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Abstract

The current Edisonian approach to discovery requires up to two decades of fundamental

and applied research for materials technologies to reach the market. Such a slow and capi-

tal-intensive turnaround calls for disruptive strategies to expedite innovation. Self-driving

laboratories have the potential to provide the means to revolutionize experimentation by

empowering automation with artificial intelligence to enable autonomous discovery. How-

ever, the lack of adequate software solutions significantly impedes the development of self-

driving laboratories. In this paper, we make progress towards addressing this challenge,

and we propose and develop an implementation of ChemOS; a portable, modular and ver-

satile software package which supplies the structured layers necessary for the deployment

and operation of self-driving laboratories. ChemOS facilitates the integration of automated

equipment, and it enables remote control of automated laboratories. ChemOS can operate

at various degrees of autonomy; from fully unsupervised experimentation to actively includ-

ing inputs and feedbacks from researchers into the experimentation loop. The flexibility of

ChemOS provides a broad range of functionality as demonstrated on five applications,

which were executed on different automated equipment, highlighting various aspects of the

software package.

Introduction

Empowering automated infrastructures with artificial intelligence (AI) algorithms has the

potential to expedite scientific discovery through autonomous experimentation. [1–4] Inspired

by the increasing digitization of science and the rapid expansion of the Internet of Things
(IoT), the scientific community has begun to design the next generation of research facilities.

[5, 6] The concept of autonomous and interconnected robotics platforms with specific tools to

tune the properties of materials will enable new fabrication strategies. [3] Such platforms are at

the heart of what we refer to as the self-driving laboratories. In the self-driving laboratories, AI
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algorithms continuously learn from experimental results collected through real-time feedback

to construct a model to hypothesize about the experimentation at hand. With new measure-

ments, this model is refined to improve recommendations for the next experiment to run.

This procedure defines the closed-loop approach. It allows to obtain information-theoretic

driven decisions to maximize knowledge acquisition in order to reach a set of predefined

goals, such as maximizing the yield of a reaction, reducing the time of an experiment or mini-

mizing reactants usage. As such, this approach differs from combinatorial chemistry [7–10] in

an essential aspect; in combinatorial chemistry, experimental campaigns are designed prior to

starting the experimentation process, whereas the proposed approach has campaigns that

adapt at every closed-loop iteration. Although the premise of autonomous research facilities

has recently been analyzed, [3, 11] a portable, modular and versatile software interfacing

researchers, robots, and computational tools to orchestrate and facilitate the deployment of

these self-driving laboratories is yet to be designed. Such a software package is presented

herein, and is referred to as ChemOS.

Automation was pioneered by the industrial sector in search for intensifying chemical and

pharmaceutical processes to increase productivity and improve quality. [7, 9, 10, 12–16] Dur-

ing the last decades, several groups have demonstrated the benefits of automated systems on a

variety of chemistries, [9, 17–29] and a few laboratory automation software packages have

been developed. [30–34] One step further, the integration of design of experiment (DoE) [35–

37] to automation emerged as a first strategic approach to experimentation. [38, 39] The first

closed-loop approach for adaptive experimentation consisted in grid search-based surveys,

which identified the most promising starting points for a subsequent local optimization via dif-

ferent flavors of the simplex algorithm. These hybrid approaches were applied to the optimiza-

tion of chemical reactions. [10, 40–42] However, parameters evaluated from a grid are

correlated, which might result in the omission of important features. In addition, grid search

based methods require a substantial number of evaluations to capture relevant phenomena

leading, eventually, to discovery. As such, to further streamline the discovery process, the next-

generation of autonomous laboratories augments automation with AI algorithms. By refining

experimental procedures based on the most recent observations, the AI algorithms ensure to

carry out an optimal set of experiments, avoiding the exhaustive and enduring exploration of

the complex and high-dimensional application space.

Several groups have already demonstrated the use of autonomous approaches encapsulating

modern AI algorithms to a range of applications. One of the first examples of a self-driving lab-

oratory was reported by Maruyama et al. on the synthesis of carbon nanotubes. [43] Similar

approaches were used to produce Bose-Einstein condensates (BEC), [44] optimize organic

synthesis reactions, [45–47] discover multicomponent NiTi-based shape memory alloys, [48]

design quantum optics experiments to achieve a certain photonic quantum state, [49] and syn-

thesize and crystallize polyoxometalate clusters. [50] The latter example reports the advantages

of such a procedure in terms of accuracy and coverage of the crystallization space by compar-

ing with human-based and random search approaches.

Although the self-driving laboratories appear to be on track to revolutionize the traditional

Edisonian approach [51] to experimentation, they require versatile software to be engineered.

This often imposes constraints on the development of such autonomous facilities, preventing

their full exploitation. In the aforementioned examples, as well as in other applications

reported in the past, [17, 52] in-house developed software packages tied to the hardware and

to the scientific procedure were used to operate the experimental infrastructure, parse infor-

mation, and learn from it. Undoubtedly, distinct scientific challenges require distinct and tai-
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lored self-driving laboratories. However, a substantial number of processes are common across

them, or can be abstracted. Additionally, the significant advances in high-level programming

languages, and in computer science, notably in AI, have enabled the design of a flexible soft-

ware package that addresses the specific needs of autonomous laboratories. As such, it

becomes possible to provide the scientific community with a structured software package, con-

sisting of fundamental layers common to any self-driving laboratories. These layers require

database management, experiment scheduling, collection of experimental feedback, interac-

tion with different learning procedures, and recommendations of experimental conditions for

the robotics platform. In what follows, we present ChemOS, a software package that fulfills

these requirements and enables the remote control of robotics. ChemOS has the potential to

increase the discovery rate across chemistry and material science and also catalyze the realiza-

tion of prototype self-driving laboratories.

ChemOS coordinates the overall computational and experimental workflow, monitors

experiments, administrates data collection, data storage as well as details about the configura-

tions of the available automated laboratory equipment, potentially distributed across different

physical laboratories. One of the crucial components of ChemOS are the various AI algorithms

encapsulated in the learning module. Although ChemOS shares the vision of a fully autono-

mous discovery platform, it allows for an efficient interaction between researchers, AI algo-

rithms, and the robotic hardware. To this end, ChemOS provides various intuitive interfaces

for interactions, ranging from simple data exchange via well-defined protocols to natural lan-

guage processing (NLP).

We demonstrate the performance of ChemOS on five applications, each highlighting differ-

ent aspects of its implementation. Our findings show the ability of ChemOS to successfully

run at a diverse level of autonomy, from fully unsupervised experimentation to actively includ-

ing the researchers in the closed-loop approach to discovery. Also, we confirm the ability of

the AI algorithms to learn experimental procedures on the fly to reach human-defined targets

in a minimal number of evaluations on high-dimensional spaces, without prior knowledge.

For all tested applications, the same ChemOS core is deployed on several different Unix-like

operating systems to operate different (potentially remote) robotic and characterization hard-

ware, with different state-of-the-art AI algorithms, demonstrating the flexibility and modular-

ity of the presented software package. ChemOS is available for download on GitHub at URL:

https://github.com/aspuru-guzik-group/ChemOS.

Results

ChemOS follows a modular architecture composed of a central workflow manager and six

independent modules (see Fig 1). Three of the modules are required to enable closed-loop

experimentation: (i) AI algorithms for experiment planning, (ii) automation and robotics to

execute experiments, and (iii) characterization equipment to assess the performance of the

conducted experiment. In addition, ChemOS provides modules which improve the practicality

of the self-driving laboratories: (iv) databases for long-term data storage, (v) intuitive interac-

tions with researchers, and (vi) online results analysis. The modularity of ChemOS is a crucial

element which decouples interdependent tasks. Consequently, ChemOS can be easily extended

by incorporating additional modules, or new features specific to an existing module, without

interfering with the established workflow. The modularity of ChemOS significantly reduces

the obstacles to the development and deployment of the self-driving laboratories. Before dem-

onstrating the performance of ChemOS on applications, we highlight the responsibilities of

the individual modules. Detailed descriptions are provided in the supplementary information

(see Sec. S1 File).
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Artificial intelligence for experiment planning

The learning module is key to reach autonomy as it designs experimental campaigns for the

scientific procedures requested by the researcher. ChemOS abstracts experimental procedures

to stochastic response surfaces, which describe the merit of proposed generic experimental

conditions with respect to user preferences. The learning module supports various Bayesian

Fig 1. Representation of the modules composing ChemOS. This scheme highlights the modularity and the independence of the six modules, which

are (i) global learning procedures, (ii) automated robotic platforms, (iii) characterization equipment, (iv) databases handling and management, (v)

intuitive interfaces for researchers, and (vi) online analysis. The central workflow manager, ChemOS, is depicted in yellow. The required modules to

reach autonomy in the discovery process are presented in dark orange.

https://doi.org/10.1371/journal.pone.0229862.g001
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machine learning (ML) algorithms for efficient parameter space searches and decision making

to recommend conditions for future experiments: Phoenics, [53] SMAC, [54–56] Spearmint,

[57, 58] and random search. [59, 60]

Interaction with automated experimentation hardware and

characterization equipment

The robotics and characterization modules provide the mapping between the abstract response

surfaces on which the learning procedures operate to the actual scientific procedures. For new

applications, the communication protocol and interaction layers allowing to integrate the new

hardware and/or characterization equipment within the ChemOS workflow need to be imple-

mented manually. It is important to emphasize that this programming exercise is the only

manual step to the deployment, and cannot be automated as the application programming

interfaces (APIs) may vary from one automated platform to another. Once integrated, the

robotics and characterization modules will automatically relate abstract conditions to hard-

ware specific parameters. Since the robotics and characterization modules contain specificity

about the available hardware, the learning module in ChemOS can be agnostic about actual

scientific procedures and can thus be applied to different procedures simultaneously.

Databases for long-term data storage

Long-term storage of experimental data and instructions is facilitated via database-manage-

ment systems (DBMS). ChemOS features connections to multiple DBMS for flexible data

storage at negligible computational overhead (see Sec. S1 File). Efficient closed-loop experi-

mentation is enabled by storing information in distinct databases which allows for parallelized

reading and writing operations. All DBs operate on the first-in-first-out (FIFO) principle.

Consequently, new requests are queued chronologically, and they are processed as soon as

parameters and the robotic hardware are available.

Interaction with researchers

Rapid advances in AI provide opportunities to redesign the interaction of researchers with

experimentation equipment. Approaches such as graphical user interfaces (GUIs) raise the

deployment obstacles as researchers need to acquaint themselves with the interface first. Che-

mOS provides more intuitive interfaces for researchers in the form of a chatbot framework

powered by a NLP module. This interface favors the interaction between researchers, the

learning module, and the robotic hardware. The NLP module processes new requests, filters

and summarizes relevant results and customizes responses based on information specific to

the received messages (see Fig 3c). ChemOS connects the NLP module to several common

social media platforms and communication services including e-mail exchange, private and

public messaging via Twitter, and private messaging via Slack. As such, ChemOS can accom-

modate the individual preferences of a researcher or a research group. Communication via

multiple channels in one session is also supported.

Online analysis of experimental results

ChemOS features an analysis module to process, summarize and visualize the results obtained

from measurements. This enables researchers to quickly perceive the progress of the current

experimentation and conceptualize the findings of the self-driving laboratory. ChemOS sup-

ports the generation of time traces, runs statistics on repeated experiments, computes higher-

level objectives from lower-level experimental observations and visualizes the search space of
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the experimental procedure. Researchers can request a status report at any time in the course

of the experimental procedure. Fig 3c illustrates such a status report requested via Slack.

Orchestrating experimental procedures with ChemOS

The modular implementation and the decoupling of individual tasks of the closed-loop experi-

mentation process enable ChemOS to orchestrate multiple experimental procedures simulta-

neously at negligible computational overhead (see Sec. S1 File). Individual experimentation

sessions can be implemented by providing detailed information and feature selections for each

of the modules in a single configuration file (see Sec. S1 File). The configuration file includes

the researchers’ choices of learning procedures and communication channels. Furthermore, it

informs ChemOS about the available automated experimentation platforms. Then, ChemOS

automatically maps experimental procedures to the available hardware. Consequently, deploy-

ing ChemOS to new applications only requires to modify the configuration file. This flexibility

allows for an accelerated and simplified deployment of the self-driving laboratories, and it

empowers ChemOS to orchestrate numerous experiments for different applications.

Orchestration of standard laboratory equipment

We suggest a robotic liquid handling platform to produce blends to yield a pre-defined color,

pH and density from a set of starting materials. We demonstrate that ChemOS is capable of

generating such formulations without human supervision, and that the produced formulations

match the pre-defined goals.

The experiments outlined in this section were controlled on and synchronized across three

distinct physical platforms: (i) a master platform hosting ChemOS and the learning procedure,

(ii) an automated robotic platform operating the liquid handler (see Fig 2c), and (iii) a charac-

terization platform controlling the characterization equipment for each of the experimental

procedures (RGB sensor, pH meter, and a precision laboratory balance). The communication

between the master platform and the characterization platform is supported via Dropbox,

while the liquid handler and the characterization platform communicate via the Secure Copy

Protocol (SCP). All communications are supervised and instantiated by ChemOS from the

master platform. The experimental loop is initialized remotely by the researchers, as illustrated

in Fig 3c. Once the researchers’ request is parsed, ChemOS uses the learning module to recom-

mend a first experiment. The robotics module maps the proposed experiment parameters to

the available hardware to execute the experiment. The characterization station measures the

properties of interest, which are compared to the target defined by the researcher. Based on

this feedback, ChemOS then recommends promising experiments for future evaluations.

Learning the color space. This procedure generates a target colored solution from a set of

five dyed solutions combining three individual dye molecules at different concentrations (Fig

2) in full autonomy. This first use-case demonstrates the closed-loop approach orchestrated by

ChemOS, and highlights the workflow management. ChemOS was instructed to produce a

green solution, and could produce the target by mixing red, orange, yellow, green and blue

solutions (see Materials and methods for details). Importantly, ChemOS was not provided any

information about the initial solutions and was not constrained to the number of solutions to

use. As such, ChemOS was free to generate the target green from, for example, choosing only

the provided green solution, or mixing the yellow and the blue solution.

We ran this experimental procedure with all three implemented AI algorithms (Phoenics,

SMAC and spearmint) for a total of 25 experiments per session. Fig 2d displays the progress

of the experimental procedures for each algorithm. The reported loss indicates the maximum

distance between the normalized RGB codes of the sampled solution mixtures and the
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Fig 2. (a) The three dyes used in this experiment: E102 (yellow), E129 (red), and E133 (blue). (b) Picture of the solutions obtained with the 12

exploitation points from Phoenics (c) Picture of the in-house built robot. (d) Maximum norm distance (loss) between the achieved normalized

RGB color code and the target RGB color code for the 25 experiments. Each panel corresponds to the learning procedure in-use: Phoenics,

SMAC, or spearmint. For the Phoenics algorithm, red denotes a bias towards exploration, and blue a bias towards exploitation. Note that in

exploration mode, Phoenics samples parameters to gather knowledge where the algorithms has only limited information. In exploitation mode,

however, Phoenics makes the best decision given current information and suggests parameters in the vicinity of the best performing

experiment.

https://doi.org/10.1371/journal.pone.0229862.g002
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normalized RGB code of the target color. The rapid decrease of the loss validates the capability

of ChemOS to learn the color space in full autonomy. All employed learning algorithms con-

sistently produce mixtures of green color with RGB codes close to the desired target. An

example of colors produced by the mixtures sampled from Phoenics with a bias towards

exploitation is displayed in Fig 2b.

This simple experiment illustrates the ability of the learning procedures to suggest routes to

reach pre-defined targets which deviate from human intuition. Where a human researcher

might favor the green starting solution over a mix of multiple starting solutions to produce a

green target, ChemOS suggested a recipe containing 43.6% of the green solution, 19.6% of the

yellow solution, 30.0% of the blue solution, and 6.8% the orange solution. This mixture still

reproduced the target color indistinguishable by both the human eye and the RGB sensor and

presents an unexpected solution to the given task.

Learning the pH space. The goal of this procedure is to generate a solution with a desired

pH value using five different starting materials with different pH values. The target pH value is

defined by the researcher and set to pH = 7.0 in this example. The five starting materials were

prepared with potassium hydrogen phthalate (pH = 4.0, and 5.6), mixed phosphate (pH = 6.7)

and borax (pH = 8.5, and 9.3). ChemOS used the Phoenics algorithm to produce the desired

target pH within 25 experiments. Fig 3a illustrates how the mixtures proposed by the algorithm

approach the target pH of 7.0. Panel 3a.I depicts the pH values measured in each experiment,

while panel 3a.II shows the best performing composition. No constraints were applied to the

number of starting materials to use, as was already the case for the color mixing experiment.

We observe a rapid decrease in the deviation of the produced pH value from the desired tar-

get for this five dimensional search space with experiment 10 already yielding a pH of 6.809.

The closest experiment to the target is experiment 17 where the pH of the solution was mea-

sured to be 7.001. This second illustration showcases the ability of ChemOS to run in full

autonomy. It also highlights the ability of the AI algorithm to learn experimental procedures

on the fly to reach a human-defined target in a minimal number of evaluations on high-

dimensional spaces, without prior knowledge.

Learning the density space. In this procedure, ChemOS is provided with five fluids of dif-

ferent densities with the target to produce a blend with a desired target density of 1 g/cm3. Like

in the previous examples, the densities of the provided fluids (0.40, 0.55, 0.70, 1.35, and 1.75 g/

Fig 3. Results from the pH (A) and density (B) experiments. Both the loss (I) and the contribution of the starting

materials to the produced mixture (II) are reported. (C) Example of a dialogue between ChemOS and researchers.

https://doi.org/10.1371/journal.pone.0229862.g003
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cm3) were hidden from ChemOS. ChemOS controlled this procedure with the Phoenics learn-

ing algorithm for 25 experiments, following the setup of the pH experiment. Fig 3b reports the

deviation of the density of the produced blend from the target density, as well as the contribu-

tion of each individual starting material to the blend. Within only nine experiments in this five

dimensional space, Phoenics reached the targeted density of 1 g/cm3.

In summary, these three examples demonstrate the capacity of AI algorithms to efficiently

probe and evolve on high-dimensional parameter spaces while performing at an optimal num-

ber of experiments even without prior knowledge. By not supplying AI algorithms with any

prior assumptions, the algorithms are enabled to discover solutions which can be beyond the

researchers’ expectations. This is of utmost importance when targeting scientific discovery. In

fact, observations of unbiased AI algorithms finding creative and unexpected solutions have

been made recently in the field of evolutionary computation and artifical life. [61] Finally,

these three applications illustrate the closed-loop approach to experimentation implemented

in ChemOS. They also highlight the seamless integration of different characterization equip-

ment (RGB sensor, pH meter, and precision laboratory balance) into the ChemOS workflow.

The potential of such an approach extends far beyond these applications; we can imagine the

potential of ChemOS when bridged to platform design for drug and material discovery.

Integration of the researcher in the loop to learn the Tequila Sunrise space

with Bob

We further demonstrate the flexibility and modularity of ChemOS on a procedure for mixing

consumable liquids. In this procedure, we modified the robot used for the previously reported

applications and named it “Bob”, for “Bayesian Optimized Bartender”. The goal of this proce-

dure is to identify recipes for Tequila Sunrise, which are judged based on the taste and prefer-

ences of the researchers. This poses the challenge to increase the level of interaction between

researchers and robots, as an active integration of humans into the feedback loop is required.

This integration is of utmost importance in processes requiring human approval such as in the

pharmaceutical, food, and cosmetics industry. [4]

The overall procedure (see Fig 4) starts with a researcher requesting a new cocktail via e-

mail or twitter. Requests are processed in the same way as in prior applications. Order confir-

mations and notifications of completion of the mixing procedure are then sent by ChemOS to

the researcher, which serves as the characterization module in the ChemOS cycle. A five-star

rating system is used as feedback to assess the taste of the cocktail. As was the case for the color

space application, there were no constraints on the ratios of ingredients.

We conducted the experiment with four researchers in a single session, and ChemOS used

the Phoenics algorithm. Results on the conducted experiments are reported in the supplemen-

tary information (see Sec. S1 File). We note that during the progress of the experimental proce-

dure, researchers gave generally more positive ratings towards the end of the procedure,

indicating that the taste of the mixtures improved over time. However, we did not observe a

strong preference for certain recipes as in prior applications. The outcome might reflect the

subjective nature of the objective function due to the large differences in the taste among the

researchers.

This case-study highlights the fact that ChemOS provides a flexible and interactive plat-

form, enabling communication between researchers and robotics solutions at various degrees

of autonomy. Importantly, the ChemOS core was not modified to specifically suit this applica-

tion. Instead, the degree of interaction was increased by simply modifying specifications in the

configuration file.
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Autonomous calibration of a remote robotic sampling sequence for direct-

inject HPLC analysis

Hereafter we illustrate how ChemOS can be used for remote interactions with distributed

automated laboratory systems. We orchestrate an infrastructure capable of unattended sam-

pling. A similar setup was recently used for real-time reaction progress monitoring. [26] The

robotics hardware is located in Vancouver, Canada, and controlled by ChemOS in Cambridge,

USA. The procedure involves proposing new calibration parameters, running the experiment,

analyzing the experimental results and updating parameter candidates.

The goal of the calibration is to find a set of parameters which maximizes the response of

the HPLC, namely maximize the amount of drawn sample reaching the detector. The work-

flow is fully controlled by ChemOS and does not require human intervention. ChemOS is set

up to communicate with researchers via the command line interface for local execution, and

via Slack for remote execution. The communication between the master platform and the

robotic system is enabled via Dropbox. Each ChemOS session is set up for a total of 100 auton-

omous experiments over a time period of about seven hours. We further demonstrate the

robustness of ChemOS on two sessions accumulating a total of 1400 data points. Details are

provided in the supplementary information (Sec. S1 File).

The experimental arrangement is illustrated in Fig 5a. A robotic arm (N9 from North

Robotics) with an integrated sampling needle is used to draw a sample of 1,3,5-trimethoxyben-

zene in MeCN from one of the vials in a 96-well tray. The sample is then passed through a

Fig 4. Representation of the ChemOS pipeline while screening the Tequila Sunrise space.

https://doi.org/10.1371/journal.pone.0229862.g004
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sample loop, inline mixer, and injection loop and is finally analyzed by an HPLC. Peak areas of

the chromatogram determine the amount of target compound, which was delivered to the

HPLC. The entire setup is controlled by six independent parameters determining sample

draws, wait times and push rates. A detailed description of the individual parameters as well as

their influence on the peak response are provided in the supplementary information (see Sec.

S1 File).

We demonstrate the autonomous execution of the autocalibration by ChemOS with the

four learning procedures: Phoenics, SMAC, spearmint, and random search. The results of

each autocalibration run with 100 individual experiments are depicted in Fig 5. The upper

panels display the peak areas achieved during the execution of individual experiments with the

different learning procedures. The uniform random searches of the parameter space represent

an uninformed exploration of the parameter space as acquired knowledge is not taken into

account when proposing new parameter points. We observe that all implemented optimization

algorithms (Phoenics, SMAC and spearmint) quickly find parameter points which yield peak

areas larger than those encountered in the random search. The lower panels of Fig 5 depict the

parameter distance distributions computed from all possible parameter pairs sampled in each

ChemOS run. While uniform random search appears to yield a unimodal distance distribu-

tion, the optimization algorithms show tendencies of favoring broader distance distributions

with more parameter points at both smaller and larger distances to other parameter points.

We interpret this deviation in the distance distributions as the signature of the optimization

algorithms used, in which the acquisition function emphasizes either exploitation of the

acquired data (small distances) or exploration of the parameter space (large distances).

Fig 5. (A) Schematic of the flow path for the sampling sequence used with the N9 robotic platform. The six parameters (P1-P6) are color coded to

illustrate the effect they have on the sampling sequence. The yellow shade highlights the arm valve, and the grey shade the HPLC valve. (B) Example

of logging messages from ChemOS. (C) Side and (D) top view of the robotic hardware. Lower panels: Results from the autonomous calibration of

an HPLC setup maximizing the magnitude of the response. ChemOS performed autocalibration with four different learning procedures (Phoenics,

SMAC, Spearmint and Uniform). Upper panels display the achieved peak areas, i.e. magnitudes of response. Lower panels display the distributions

of pair-wise distances between sampled parameter points computed with the L2 norm. For the Phoenics algorithm, red denotes exploration, and

blue exploitation.

https://doi.org/10.1371/journal.pone.0229862.g005
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Since repeated executions of individual experiments are time and resource intensive, we

assess the performances of individual experiment planning strategies in detail with an emula-

tor constructed to reproduce the experimental surface. Specifically, we train a Bayesian neural

network (BNN) to reproduce the response of the HPLC for any given parameter point. This

approach has already been demonstrated in the context of self-driving laboratories. [62]

Details of the BNN are reported in the supplementary information (see Sec. S1 File).

The results of the emulator benchmarks averaged over 200 independent executions are

illustrated in Fig 6). In addition to the already mentioned experiment planning strategies, we

probed the performance of a design of experiment (DoE) approach, where a full factorial grid

is used initially to probe the search space and a second, refined full factorial grid is constructed

based on the initial responses for an in-depth analysis of a subregion of the search space. We

find that DoE is outperformed by the random search strategy, which can be attributed to the

high-dimensional nature of the search space. In addition, spearmint displays a comparable

performance. Only SMAC and Phoenics demonstrate significantly better average

performance.

With this application, we showed that ChemOS can control remote facilities, and that it

enables to accelerate process optimization by augmenting automated systems with AI to yield

autonomous scientific procedures.

Conclusion

We introduced ChemOS, a transferable, flexible and versatile software package. ChemOS is a

framework, which supplies all the layers needed to control and orchestrate distributed

Fig 6. Average performance of the experiment planning strategies leveraged by ChemOS.

https://doi.org/10.1371/journal.pone.0229862.g006
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autonomous laboratories. The five applications reported herein highlight this ability and ease

to deploy ChemOS and to control different applications with a variety of laboratory equipment

and automated solutions by only editing the configuration file. The functional design of Che-

mOS and its modular structure, in which each module is responsible to fulfill specific tasks,

allows for the global control of complex heterogeneous automation platforms. What is more,

the flexible architecture enables to update modules independently and facilitates the addition

of new features which reduces the obstacles to the deployment of self-driving laboratories.

ChemOS includes state-of-the-art AI algorithms for experiment planning in its learning

module. This module is the key component to reach autonomy. Also, to facilitate the

researcher-robot interaction, we supplemented ChemOS with an NLP module in a chatbot

framework. This module, based on a neural network, interfaces with several common social

media platforms and communication services. This module enables the researchers to trigger

new experiment from a distance, or to send commands and instructions at any point in the

course of the ChemOS cycle. This includes requests for new experiments, status updates, or

feedback in plain text messages. Finally, due to parallelization techniques, the negligible com-

puting overhead rising from function queries, database requests and data parsing ensures a

maximized experimentation throughput.

The current version of ChemOS is the beginning of a comprehensive software package for

controlling autonomous laboratory systems. We believe that ChemOS has the potential to fol-

low the path paved by the Robot Operating System (ROS), [63, 64] to become the standard to

power self-driving laboratories. The results shown in this manuscript are the first steps towards

a global operating system for distributed automated laboratories. Similar to supercomputer

centers, which give researchers easy access to compute infrastructure, we envision ChemOS to

democratize autonomous discovery. With the access to such laboratories, more research

groups could join the evolution of experimentation and could contribute to advances in a large

spectrum of technologies at an accelerated rate.

Materials and methods

Color, pH, density and drink experiments

The robot was assembled on a frame of aluminum rods and 3D-printed pieces. Note that the

3D model and stl files were downloaded from GitHub [https://github.com/ytham/barmixvah,

author: Yu Jiang Tham], in July 2017. The pumping system was built with a Raspberry Pi 3

Model B as a microcontroller, a power supply, and a set of eight DC peristaltic pumps of 12V,

each connected to a 5V relay. Within this arrangement, the relays were controlled by the

Python library GPIO. We used SCP as the communication protocol between the Raspberry Pi

and ChemOS, which was deployed on a Mint environment (Ubuntu based operating system).

The low-level programs controlling the pumps and the RGB sensor, the pH meter, and the

scale were written in Python. The measurements obtained by the pH probe (pH probe and cir-

cuit by Atlas Scientific), RGB sensor (EZO-RGB by Altas Scientific.), and the scale (Mettler

Toledo MS303S) were read on a PC by a serial port with the Python library serial, pylibftdi,
serial_device2, respectively. The synchronization between the PC and ChemOS was performed

via Dropbox.

The learning algorithms generate five values on the [0, 1] interval. ChemOS formats these

five values into an eight dimensional array, according to the specific experimental layout used.

Once transmitted to the robot, this eight-value array is re-scaled based on a previous calibra-

tion of each individual pump. Then, the vector is scaled to the total volume to be drawn, i.e.

the sum of the five initial solutions. Finally, the RGB sensor measures the color of the solution.
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ChemOS receives only the maximum norm distance between the target normalized RGB vec-

tor and the measure RGB (also normalized). The latter is minimized during the ChemOS run.

Five initial solutions with the following normalized RGB codes are provided: yellow

(RGB = [0.40,0.41,0.19]), red (RGB = [0.70,0.17,0.13]), orange (RGB = [0.57,0.26,0.17]), blue

(RGB = [0.06,0.36,0.58]), and green (RGB = [0.16,0.56,0.28]). The provided green was chosen

as the target color for this procedure. Through the robotics module, ChemOS automatically

maps the proposed experimental parameters to the order of the pumps on the robotic hard-

ware. Importantly, ChemOS was not constrained to the number of solutions to use. For exam-

ple, green solutions can be produced by choosing only the provided green mixture, or mixing

the separate initial yellow and blue solutions. Details on the procedure are provided in Sec. A.

Identical setups were used for the pH and the density experiments.

This robot was slightly modified to yield the Bayesian Optimized Bartender, Bob. ChemOS

communicates with the researcher using Twitter and Gmail. It processes messages through the

NLP module, which classifies incoming messages as request or feedback. A set of digital LED

strips regulated with the I2C protocol and with the Python library fcntl was used to inform the

researchers upon completion of a process.

Autocalibration experiment

The robotic setup was built on a North Robotics N9 platform, paired with an Agilent 1260

Infinite series HPLC. The sample used was 10 mM 1,3,5-trimethoxybenzene in MeCN. The

sampling sequence involves first the drawing sample through a needle, and then a sample

loop installed into a Rheyodyne 2-way 6-port selection valve. The valve is then switched, and

the diluent solvent is pushed through the sample loop and an in-line mixer to a second loop

in another 2-way 6-port selection valve. This second valve is then switched to be in line with

the HPLC pump and column and the HPLC acquisition is triggered. A full cycle of operation

involves retrieving a set of parameters from ChemOS, executing a sampling sequence, rinsing

the sampling needle and the push line, retrieval of the integration from the HPLC trace, and

return of the integrated value to ChemOS. Dropbox was used as the communication

protocol.

The control software for the robot was written in Python, which enabled the variation of

several parameters of the sampling sequence. The parameters from ChemOS are passed to a

sampling sequence function, which incorporates those parameters into a sequence of arm

movements, pump manipulations, and valve switches. The commands in that sequence are

function calls of Python class instances specific to the physical object being manipulated.

Pump and valve switch commands are then relayed through the robot to those components.

Arm motion commands are calculated and determined dynamically from the target location

(sample or rinse vial) prior to being passed to the robot. The parameter values were obtained

as normalized values from ChemOS, and were scaled to the appropriate ranges. The scalars

were user-defined to restrict the values within reasonable ranges accessible by the hardware.

Supporting information

S1 File.

(PDF)
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11. Häse F, Roch LM, Aspuru-Guzik A. Next-generation experimentation with self-driving laboratories.

Trends Chem. 2019; 1:282. https://doi.org/10.1016/j.trechm.2019.02.007

PLOS ONE ChemOS: An orchestration software to democratize autonomous discovery

PLOS ONE | https://doi.org/10.1371/journal.pone.0229862 April 16, 2020 15 / 18

https://doi.org/10.1021/acscentsci.7b00550
http://www.ncbi.nlm.nih.gov/pubmed/29532014
https://doi.org/10.1126/scirobotics.aar7650
https://doi.org/10.1126/scirobotics.aat5559
https://doi.org/10.1126/scirobotics.aat5559
https://doi.org/10.1038/s41578-018-0005-z
https://doi.org/10.1038/s41578-018-0005-z
https://doi.org/10.1021/acs.jcim.6b00173
https://doi.org/10.1021/acs.jcim.6b00173
http://www.ncbi.nlm.nih.gov/pubmed/27286472
https://doi.org/10.1016/j.drudis.2013.03.001
https://doi.org/10.1016/j.drudis.2013.03.001
http://www.ncbi.nlm.nih.gov/pubmed/23523957
https://doi.org/10.1016/0169-7439(92)90025-B
https://doi.org/10.1016/S0003-2670(01)83110-X
https://doi.org/10.1016/S0003-2670(01)83110-X
https://doi.org/10.1016/j.trechm.2019.02.007
https://doi.org/10.1371/journal.pone.0229862


12. Sugawara T, Cork DG. Past and present development of automated synthesis apparatus for pharma-

ceutical chemistry at Takeda Chemical Industries. Lab Robotics Autom. 1996; 8:221. https://doi.org/10.

1002/(SICI)1098-2728(1996)8:4%3C221::AID-LRA4%3E3.0.CO;2-2

13. Simms C, Singh J. Rapid process development and scale-up using a multiple reactor system. Org Pro-

cess Res Dev. 2000; 4:554. https://doi.org/10.1021/op000049p

14. Dar YL. High-throughput experimentation: a powerful enabling technology for the chemicals and materi-

als industry. Macromol Rapid Commun. 2004; 25:34. https://doi.org/10.1002/marc.200300166

15. Chapman T. A structured approach. Nature. 2003; 421:661. https://doi.org/10.1038/421661a

16. Schneider G. Automating drug discovery. Nat Rev Drug Discov. 2018; 17:97. https://doi.org/10.1038/

nrd.2017.232 PMID: 29242609

17. Okamoto H, Deuchi K. Design of a robotic workstation for automated organic synthesis. Lab Robotics

Automat. 2000; 12:2. https://doi.org/10.1002/(SICI)1098-2728(2000)12:1%3C2::AID-LRA2%3E3.0.

CO;2-K

18. Woerly EM, Roy J, Burke MD. Synthesis of most polyene natural product motifs using just 12 building

blocks and one coupling reaction. Nat. Chem. 2014; 6:484. https://doi.org/10.1038/nchem.1947 PMID:

24848233

19. Service RF. The Synthesis Machine. Science. 2015; 347:1190. https://doi.org/10.1126/science.347.

6227.1190 PMID: 25766215

20. Li J, Ballmer SG, Gillis EP, Fujii S, Schmidt MJ, Palazzolo AME, et al. Synthesis of many different types

of organic small molecules using one automated process. Science. 2015; 347:1221. https://doi.org/10.

1126/science.aaa5414 PMID: 25766227

21. Meier MAR, Gohy J-F, Fustin C-A, Schubert US. Combinatorial Synthesis of Star-Shaped Block Copol-

ymers: Host-Guest Chemistry of Unimolecular Reversed Micelles. J Am Chem Soc. 2004; 126:11517.

https://doi.org/10.1021/ja0488481 PMID: 15366897

22. Hoogenboom R, Wiesbrock F, Leenen MAM, Meier MAR, Schubert US. Accelerating the Living Poly-

merization of 2-Nonyl-2-oxazoline by Implementing a Microwave Synthesizer into a High-Throughput

Experimentation Workflow. J Comb Chem. 2005; 7:10. https://doi.org/10.1021/cc049846f PMID:

15638473

23. McMullen JP, Jensen KF. Integrated Microreactors for Reaction Automation: New Approaches to Reac-

tion Development. Annu Revi Anal Chem. 2010; 3:19. https://doi.org/10.1146/annurev.anchem.

111808.073718

24. Adamo, Beingessner RL, Behnam M, Chen J, Jamison TF, Jensen KF, et al. On-demand continuous-

flow production of pharmaceuticals in a compact, reconfigurable system. Science. 2016; 352:61.

https://doi.org/10.1126/science.aaf1337 PMID: 27034366

25. Alexander JM, Dale AT III, Mark DS, Andrea A, Ryan B, Klavs FJ, et al. A fully automated flow-based

approach for accelerated peptide synthesis. Nat Chem Biol. 2017; 13:464. https://doi.org/10.1038/

nchembio.2318

26. Malig TC, Koenig JDB, Situ H, Chehal NK, Hultin PG, Hein JE. Real-time HPLC-MS reaction progress

monitoring using an automated analytical platform. React Chem Eng. 2017; 2:309. https://doi.org/10.

1039/C7RE00026J

27. Patel DC, Lyu YF, Gandarilla J, Doherty S. Unattended reaction monitoring using an automated micro-

fluidic sampler and on-line liquid chromatography. Anal Chim Acta. 2018; 1004:32. https://doi.org/10.

1016/j.aca.2017.11.070 PMID: 29329706

28. Chen S, Hou Y, Chen H, Tang X, Langner S, Li N, et al. Exploring the Stability of Novel Wide Bandgap

Perovskites by a Robot Based High Throughput Approach. Adv Energy Mater. 2018; 8:1701543.

https://doi.org/10.1002/aenm.201701543

29. Chan EM, Xu C, Mao AW, Han G, Owen JS, Cohen BE, et al. Reproducible, High-Throughput Synthe-

sis of Colloidal Nanocrystals for Optimization in Multidimensional Parameter Space. Nano Lett. 2010;

10:1874. https://doi.org/10.1021/nl100669s PMID: 20387807

30. Johnson JL, tom Wörden H, van Wijk K. PLACE: An Open-Source Python Package for Laboratory Auto-

mation, Control, and Experimentation. J lab autom. 2014; 1:10.

31. Gronle M, Lyda W, Wilke M, Kohler C, Osten W. itom: an open source metrology, automation, and data

evaluation software. Appl Opt. 2014; 53:2974. https://doi.org/10.1364/AO.53.002974 PMID: 24922015

32. Bates M, Berliner AJ, Lachoff J, Jaschke PR, Groban ES. Wet lab accelerator: a web-based application

democratizing laboratory automation for synthetic biology. ACS Synth Biol. 2017; 6:167. https://doi.org/

10.1021/acssynbio.6b00108 PMID: 27529358

33. Transcriptic Inc. https://www.transcriptic.com/.

PLOS ONE ChemOS: An orchestration software to democratize autonomous discovery

PLOS ONE | https://doi.org/10.1371/journal.pone.0229862 April 16, 2020 16 / 18

https://doi.org/10.1002/(SICI)1098-2728(1996)8:4%3C221::AID-LRA4%3E3.0.CO;2-2
https://doi.org/10.1002/(SICI)1098-2728(1996)8:4%3C221::AID-LRA4%3E3.0.CO;2-2
https://doi.org/10.1021/op000049p
https://doi.org/10.1002/marc.200300166
https://doi.org/10.1038/421661a
https://doi.org/10.1038/nrd.2017.232
https://doi.org/10.1038/nrd.2017.232
http://www.ncbi.nlm.nih.gov/pubmed/29242609
https://doi.org/10.1002/(SICI)1098-2728(2000)12:1%3C2::AID-LRA2%3E3.0.CO;2-K
https://doi.org/10.1002/(SICI)1098-2728(2000)12:1%3C2::AID-LRA2%3E3.0.CO;2-K
https://doi.org/10.1038/nchem.1947
http://www.ncbi.nlm.nih.gov/pubmed/24848233
https://doi.org/10.1126/science.347.6227.1190
https://doi.org/10.1126/science.347.6227.1190
http://www.ncbi.nlm.nih.gov/pubmed/25766215
https://doi.org/10.1126/science.aaa5414
https://doi.org/10.1126/science.aaa5414
http://www.ncbi.nlm.nih.gov/pubmed/25766227
https://doi.org/10.1021/ja0488481
http://www.ncbi.nlm.nih.gov/pubmed/15366897
https://doi.org/10.1021/cc049846f
http://www.ncbi.nlm.nih.gov/pubmed/15638473
https://doi.org/10.1146/annurev.anchem.111808.073718
https://doi.org/10.1146/annurev.anchem.111808.073718
https://doi.org/10.1126/science.aaf1337
http://www.ncbi.nlm.nih.gov/pubmed/27034366
https://doi.org/10.1038/nchembio.2318
https://doi.org/10.1038/nchembio.2318
https://doi.org/10.1039/C7RE00026J
https://doi.org/10.1039/C7RE00026J
https://doi.org/10.1016/j.aca.2017.11.070
https://doi.org/10.1016/j.aca.2017.11.070
http://www.ncbi.nlm.nih.gov/pubmed/29329706
https://doi.org/10.1002/aenm.201701543
https://doi.org/10.1021/nl100669s
http://www.ncbi.nlm.nih.gov/pubmed/20387807
https://doi.org/10.1364/AO.53.002974
http://www.ncbi.nlm.nih.gov/pubmed/24922015
https://doi.org/10.1021/acssynbio.6b00108
https://doi.org/10.1021/acssynbio.6b00108
http://www.ncbi.nlm.nih.gov/pubmed/27529358
https://www.transcriptic.com/
https://doi.org/10.1371/journal.pone.0229862


34. Whitehead W, Rudolf F, Kaltenbach H-M, Stelling J. Automated Planning Enables Complex Protocols

on Liquid-Handling Robots. ACS Synth Biol. 2018; 7:922. https://doi.org/10.1021/acssynbio.8b00021

PMID: 29486123

35. Fisher RA. The design of experiments. Oliver and Boyd; Edinburgh; London; 1937.

36. Box GEP, Hunter JS, Hunter WG. Statistics for experimenters: design, innovation and discovery.

Wiley; 2nd Edition; 2005.

37. Anderson MJ, Whitcomb PJ. DOE simplified: pratical tools for effective experimentation. CRC Press;

2016.

38. Houben C, Lapkin AA. Automatic discovery and optimization of chemical processes. Curr Opin Chem

Eng. 2015; 9:1. https://doi.org/10.1016/j.coche.2015.07.001

39. Reizman BJ, Jensen KF. Feedback in Flow for Accelerated Reaction Development. Acc Chem Res.

2016; 49:1786. https://doi.org/10.1021/acs.accounts.6b00261 PMID: 27525813

40. Matsuda R, Ishibashi M, Takeda Y. Simplex optimization of reaction conditions with an automated sys-

tem. Chem Pharm Bull. 1988; 36:3512. https://doi.org/10.1248/cpb.36.3512

41. Porte C, Debreuille W, Draskovic F, Delacroix A. Automation and optimization by simplex methods of 6-

chlorohexanol synthesis. Process Contr Qual. 1996; 8:111.

42. Dixon JM, Lindsey JS. Performance of Search Algorithms in the Examination of Chemical Reaction

Spaces with an Automated Chemistry Workstation. SLAS TECHNOLOGY: Translating Life Sciences

Innovation. 2014; 9:364.

43. Nikolaev P, Hooper D, Webber F, Rao R, Decker K, Krein M, et al. Autonomy in materials research: a

case study in carbon nanotube growth. npj Comput Mater. 2016; 2:16031. https://doi.org/10.1038/

npjcompumats.2016.31

44. Wigley PB, Everitt PJ, van den Hengel A, Bastian JW, Sooriyabandara MA, McDonald GD, et al. Fast

machine-learning online optimization of ultra-cold-atom experiments. Sci Rep. 2016; 6:25890. https://

doi.org/10.1038/srep25890 PMID: 27180805

45. Dragone V, Sans V, Henson AB, Granda JM, et al. An autonomous organic reaction search engine for

chemical reactivity. Nat Comm. 2017; 8:15733. https://doi.org/10.1038/ncomms15733

46. Kitson PJ, Marie G, Francoia J-P, Zalesskiy SS, Sigerson RC, Mathieson JS, et al. Digitization of multi-

step organic synthesis in reactionware for on-demand pharmaceuticals. Science. 2018; 359:314.

https://doi.org/10.1126/science.aao3466 PMID: 29348235

47. Zhou Z, Li X, Zare RN. Optimizing Chemical Reactions with Deep Reinforcement Learning. ACS Cent

Sci. 2017; 3:1337. https://doi.org/10.1021/acscentsci.7b00492 PMID: 29296675

48. Xue D, Balachandran PV, Hogden J, Theiler J, Xue D, Lookman T. Accelerated search for materials

with targeted properties by adaptive design. Nat Comm. 2016; 7:11241. https://doi.org/10.1038/

ncomms11241

49. Krenn M, Malik M, Fickler R, Lapkiewicz R, Zeilinger A. Automated Search for new Quantum Experi-

ments. Phys Rev Lett. 2016; 116:090405. https://doi.org/10.1103/PhysRevLett.116.090405 PMID:

26991161

50. Duros V, Grizou J, Xuan W, Hosni Z, Long D-L, Miras HN, et al. Human versus Robots in the Discovery

and Crystallization of Gigantic Polyoxometalates. Angew Chem Int Ed. 2017; 56:10815. https://doi.org/

10.1002/anie.201705721

51. Thomas PH. American Genesis: A Century of Invention and Technological Enthusiasm, 1870-1970.

University of Chicago Press; 2004.

52. Corkan LA, Lindsey JS. Experiment manager software for an automated chemistry workstation, includ-

ing a scheduler for parallel experimentation. Chemom Intell Lab Syst: Lab Inf Mgt. 1992; 17:47. https://

doi.org/10.1016/0169-7439(92)90026-C
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