clara, CA, USA). The levels of microRNA

hybridization were determined using GenePix Pro 6.0 software as

recommended by the manufacturer. The background-adjusted

intensity for each microRNA was subjected to a global variance

stabilization normalization procedure [24]. All data is MIAME

compliant and the raw data has been deposited in a MIAME

compliant database (GEO)(accession number - GSE30075).

Statistical and bioinformatics analysis
To identify microRNAs for which expression levels changed

significantly throughout the time-course, we used one-way

ANOVA analysis. Considering the correlation structure of

within-array replicates [25] in mirVana microRNA Bioarrays,

we performed one-way ANOVA analysis on 328 human

microRNAs. DIANA (http://diana.cslab.ece.ntua.gr/), which

integrates human and mouse microRNAs into pathways to predict

Figure 4. Suppression of activating transcription factor 2 (ATF2) by miR-26b. (A) In miR-26b transfected H1299 cells, the expression of
microRNA was confirmed by real-time RT-PCR. The expression of ATF2 mRNA in miR-26b transfected cells was measured by real-time RT-PCR. The
relative ATF2 expression levels were normalized against GAPDH and presented as mean 6 SD from triplicate experiments. The protein level of ATF2
was also examined by western blot in microRNA-transfected cells. (B) Cells were transfected with the empty renilla luciferase reporter gene
(psiCHECK2) or the reporter gene fused to the ATF2 39 UTR. In addition, the cells were co-transfected with miR-26b or without miR-26b; Results are
expressed as relative light units (RLU) and were normalized with the luciferase activity expressed constitutively by the psiCHECK2 vector. (C) The
relative expression of ATF2 in miR-26b transfected and IR exposed cells at 4 (white), 8 (grey) and 12 (black) hours respectively.
doi:10.1371/journal.pone.0023802.g004
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microRNA targets [26], was performed initially to identify

pathways.

RNA preparation and quantitative real-time PCR
Total RNA was extracted from cell lines using the TRIzol

method, and then reverse transcribed to complementary DNA

using Superscript II reverse transcriptase (Invitrogen, Carlsbad,

CA, USA) and oligo-(dT)12–18 primers according to the

manufacturer’s protocol. The quantitative RT-PCR for indicated

genes was performed in a reaction mixture containing SYBR

Premix Ex Taq (Takara Bio Inc., Shiga, Japan). Quantitation of

microRNAs was performed using TaqMan microRNA assays

(Applied Biosystems, Foster City, CA, USA) according to the

manufacturer’s protocol. Samples were analyzed using the ABI

PRISM 7000 sequence detection system (Applied BioSystems). All

PCRs were performed in triplicate, and the specificity of the

reaction was determined by melting curve analysis at the

dissociation stage. We synthesized specific primers for ATF2

(forward: 59-AGATTTATTAATTTTTCTGTGCTCAA-39; re-

verse: 59 ACACCCCCATTTATTAAAACACC-39), FOS1 (for-

ward: 59-TGTGTTCCTGGCAATAGTGTG-39; reverse: 59-

CAATGAACATTGATGTTGAAGAAA-39), MAP3K5 (forward:

59-GCAGCAGCTATTGCACTTCA-39; reverse: 59-TGGTCA-

CATTTTGGTTTTGTTC-39) and PPARG (forward: 59-

CCTGCAGGAGATCTACAAGGA-39; reverse: 59-GGTGTCA-

GATTTTCCCTCAGA-39). The relative quantitative method

was used for the quantitative analysis. The calibrator was the

averaged DCt from the untreated cells. The endogenous control

was glyceraldehyde 3-phosphate dehydrogenase (GAPDH) for

genes and U6B for microRNAs.

Figure 5. Effect JNK inhibitor on the expression of miR-26b in response to ionizing radiation (IR). H1299 and A549 cells were treated
with 10 mM SP600125 for 30 minutes, and then exposed to IR. The relative expressions of ATF2 mRNA (A) and miR-26b (B) were normalized to the
expression level of control at 0 hr in both of control and SP600125-treated cells at 4 (white), 8 (grey) and 12 (black) hours. (C) Ionizing radiation
induced the expression of ATF2, which down-regulated the expression of miR-26b in c-irradiated lung cancer cells.
doi:10.1371/journal.pone.0023802.g005

Coordinated Regulation of ATF2

PLoS ONE | www.plosone.org 6 August 2011 | Volume 6 | Issue 8 | e23802



Western blotting
Cells were harvested and lysed in NP-40 buffer containing

phenylmethylsulfonyl fluoride and Protease Inhibitor Cocktail

(Sigma, St. Louis, MO, USA). Protein extracts were then

separated by sodium dodecyl sulfate-polyacrylamide gel electro-

phoresis, and then transferred to polyvinylidene fluoride mem-

branes (Bio-Rad, Hercules, CA, USA). Membranes were incubat-

ed with an ATF2 antibody (1:1000; Santa Cruz Biotechnology

Inc.) in Tris-buffered saline Tween 20 buffer with non-fat dry milk,

and then incubated with horseradish peroxidase-conjugated

secondary antibody (dilution 1:5000; Bio-Rad). Immunoreactive

bands were visualized using the West-Q-Chemiluminescent

Substrate Kit Plus (BIOTANG, Waltham, MA, USA).

Constructs, transfection, and luciferase assay
The precursor of miR-26b was cloned into pcDNA3 (Invitro-

gen) by genomic DNA PCR with primers (forward: 59-

CCGGAATTCCGGATGGGAATTGGATACAT-39; reverse:

59-ATTGCGGCCGCAGCTACCCTGACCACTGCTGC-39).

The 39 UTRs of ATF2 were cloned downstream of the Renilla

luciferase gene in the psiCHECK2vector (Promega, Fitchburg,

WI, USA). The construct was transfected using FuGENE HD

reagent (Roche, Basel, Switzerland) for real-time RT-PCR,

Western blotting, and luciferase assays. Luciferase assays were

performed using the Dual-Luciferase assay kit (Promega).

Normalization of Renilla expression was performed using firefly

luciferase present in the psiCHECK2 vector.

Supporting Information

Table S1 List of selected microRNAs from H1299 cells.

(XLSX)

Table S2 Selected mRNA:microRNA pairs of the MAPK
signaling pathway based on the enrichment analysis.

(XLSX)
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