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Abstract

Protein loop modeling is a tool for predicting protein local structures of particular

interest, providing opportunities for applications involving protein structure prediction

and de novo protein design. Until recently, themajority of loopmodelingmethods have

been developed and tested by reconstructing loops in frameworks of experimentally

resolved structures. In many practical applications, however, the protein loops to be

modeled are located in inaccurate structural environments. These include loops in

model structures, low-resolution experimental structures, or experimental structures of

different functional forms. Accordingly, discrepancies in the accuracy of the structural

environment assumed in development of the method and that in practical applications

present additional challenges to modern loop modeling methods. This study

demonstrates a new strategy for employing a hybrid energy function combining

physics-based and knowledge-based components to help tackle this challenge. The

hybrid energy function is designed to combine the strengths of each energy

component, simultaneously maintaining accurate loop structure prediction in a high-

resolution framework structure and tolerating minor environmental errors in low-

resolution structures. A loop modeling method based on global optimization of this

new energy function is tested on loop targets situated in different levels of

environmental errors, ranging from experimental structures to structures perturbed in

backbone as well as side chains and template-based model structures. The new

method performs comparably to force field-based approaches in loop reconstruction

in crystal structures and better in loop prediction in inaccurate framework structures.

This result suggests that higher-accuracy predictions would be possible for a broader
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range of applications. The web server for this method is available at http://galaxy.

seoklab.org/loop with the PS2 option for the scoring function.

Introduction

Loops are often involved in the functional regions of proteins [1–4]. An accurate

method for predicting the three-dimensional loop structure can be an invaluable

tool for de novo design of novel proteins or small molecules involving protein

loops in the binding interfaces. However, due to large variations in loop

sequences, homologous proteins often lack structural information in the loop

region, thereby making template-based approaches difficult to apply.

A number of ab initio loop modeling methods have been reported to show

successful results in reconstructing loops in high-resolution crystal structures

[5–11]. However, loops of interest for practical applications are often situated in

non-ideal conditions. For example, loops may need to be modeled in low-

resolution crystal structures, ensembles of NMR structures, or homology models

for applications to molecular replacement [12], structure-based drug design [13],

or antibody design [14]. Therefore, in the next era of loop modeling, achieving

atomic-accuracy predictions in framework structures with errors will become a

new challenge.

A strategy employed in recent studies to tackle this issue was to extend the

sampling region to the environment of the target loop. When tested on

high-resolution crystal structures with deliberately perturbed side chains around

the loop, simultaneous sampling of the loop and surrounding side chains resulted

in a performance comparable to that of loop reconstruction in the crystal

environment [15, 16]. Nevertheless, there is a chance that this strategy is successful

because the backbone structures are fixed at the crystal structures. It still needs to

be shown whether expanding the sampling region by itself can be successfully

applied to the modeling of loops involving larger environmental errors.

In this study, a complementary strategy is suggested that employs an energy

function adequate for scoring model structures in an inaccurate environment.

A hybrid energy function that combines physics-based components and

knowledge-based components is designed to take advantage of the strengths of the

two types of scoring functions: the physics-based energy terms help to locate

precise structures near the native structure, and the knowledge-based terms tend

to smooth the free energy surface so that environmental inaccuracy can be

tolerated. This new strategy is demonstrated to provide high-accuracy predictions

for loops in unreliable structural environments.

The new loop modeling method, called GalaxyLoop-PS2, was tested on loop

sets in environments with a range of errors, from crystal structures to perturbed

structures in both backbone and side chains and template-based model structures.

The test results are encouraging when compared to state-of-the-art methods based
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on molecular mechanics force fields [10, 15], showing comparable performance

both in the crystal environments and in inaccurate environments even when no

extended sampling is attempted. A free web service for GalaxyLoop-PS2 is

provided at http://galaxy.seoklab.org/loop with the PS2 option for the scoring

function.

Results and Discussion

Loop modeling test sets with variable environmental accuracies

In order to estimate to what extent the environmental errors affect loop modeling

accuracy, four types of loop modeling test sets are employed. Details are described

in the Methods section. The first type of test sets consists of a total of 73 loops (20

8-residue loops and 20 12-residue loops for Set 1, and 33 12-residue loops for Set

2) in high-resolution X-ray crystal structure environments. The performance on

this set corresponds to the maximum performance that can be obtained in the

exact framework structure. The second type of test sets consists of 40 loop targets

taken from Set 1, but the framework structures are deliberately perturbed in the

side chains (taken from Sellers et al. [15]). This set is named as the side

chain-perturbed set. The third type of test sets consists of the same 40 loop targets,

but the overall structures, including the backbone, were perturbed by 2-ns

molecular dynamics simulations to introduce thermal fluctuations. This set, built

in this study, is named as the backbone-perturbed set. The last test set is

comprised of 23 loops in more inaccurate environment of template-based models.

The distributions of environmental accuracies of the test sets are shown in

Figure 1. Throughout the article, the deviation of the environmental structure of

a loop from the experimental structure is measured by the all-atom root-mean-

square deviation (RMSD) of the environment (E-RMSD), where the environment

is defined as the set of residues with any atom within 10 Å from any loop Cb

atoms. The E-RMSD is then calculated after superimposing the environmental

structure onto the corresponding experimental structure. All RMSD values in this

paper were calculated considering that flipping of symmetric side chains produces

equivalent structures. As Figure 1 shows, the E-RMSD increases from the

side-chain perturbed set to backbone-perturbed set and template-based model set

with averages of 0.9 Å, 2.1 Å, and 2.8 Å, respectively.

Loop reconstruction in the framework of the crystal structure

The new loop modeling method introduced in this study (GalaxyLoop-PS2) is

compared with the method developed previously for template-based model

refinement (GalaxyLoop-PS1, [17]) and other state-of-the-art methods, HLP,

HLP-SS [10, 15], Rosetta-KIC [16], and Next-generation KIC (NGK) [18]. The

energy of GalaxyLoop-PS1 was optimized for application to the refinement of

template-based models, while that of GalaxyLoop-PS2 was developed for higher

performance in near-native environments as well, as explained in the Methods
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section. HLP and HLP-SS use a physics-based energy function with an implicit

solvation model (OPLS-AA [19–21] and SGB [22, 23]). Rosetta-KIC and NGK use

the Rosetta full-atom energy. While the Rosetta energy function has a hybrid form

like GalaxyLoop-PS2, the main difference lies in the extent of physics-based and

knowledge-based energy terms used. In the Rosetta energy function, the

knowledge-based terms mainly serve to describe short-range interactions and

interactions between charged amino acids, and the physics-based part does not

contain Coulomb electrostatic energy. In GalaxyLoop-PS2, more complete energy

Figure 1. Distributions of environmental errors for the three types of test sets employed in the study.
(A) for the test set of crystal structures with perturbed side chains, (B) for the crystal structures with both
backbone and side chains perturbed, and (C) for the template-based models. The gray curve behind the
histogram represents an interpolation. The average E-RMSD values are 0.9 Å, 2.1 Å, and 2.8 Å for the side
chain-perturbed set (A), the backbone-perturbed set (B), and the template-based model set (C), respectively.
E-RMSD represents the all-atom RMSD of environment residues for which any atoms are within 10 Å from
any loop Cb atoms.

doi:10.1371/journal.pone.0113811.g001
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terms are used for both physics-based and knowledge-based terms to combine the

strengths of the two types of energy functions. In addition, a higher-level solvation

free energy function is used in GalaxyLoop-PS2 (See Methods for details). The

two GalaxyLoop methods and HLP perform sampling only of the loop regions,

while HLP-SS, Rosetta-KIC, and NGK extend sampling to surrounding residues.

In the test of crystal structure reconstruction, GalaxyLoop-PS2 produces results

superior to GalaxyLoop-PS1 and comparable to HLP, HLP-SS, Rosetta-KIC, and

NGK as summarized in Table 1. Results for individual loop targets are reported

in Tables S1, S2, and S3. It is notable that with GalaxyLoop-PS2, an average main

chain RMSD of less than 1 Å is obtained for the 8-residue test set. HLP shows

better results than the others for 12-residue loops of Set 1 (see Table 1), and the

differences are mainly in the targets containing cis-proline residues (1cs6 and

1f46). GalaxyLoop-PS2 performs worse than another state-of-the-art method,

ICMFF, which was tested on the 8-residue and 12-residue loops of Set 1 in the

crystal environment with average RMSDs of 0.5 Å and 1.1 Å, respectively [11].

Loop modeling in the framework of side chain-perturbed crystal

structures

This section presents how perturbations to the experimental framework structures

affect loop prediction accuracy. As the purpose of this study is to assess the

performance of the energy function in inaccurate environments, it is again noted

that no further sampling beyond the loop region was attempted.

Table 1. Comparison of loop modeling results by the average RMSD of main chain atoms (N, Ca, C, and O) of loops in angstroms (Å) on test sets of varying
environmental accuracies measured by E-RMSD.

Framework
Loop set
(No. residue) E-RMSD (Å) Loop Sampling1) Extended Sampling1)

GalaxyLoop HLP2) HLP-SS2) Rosetta-KIC3) NGK4)

PS2 PS1

Crystal structure Set 1 (8)5) 0¡0 0.9¡0.7 1.3¡0.8 1.2¡1.5 1.4¡1.2 - 0.5¡0.3

Set 1 (12)6) 0¡0 1.6¡1.3 2.4¡1.3 1.2¡1.2 1.4¡1.4 1.9¡1.9 1.7¡1.8

Set 2 (12)7) 0¡0 2.5¡2.0 3.2¡1.9 - - 2.2¡2.1 2.0¡2.3

Side chain-perturbed Set 1 (8)5) 0.9¡0.3 1.3¡0.9 1.8¡1.5 2.4¡1.6 1.3¡1.5 - 0.5¡0.3

crystal structure Set 1 (12)6) 1.0¡0.2 2.1¡1.6 3.0¡1.4 2.6¡1.9 1.7¡1.4 1.6¡1.4 1.7¡1.8

Backbone-perturbed Set 1 (8)5) 1.9¡0.6 2.0¡1.8 2.2¡1.5 - - - 2.1¡1.8

crystal structure Set 1 (12)6) 2.2¡0.9 2.1¡1.4 3.2¡1.4 - - - 2.3¡2.0

Standard deviations are also reported.
1)Loop sampling methods sample only the loop region, while extended sampling methods sample surrounding side chains in addition to the loop.
2)Taken from Sellers et al. [15].
3)Taken from Mandell et al. [16].
4)Results of the best-score models out of 500 models sampled for each target following the protocol provided by Stein et al. [18] with Rosetta v3.5.
The results for the crystal structure set and the side chain-perturbed set are the same for NGK because extended sampling of loop environment was used for
both sets.
5)Loop sets taken from Jacobson et al. [10]. See Tables S1 and S2 for the list of loops.
6)Loop sets from Zhu et al. [34]. See Tables S1 and S2 for the list of loops.
7)Loop set from Fiser et al. [1]. See Tables S3 for the list of loops.

doi:10.1371/journal.pone.0113811.t001
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The first test set employed for this purpose is the set of crystal structures with

perturbed side chain structures taken from Sellers et al. [15]. Interestingly, the

performance of GalaxyLoop-PS2 on this set is not greatly affected by imperfect

neighboring side chains, as can be seen from Table 1. Results for individual

targets are listed in Tables S4 and S5. The increases in average main chain RMSDs

from those of the crystal structure reconstruction tests are 0.4 Å (from 0.9 to

1.3 Å) and 0.5 Å (from 1.6 to 2.1 Å) for 8-residue and 12-residue loops,

respectively. Sub-angstrom models were obtained in 50% and 20% of 8- and 12-

residue loop targets, respectively. HLP, which utilizes a molecular mechanics

energy function, performs worse in this test than in the crystal structure

reconstruction test, with an increase in average RMSDs by 1.2 Å (from 1.2 to

2.4 Å) and 1.4 Å (from 1.2 to 2.6 Å) for 8- and 12-residue loops, respectively.

The reason for the large discrepancy between the results of the two methods

may be better understood by examining two examples (1oyc and 1c5e) illustrated

in Figure 2A. The lowest-energy models generated by GalaxyLoop-PS2 have

RMSD50.4 Å and 0.5 Å for 1oyc and 1c5e, respectively. However, when physics-

based energy alone is used, the loops cannot be modeled with high accuracy,

because the salt bridge between the loop and framework cannot be recovered due

to the perturbed arginine side-chain structure in the environment. The loop

modeling accuracy of HLP is RMSD52.2 Å and 1.8 Å for 1oyc and 1c5e,

respectively. These examples demonstrate the high sensitivity of force field-based

methods to small environment errors (E-RMSD50.9 Å and 0.7 Å for 1oyc and

1c5e, respectively). Similar salt bridge problems were identified in 8 out of the 40

loop targets. Several other sensitive cases could also be related to the strong

dependence of electrostatic interactions to short-range local geometry. The

sensitivity may also be related to the Generalized Born (GB) solvation model,

which tends to over-stabilize salt bridge interactions [24–26]. Although the energy

of GalaxyLoop-PS2 employs a GB solvation model, knowledge-based compo-

nents, such as dipolar-DFIRE, appear to complement the sensitivity of the

physics-based electrostatic energy function to the accuracy of local geometry.

When compared to methods that employ additional sampling of neighboring

side chains (HLP-SS, Rosetta-KIC, and NGK in Table 1), GalaxyLoop-PS2 shows

slightly worse loop modeling accuracies. The cases in which GalaxyLoop-PS2

failed to model accurately can be easily understood, such as the cases in which the

perturbed side chain conformations do not allow native-like loop conformations

owing to steric clashes, as illustrated in Figure 2B for 1oth. Such loops can be

modeled more accurately only when the surrounding residues are sampled

together.

Loop modeling in the framework of backbone-perturbed crystal

structures

To examine the performance of GalaxyLoop-PS2 in more difficult situations,

loops were modeled for the same set of proteins (Set 1) but with further deviations

in both backbone and side chain structures from the crystal structures.
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Environment error introduced by distorting ‘neighboring’ regions including

backbone was shown to decrease loop modeling accuracy in previous works

[1, 27, 28]. In this study, ‘global’ structure is perturbed to mimic actual situations

of loop modeling in globally inaccurate frameworks. The performance of

GalaxyLoop-PS2 on this set is compared to that of GalaxyLoop-PS1 run in this

study and that of NGK run with the protocol provided by Stein et al [18]. The

loop environments of backbone-perturbed set are more inaccurate compared to

Figure 2. Examples of loops modeled in inaccurate environmental structures. In all panels, the crystal
structures are colored in green and the models in magenta. Framework structures are shown transparent for
clarity. (A) Two examples of tolerating errors in surrounding side chains, 1oyc (left; RMSD50.4 Å) and 1c5e
(right; RMSD50.5 Å). The loop-framework salt bridges in the crystal structures are indicated with black dotted
lines. High-accuracy modeling is possible even though the salt bridges cannot be recovered owing to the
perturbed arginine orientations in the framework. (B) An example of unsuccessful modeling in the framework
of perturbed side-chains, 1oth (RMSD52.3 Å), showing the necessity of additional sampling. The perturbed
Arg66 and Tyr345 side chains (magenta) would clash with the two leucine residues in the loop if the crystal
loop structure were to be placed. (C) Two examples of tolerating additional backbone errors, 1my7 (left;
RMSD51.0 Å) and 1cb0 (right; RMSD50.9 Å). The overall backbone trace and key side-chain interactions
are well reproduced.

doi:10.1371/journal.pone.0113811.g002
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the side chain-perturbed set, with increases in E-RMSD by 1 Å (from 1 Å to 2 Å),

as shown in Table 1. In addition, the loop anchor positions, which can affect

prediction accuracy greatly [17], are also perturbed from the original structure.

However, increase in the average RMSD of the loop models is smaller than that in

environment. The average RMSD remains the same at 2.1 Å for 12-residue loops

and increases by 0.7 Å (from 1.3 Å to 2.0 Å) for 8-residue loops when compared

to those obtained for side-chain perturbed set. GalaxyLoop-PS2 performs

comparably to NGK on this backbone-perturbed set although it does not involve

extended sampling of environment structures. Detailed results on the individual

targets are provided in Tables S4 and S5.

It must be noted that the RMSD value of a loop structure in an inaccurate

environment is increased by the environmental inaccuracy as well as by the

inaccuracy of the loop structure itself. For example, even a loop structure very

close to the native structure is not guaranteed to have an RMSD close to 0,

because the RMSD is calculated after structural superposition of the inaccurate

environmental structure on the crystal structure.

The backbone trace of the loop and key side chain interactions can be predicted

reasonably well, as illustrated for two examples in Figure 2C. These specific

examples show prediction results with high accuracy (with loop RMSDs of 1.0 Å

and 0.9 Å), while tolerating environments with much larger error (E-RMSD of

4.0 Å and 2.7 Å). Alongside the environment backbone, some perturbed side

chains that can affect interactions with loop atoms, such as adjacent arginine

residues involved in salt bridges, have been tolerated, similar to the cases observed

in the side chain-perturbed set. On the other hand, targets that show greater

failures compared to the previous tests were generally associated with large

environmental perturbations that would cause steric clashes in native-like loop

structures. Compared to GalaxyLoop-PS1, GalaxyLoop-PS2 still performs better

on this set, although the gap between the two methods becomes smaller than on

the previous sets. This can be explained by the fact that the energy function used

for GalaxyLoop-PS1 was trained on a set of loops in more inaccurate environment

structures in template-based models.

Loop modeling in the framework of template-based models

An explorative test of loop modeling in template-based models was tried to test

the performance of GalaxyLoop-PS2 in more inaccurate environments. A set of 23

loop modeling targets were constructed from the HOMSTRAD set [29] using

template-based models generated with MODELLER 9.6 [30]. The E-RMSD of this

set ranges from 1.6 Å to 5.3 Å, with an average of 2.8 Å. The prediction results are

summarized in Table 2, and details are reported in Table S6. Before discussing

the results, it is worth pointing out that, similar to the case of the backbone-

perturbed set, errors from structural superposition of the inaccurate environment

can be embedded in the calculated loop RMSD.

To briefly state the results, loops in the template-based model set were

predicted with RMSD ,3 Å in 7 out of 23 cases and ,2 Å in 3 cases by
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GalaxyLoop-PS2. On average, the loop structures predicted by GalaxyLoop-PS2

(average RMSD of 3.7 Å) and GalaxyLoop-PS1 (average RMSD of 3.9 Å) are

more accurate than the loops in the template-based models generated by

MODELLER (average RMSD of 4.2 Å), the loop models after loop refinement

using ModLoop (average RMSD of 4.0 Å) [1, 27, 30]. In addition, the results are

comparable to those of NGK which carries out extended optimization of

environment (average RMSD of 3.9 Å). One of the outstanding examples is

illustrated in Figure 3, in which even side chain orientations can be modeled

accurately. Ab initio loop modeling is necessary for this target, since the

corresponding loop structures of the three template proteins used for template-

based modeling (yellow ribbons in the figure) do not contain useful structure

information.

Table 2. Comparison of loop modeling results on the test set of template-based models.

Framework
Loop set
(No. residue) E-RMSD (Å) Loop RMSD (Å)

GalaxyLoop MODEL-LER1) ModLoop2) NGK3)

PS2 PS1

Template-based model TBM set4) (6–11) 3.0¡1.3 3.7¡1.4 3.9¡1.6 4.2¡1.9 4.0¡1.7 3.9¡1.5

The average RMSD and its standard deviation are reported in Å. The Loop RMSD is calculated as the root-mean-square deviation of the main-chain atoms
N, Ca, C, and O.
1)Loop conformations generated by MODELLER [30].
2)Loop conformations generated by loop refinement using ModLoop of MODELLER [1,27].
3)Results of the best-score models sampled by Next-generation KIC (NGK) using the protocol provided by Stein et al. [18].
500 models were generated for each target as in Stein et al. The Rosetta program v3.5 was used.
4)Loop set constructed in this study. See Table S7 for the list of loops.

doi:10.1371/journal.pone.0113811.t002

Figure 3. A successful example of loop modeling in the framework of a template-based model. The
crystal structure is colored in green and the model in magenta (1avk, RMSD51.5 Å). Framework structures
are shown transparent for clarity. Loops of three templates (used for template-based modeling) are shown
with yellow transparent ribbons for comparison.

doi:10.1371/journal.pone.0113811.g003
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It must be noted that the absolute degree of improvement achieved by the ab

initio loop modeling is rather limited when applied to the case of large

environmental errors such as template-based models. This implies that the current

approach of using a new energy function insensitive to environmental errors is

insufficient for improving template-based models to atomic accuracy and that

refinement of the surroundings by extending the sampling region is required.

Sampling performance of GalaxyLoop-PS2

Thus far, the lowest-energy model structures were examined in the above analysis.

The GalaxyLoop methods generate 30–50 models, so it would be worthwhile to

examine the ensemble of generated structures to assess the sampling performance.

The quality of such a conformational ensemble can also be important for

applications such as ligand docking on ensemble structures [31–33].

Overall, a majority of the loop ensembles generated by GalaxyLoop-PS2 contain

models with a main chain RMSD ,2 Å, even in inaccurate environments. For the

side chain-perturbed sets, at least one model is sampled within 2 Å for 17 out of

20 8-residue loops and 16 out of 20 12-residue loops, as shown in Table 3. For the

backbone-perturbed sets, this criterion is satisfied in 16 out of 20 cases for both 8-

and 12-residue loops. As the conformational ensembles generated for the test

loops contain native-like loop conformations in a majority of the cases, the

current loop modeling method may be applicable to various practical applications

that may utilize an ensemble of loop conformations.

Comparison of the hybrid energy with the physics-based and

knowledge-based energy

One assumption underlying the design of the hybrid energy function in this study

is that the advantages of the physics-based and knowledge-based energy terms can

be synergized by combining the energy terms. To confirm this assumption,

additional tests were performed on two energy functions constructed by taking

only knowledge-based terms (with additional bonded energy terms to maintain

proper local geometry) and by taking only physics-based terms from the hybrid

energy function. When tested on the 12-residue loop targets of Set 1, the average

RMSDs for the crystal, side chain-perturbed, backbone-perturbed, and template-

based model sets are 1.7 Å, 2.3 Å, and 2.0 Å, respectively, for the knowledge-

based energy, and 2.1 Å, 3.0 Å, and 2.8 Å, respectively, for the physics-based

energy. For the same test sets, the hybrid energy gives 1.6 Å, 2.1 Å, and 2.1 Å.

Detailed results on the individual targets are reported in Table S7. The hybrid

energy function shows superior results to both the physics-based and knowledge-

based energy functions, as anticipated, except in the case of a backbone-perturbed

set, in which the knowledge-based energy shows slightly better performance than

the hybrid energy by 0.1 Å. The excellent performance of the knowledge-based

energy function on the backbone-perturbed set may be due to the fact that the

backbone-perturbed framework structures represent a rather realistic thermal
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ensemble that can be captured by the smooth landscape of the knowledge-based

energy.

It must be pointed out that the physics-based energy function performs poorly

on the crystal framework test set compared to HLP, which is also based on similar

energy terms. This may be because the current molecular mechanics energy uses

polar hydrogen topology rather than an all-atom representation and a more

approximate GB method called FACTS for computational efficiency. It is non-

trivial to explain the lower performance of the physics-based part than the

knowledge-based part in the crystal environment, but it is noted that the

knowledge-based energy is actually combined with the bonded energy terms of the

physics-based part. Loop modeling in a full atom representation that is more

physically realistic will be pursued in the future.

It is suggested that the new hybrid energy function can be combined with an

extended sampling of the surroundings. It is believed that such efforts to extend

the applicable range of the current loop modeling techniques must be continued

to solve various practical problems, such as structure-based drug design and

experimental structure determination.

Computational cost

The average computation time for the 12-residue loops of Set 1 and Set 2 is 92

CPU hours on 2.4-GHz Intel Xeon processors. Each job takes approximately

4 hours when run on 24 CPUs in parallel. The computation time could be

reduced (down to 82 CPU hours) by using a smaller size of CSA bank (N530

instead of N550) with slight decrease in the prediction accuracy (average loop

RMSD of 2.1 Å, 2.2 Å, and 2.6 Å for the 12-residue loop set in three different

environments, respectively, compared to 1.6 Å, 2.1 Å, and 2.1 Å with N550. See

Table S8 for details.). Average computation time for the same set is 182 h for

NGK when 500 models are generated for each target. This can be compared to the

reported computation times of 320 h for Rosetta-KIC (to generate 1000 models),

260 h for HLP-SS, 55 h for ICMFF (for each run, results after 5 runs were

Table 3. Sampling results of GalaxyLoop-PS2 on the three test sets.

Framework Set (No. loop residue) No. loops No. loop sampled within1)

,1.0 Å ,1.5 Å ,2.0 Å

Crystal structure Set 1 (8) 20 19 20 20

Set 1 (12) 20 13 16 19

Set 2 (12) 33 20 27 28

Side chain-perturbed Set 1 (8) 20 14 16 17

Set 1 (12) 20 8 16 16

Backbone-perturbed Set 1 (8) 20 8 13 16

Set 1 (12) 20 6 14 16

1)Number of loop targets for which at least one structure among the 30 loop conformations (or 50 conformations for 12-residue loops) in the final CSA bank is
within a given RMSD value.

doi:10.1371/journal.pone.0113811.t003
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reported in Arnautova et al., 2011), and 29 h (N530) and 95 h (N550) for

GalaxyLoop-PS1.

Methods

Loop modeling test sets

Four types of loop modeling test sets with different degrees of error in the

framework structure were employed. The first type consists of two subsets of

crystal structure frameworks, one including 20 8-residue loops from Jacobson et

al. [10] and 20 12-residue loops from Zhu et al. [34] (called Set 1) and another

composed of 33 12-residue loops from Fiser et al. [1] (called Set 2). The second

type consists of the same loop targets as Set 1 of the first type, but with perturbed

side chain structures for the residues surrounding the loops as generated by Sellers

et al. [15] (downloaded from http://www.jacobsonlab.org/decoy.htm). The third

type consists of the same loop targets as the side chain-perturbed set, but the

framework structures are perturbed in the overall structure, including the

backbone. This set is called the backbone-perturbed set.

The backbone-perturbed set was prepared by performing 2-ns molecular

dynamics (MD) simulations at 300 K, starting from the energy-minimized crystal

structures using the AMBER12 package [35]. The AMBER99SB force field [36]

and the Generalized Born/Surface Area (GB/SA) implicit solvation model [37, 38]

were used. Considering that MD simulations generate thermally accessible

conformational fluctuations, the tests on the backbone-perturbed set may be

regarded as loop modeling tests in framework structures from thermal ensembles.

The fourth type of test set consists of loop targets in template-based models.

The protein targets for this set were collected from the HOMSTRAD set [29].

Template-based models for the protein targets were generated using MODELLER

9.6 [30] with templates and multiple sequence alignments taken from the SALIGN

benchmark study [39, 40] (downloaded from http://salilab.org/projects/salign).

Only those targets for which the template-based models have GDT-TS [41]

between 70 and 90 were considered. The target loop regions were selected with the

model consensus method for detecting unreliably modeled regions [42]. Loops

involved in interactions with other protein chains or ligand molecules, those in

crystal contacts with other subunits, and those in NMR structures which show

large fluctuations were not considered. This resulted in 23 loop modeling targets.

The backbone-perturbed set and template-based model set can be downloaded

from http://galaxy.seoklab.org/suppl/ps2.html.

Energy function

In GalaxyLoop-PS2, the energy function is described by a sum of physics-based

energy terms and knowledge-based energy terms as follows:

Etotal~Ephysics{basedzEknowledge{based,
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Ephysics{based~EbondedzEvdwzwElectrostatics(ECoulombzEFACTS,GB)zwSAEFACTS,SA,

Eknowledge{based~ww=yEw=yzwxExzwHbondEHbondzwatom{pairEatom{pair:

All key molecular interactions, such as short-range interactions, electrostatic

interactions including solvation effect, and hydrophobic interactions, are included

in both the physics-based and the knowledge-based energy terms. By maintaining

completeness within each type of energy function as much as possible, it is

anticipated that a weakness in any part of one type of energy can be compensated

for by the corresponding term in another type of energy. The physics-based energy

is based on the CHARMM22 force field [43] mapped onto a polar hydrogen

topology with bonded energy (Ebonded), van der Waals energy (EvdW), Coulomb

potential energy (ECoulomb), and the FACTS GB/SA solvation free energy

(EFACTS,GB and EFACTS,SA) [44]. The knowledge-based energy contains torsion

angle correction terms (EQ/y for backbone torsion angles and Ex for the side-chain

torsion angles derived in this study) to recover statistical preferences in local

structure, the hydrogen-bond energy developed by Kortemme et al. [45] (EHbond)

to describe short-range electrostatics, and knowledge-based, atom-pair potential

dipolar-DFIRE [46] (Eatom-pair) to describe both short-range and long-range

interactions and hydrophobic interactions. In particular, EQ/y serves to correct

secondary structure biases due to imperfect parameter optimization, as in the

empirical modifications to the backbone torsion terms of molecular mechanics

force fields [36, 47]. Details on the FACTS solvation free energy and the torsion

angle knowledge-based energy terms newly implemented in GalaxyLoop in this

study are described in more detail in Text S1.

The weight parameters are set to (wElectrostatics, wSA, wQ/y, wx, wHbond,

watom-pair)5(0.16, 0.05, 1.2, 1.0, 4.0, 12.0) by training on the 28 training loop

targets introduced in the previous study, using a similar optimization method that

employs decoy loop conformations [17]. In this work, only the performance of

loop reconstruction in the crystal structure framework was optimized, without

further training on loops in template-based models. First, a grid search for

optimal weights was performed for the relative weight between the physics-based

part and the knowledge-based part, while the initial weights within each type of

energy function were fixed to achieve an overall balance. Individual weights were

then tuned. The torsion angle correction term for the backbone (EQ/y) was derived

after determining all other energy weights, and then all weight parameters were

once again tuned, including the EQ/y term. Contribution of each energy term was

analyzed by examining variations of the energy value (Table S9) and energy-

RMSD correlation (Table S10) for the training set decoy conformations as

explained in detail in Text S1.

Loop modeling protocol

The GalaxyLoop-PS2 loop modeling follows the conformational space annealing

(CSA) [48] global optimization procedure as reported previously for GalaxyLoop-
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PS1 [17, 49]. A flowchart of the method is provided in Figure S1 and details on

each step of the procedure are given by Park and Seok [17]. A pool of a fixed

number of loop structures (N530 for loops of ,12 residues and 50 for loops of

>12 residues), called ‘bank’, is evolved by generating trial conformations by

mixing pool conformations, as in a genetic algorithm, and by updating the pool

by comparing the energies and distances of the bank members and the trial

conformations at each iteration step. The initial bank is generated by the fragment

assembly with loop closure (FALC) loop sampling procedure [50, 51], and the tri-

axial loop closure algorithm [52] is used to maintain the structural integrity of the

loop after mixing the conformations. The diversity of the pool is gradually

reduced with each iteration by using a control parameter called ‘Dcut’ that sets a

distance criterion for replacing old bank members with trial conformations. The

number of conformations in the final bank is the same as that in the initial bank,

and the energy minimum structure in the final bank is selected as the final model.

After GalaxyLoop-PS1, a new aspect introduced in the current development is

that a more extensive side chain sampling is performed. Each trial loop

conformation generated during global optimization is subjected to an additional

side chain sampling by a maximum of three trials of side chain conformation

exchanges with other bank members. The trial loop conformation is further

refined by short MD simulation and local energy minimization. In addition, a

larger bank size (N550) was used for the 12-residue loops to alleviate sampling

problems for these longer loops, while N530 was used by Park and Seok,

regardless of the loop length [17].

Supporting Information

Figure S1. Flowchart of the GalaxyLoop-PS2 protocol. The overall procedure

follows the conformational space annealing global optimization. The FALC

(fragment assembly with loop closure) method is used for generating initial

conformations. A pool of N conformations is generated and evolved while

gradually reducing the Dcut parameter, which controls the conformational

diversity of the pool. (Here, (M, N)5(10, 30) for loops ,12 residues and (20, 50)

for loops >12 residues.)

doi:10.1371/journal.pone.0113811.s001 (TIF)

Table S1. Loop reconstruction results for the 8-residue loop Set 1.

doi:10.1371/journal.pone.0113811.s002 (PDF)

Table S2. Loop reconstruction results for the 12-residue loop Set 1.

doi:10.1371/journal.pone.0113811.s003 (PDF)

Table S3. Loop reconstruction results for the 12-residue loop Set 2.

doi:10.1371/journal.pone.0113811.s004 (PDF)

Table S4. Loop modeling results on the perturbed crystal structures for the 8-

residue loop Set 1.

doi:10.1371/journal.pone.0113811.s005 (PDF)
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Table S5. Loop modeling results on the perturbed crystal structures for the 12-

residue loop Set 1.

doi:10.1371/journal.pone.0113811.s006 (PDF)

Table S6. RMSD results of the modeled loops for template-based models.

doi:10.1371/journal.pone.0113811.s007 (PDF)

Table S7. Loop reconstruction results and modeling results on perturbed

crystal structures for the 12-residue loop Set 1 using energy functions

composed of either knowledge-based or physics-based energy components.

doi:10.1371/journal.pone.0113811.s008 (PDF)

Table S8. Loop modeling results for the 12-residue loop Set 1 in three different

environments with a smaller number of CSA bank size (N530 instead of

N550).

doi:10.1371/journal.pone.0113811.s009 (PDF)

Table S9. Contribution of each energy component.

doi:10.1371/journal.pone.0113811.s010 (PDF)

Table S10. Correlation between energy and decoy loop RMSD calculated using

different subsets of energy components.

doi:10.1371/journal.pone.0113811.s011 (PDF)

Text S1. Detailed information on Methods and Results.

doi:10.1371/journal.pone.0113811.s012 (PDF)
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