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The morbidity of bladder cancer (BLCA) is high and has gradually elevated in recent years.
BLCA is also characterized by high recurrence and high invasiveness. Due to the drug
resistance and lack of effective prognostic indicators, the prognosis of patients with BLCA
is greatly affected. Iron metabolism is considered to be a pivot of tumor occurrence,
progression, and tumor microenvironment (TME) in tumors, but there is little research in
BLCA. Herein, we used univariate COX regression analysis to screen 95 prognosis-related
iron metabolism-related genes (IMRGs) according to transcription RNA sequencing and
prognosis information of the Cancer Genome Atlas (TCGA) database. TCGA-BLCA cohort
was clustered into four distinct iron metabolism patterns (C1, C2, C3, and C4) by the non-
negative matrix factorization (NMF) algorithm. Survival analysis showed that C1 and C3
patterns had a better prognosis. Gene set variant analysis (GSVA) revealed that C2 and C4
patterns were mostly enriched in carcinogenic and immune activation pathways.
ESTIMATE and single sample gene set enrichment analysis (ssGSEA) also confirmed
the level of immune cell infiltration in C2 and C4 patterns was significantly elevated.
Moreover, the immune checkpoint genes in C2 and C4 patterns were observably
overexpressed. Studies on somatic mutations showed that the tumor mutation burden
(TMB) of C1 and C4 patterns was the lowest. Chemotherapy response assessment
revealed that C2 pattern was the most sensitive to chemotherapy, while C3 pattern was
the most insensitive. Then we established the IMRG prognosis signature (IMRGscore) by
the least absolute shrinkage and selection operator (LASSO), including 13 IMRGs
(TCIRG1, CTSE, ATP6V0A1, CYP2C8, RNF19A, CYP4Z1, YPEL5, PLOD1, BMP6,
CAST, SCD, IFNG, and ASIC3). We confirmed IMRGscore could be utilized as an
independent prognostic indicator. Therefore, validation and quantification of iron
metabolism landscapes will help us comprehend the formation of the BLCA
immunosuppressive microenvironment, guide the selection of chemotherapeutic drugs
and immunotherapy, and predict the prognosis of patients.
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INTRODUCTION

Bladder cancer (BLCA) is one of the most familiar malignant
tumors in the urinary system, with about 81400 new cases and
17900 deaths in the United States in 2020 (Siegel et al., 2020).
Approximately 75% of BLCA was found to be non-muscle
invasive bladder cancer (NMIBC), which was characterized
by a high recurrence rate (45% 5-year recurrence rate)
(Berdik, 2017; Babjuk et al., 2019). Transurethral resection of
bladder tumor (TURBT), chemotherapy, BCG vaccine,
radiotherapy, and radical cystectomy are the main treatments
for BLCA patients (Berdik, 2017). Chemotherapy and
immunotherapy are also important strategies for conservative
treatment of BLCA (Yin et al., 2016; Rouanne et al., 2018).
However, some patients are not sensitive to these drug therapies.
Due to the high recurrence rate, high metastatic risk, and
patient’s dissatisfaction with the treatment effect, it is of
great significance to identify and quantify some molecular
landscapes that have impacts on the choice of drug
treatment, and explore a novel indicator that predicts the
prognosis of BLCA patients.

Iron is a vital trace element for cell proliferation and
growth in the human body (Torti and Torti, 2013). In
cancer, the absorbability, effusion, storage, and regulation
of iron are entirely disturbed, which indicates that the
reprogramming of iron metabolism would induce the
dysregulation in tumor cells division and survival
(Andrews, 2008; Manz et al., 2016; Wang et al., 2018; Jung
et al., 2019). Iron plays a dual role in cancer (Thévenod,
2018). Epidemiological investigations revealed that
excess iron was a hazard factor of carcinogenesis (Stevens
et al., 1994; Wu et al., 2004; Fonseca-Nunes et al., 2014).
The accumulation of iron supports tumor worsening in
proliferation, metabolism, and metastasis (Torti et al.,
2018). Cancer cells exhibit a phenotype search for iron
through disordering regulation of iron-binding proteins
(Dufès et al., 2013; Bialasek et al., 2019). On the other
hand, iron dependence of cancer cells affects many cell
death modes, including ferroptosis, a form of iron-
dependent cell death (Mou et al., 2019; Battaglia et al.,
2020). Inducing ferroptosis of cancer cells has become a
new hotspot in the research and development of cancer
treatment (Hassannia et al., 2019; Xu et al., 2019).

There has been little research on iron metabolism in BLCA.
The study was conducted to confirm whether iron metabolism
had an effect on the molecular microenvironment of BLCA, as
well as its ability to predict the clinical prognosis. We first
clustered the TCGA-BLCA cohort into different iron
metabolic patterns on the basis of the expression of iron
metabolism-related genes (IMRGs). Then the survival
prognosis, GSVA analysis, tumor immune microenvironment
(TIME), somatic mutations chemotherapy, and immunotherapy
response among different patterns were analyzed. Eventually, we
established a prognostic signature associated with iron
metabolism and confirmed that it is an effective independent
predictor in BLCA patients.

MATERIALS AND METHODS

Retrieval of IronMetabolism-Related Genes
A set of IMRGs was sorted from multiple gene sets from
Molecular Signatures Database (MSigDB) (http://www.gsea-msigdb.
org/gsea/msigdb/index.jsp), including GOMF_IRON_ION_BINDING,
GOBP_IRON_ION_TRANSPORT, GOBP_RESPONSE_TO_IRON_
ION, GOBP_IRON_ION_METABOLISM, GOBP_IRON_IMPORT_
INTO_CELL, GOBP_IRON_ION_IMPORT_ACROSS_PLASMA_
MEMBRANE, GOMF_2_IRON_2_SULFUR_CLUSTER_BINDING,
GOMF_4_IRON_4_SULFUR_CLUSTER_BINDING, GOBP_IRON_
COORDINATION_ENTITY_TRANSPORT, GOBP_CELLULAR_
IRON_ION_METABOLISM, GOBP_HEME_METABOLIC_PROCESS,
HEME_BIOSYNTHETIC_PROCESS,MODULE_540,HALLMARK_
HEME_METABOLISM and REACTOME_IRON_UPTAKE_AND_
TRANSPORT. After removing the duplicate genes from all gene
sets, a total of 515 IMRGs were retrieved.

TABLE 1 | Characteristics of patients included in the study.

Variable TCGA-BLCA
cohort (n = 400)

GSE13507
cohort (n = 165)

Number (%) Number (%)

Age
≤70 228 (57.00) 109 (66.06)
>70 172 (43.00) 56 (33.94)
Gender
MALE 296 (74.00) 135 (81.82)
FEMALE 104 (26.00) 30 (18.18)

T stage
TX 1 (0.25) 0
T0 1 (0.25) 0
Ta 0 24 (14.55)
T1 3 (0.75) 80 (48.48)
T2 117 (29.25) 31 (18.79)
T3 190 (47.5) 19 (11.52)
T4 57 (14.25) 11 (6.67)
Unknow 31 (7.75) 0

N stage
NX 36 (9.00) 1 (0.61)
N0 233 (58.25) 149 (90.30)
N1 44 (11.00) 8 (4.85)
N2 75 (18.75) 6 (3.64)
N3 7 (1.75) 1 (0.61)
Unknow 5 (1.25) 0

M stage
MX 194 (48.50) 0
M0 193 (48.25) 158 (95.76)
M1 11 (2.75) 7 (4.24)
Unknow 2 (0.50) 0

Pathologic stage
Stage 0 0 23 (13.94)
Stage I 2 (0.50) 80 (48.48)
Stage II 127 (31.75) 26 (15.76)
Stage III 138 (34.50) 29 (17.58)
Stage IV 131 (32.75) 7 (4.24)
unknow 2 (0.50) 0

Histologic grade
Low grade 20 (5.00) 105 (63.64)
High grade 377 (94.25) 60 (36.36)
unknow 3 (0.75) 0
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Acquisition and Process of Original Data
Transcription RNA sequencing, clinical data, and somatic
mutation data for patients with BLCA were obtained from the
Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.
gov/). The cohort included 411 BLCA tissues and 19 normal
bladder tissues. The TCGA-BLCA level 3 RNA-sequencing data
was downloaded as fragments per kilobase of transcript per million
mapped reads (FPKM), and when multiple Ensembl IDs were
mapped to a single gene symbol in the RNA sequencing data, gene
expression is annotated in an average expression. The GSE13507
dataset was analyzed as an external validation cohort. The gene
expression profile and clinical information for the microarray
dataset came from the Gene Expression Synthesis (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/). All sequencing
data were processed with log two transformation, background
adjustment, normalization, final summarization through the
“Affy” package in R. The clinical information of all BLCA
patients included in this study is shown in Tables 1, 2.

NMF Clustering for Iron Metabolism
Patterns
We matched IMRGs’ RNAseq data and overall survival (OS)
information of the TCGA-BLCA dataset. A univariate Cox

TABLE 2 | Prognosis-related IMRGs selected by univariate COX regression
analysis.

Gene HR z p-value

AIFM3 0.73913 −3.0568 0.00224
ALKBH2 0.71241 −2.4545 0.01411
ALKBH3 1.35869 2.1987 0.02790
ALOX5 0.85793 −2.8965 0.00377
ASIC3 0.68739 −2.2624 0.02367
ATP5IF1 0.71955 −2.1818 0.02913
ATP6V0A1 1.81787 3.6315 0.00028
ATP6V0D1 1.45896 2.7342 0.00625
ATP6V1A 1.37125 2.0984 0.03587
ATP6V1C2 1.28480 2.2647 0.02353
ATP6V1G3 2.54732 2.9203 0.00350
BMP6 1.30778 2.9345 0.00334
CAST 1.33555 2.8334 0.00460
CDO1 1.25977 2.3200 0.02034
CIAO3 0.64021 −2.3552 0.01851
CIR1 0.52578 −3.1615 0.00157
CISD1 1.28174 2.0195 0.04343
CLTC 1.52718 3.0834 0.00205
CROCCP2 0.66104 −2.9905 0.00278
CTSE 0.84792 −3.9943 0.00006
CUL1 1.46334 2.1223 0.03381
CYBRD1 1.13803 2.1286 0.03329
CYP19A1 1.82637 3.2558 0.00113
CYP1B1 1.12555 2.3874 0.01697
CYP26B1 1.22486 2.8893 0.00386
CYP27B1 0.76528 −2.0634 0.03908
CYP2C8 0.48055 −3.2681 0.00108
CYP2D6 0.53783 −2.5791 0.00991
CYP2D7 0.39076 −3.3122 0.00093
CYP2F1 1.47375 2.3839 0.01713
CYP2R1 0.68076 −2.2516 0.02434
CYP2W1 1.14759 2.2957 0.02169
CYP3A5 0.88535 −2.1530 0.03132
CYP4A22 0.01075 −2.3088 0.02095
CYP4F12 0.85576 −3.1193 0.00181
CYP4F8 0.89174 −2.6547 0.00794
CYP4Z1 0.51083 −3.0875 0.00202
CYP4Z2P 0.71692 −3.1295 0.00175
CYP51A1 1.54962 3.0788 0.00208
CYP7B1 1.25543 2.0346 0.04189
DNM2 0.72877 −2.6658 0.00768
ENDOD1 1.36254 3.4875 0.00049
EPOR 0.79640 −2.2602 0.02381
FA2H 0.86757 −2.3261 0.02001
FECH 1.29593 2.0714 0.03832
FTO 1.44207 2.1268 0.03344
G6PD 1.18156 2.4243 0.01534
GCLM 1.19098 2.5395 0.01110
HJV 0.00736 −2.2164 0.02667
HRG 0.28674 −1.9665 0.04924
IFNG 0.72938 −2.4603 0.01388
ISCU 0.69174 −2.1696 0.03004
LAMP2 1.22151 2.0780 0.03771
MBOAT2 1.31363 3.5807 0.00034
MKRN1 0.66446 −2.3893 0.01688
MYC 1.14183 2.4370 0.01481
NARF 0.73477 −2.3869 0.01699
NDUFV2 0.71090 −2.3388 0.01934
NFE2 1.25892 2.0291 0.04244
NUBPL 1.71372 2.1941 0.02823
OGFOD1 1.56046 2.0597 0.03943
P3H1 1.27676 2.5856 0.00972
P3H3 1.16777 2.4532 0.01416

(Continued in next column)

TABLE 2 | (Continued) Prognosis-related IMRGs selected by univariate COX
regression analysis.

Gene HR z p-value

P4HA2 1.33888 2.9448 0.00323
P4HA3 1.28168 2.8335 0.00460
PGLS 0.75124 −1.9790 0.04782
PHF8 0.73442 −2.3199 0.02034
PLOD1 1.32204 2.9487 0.00319
PPEF1 1.96121 2.6470 0.00812
PTGIS 1.13599 2.9572 0.00310
RAB11B 0.67495 −2.4727 0.01341
RBM5 0.73620 −2.2846 0.02234
REV3L 1.40219 2.3541 0.01857
RNF19A 0.71735 −3.2263 0.00125
RSAD1 0.73571 −2.1465 0.03184
SCD 1.14688 2.6027 0.00925
SIDT2 1.45914 2.4669 0.01363
SLC25A28 0.75484 −2.0647 0.03895
SLC25A38 0.71371 −2.4859 0.01292
SLC39A14 1.24303 2.5771 0.00996
SLC6A9 1.23132 2.3060 0.02111
SLC7A11 1.16394 2.7767 0.00549
SRI 0.78060 −1.9652 0.04939
STEAP4 1.17801 2.3779 0.01741
TCIRG1 0.70379 −4.0200 0.00006
TET1 2.00528 2.6694 0.00760
TFRC 1.16560 2.2608 0.02377
TMCC2 1.38726 2.8966 0.00377
TNS1 1.11924 2.0886 0.03674
TSPO 0.79418 −2.8037 0.00505
TYW5 0.46331 −2.2249 0.02609
UCP2 0.89329 −2.0547 0.03991
UGT1A1 0.76531 −2.2396 0.02512
UGT1A4 6.38284 2.1260 0.03350
YPEL5 0.62817 −3.0093 0.00262

HR, hazard ratio.
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regression analysis was carried out to determine the prognosis-
related IMRGs in BLCA, with a screening criterion of p < 0.05.
Non-negative matrix factorization (NMF) is applied to
determine distinct iron metabolism-related patterns with the
help of the “NMF” R package. NMF algorithm decomposes
the original matrix into two non-negative matrices to identify
the potential features in the gene expression profile (Brunet et al.,
2004). Repeat the deposition and aggregate the results to obtain
consistent clustering. According to the cophenetic coefficient,
contour, and sample size, k = 4 was determined as the best cluster
number.

GSVA
Gene set variant analysis (GSVA), is a nonparametric,
unsupervised algorithm. GSVA transforms the isolate gene
expression matrix to an expression matrix of particular gene
sets as features. The algorithm is implemented based on the
“GSVA” R package. The difference of expression matrix after
transformation was analyzed by the “limma” package to find the
difference of enriched functions among different iron metabolic
patterns.

Evaluation of Tumor Immune
Microenvironment
In order to assess the TIME status of BLCA, we used single
sample gene set enrichment analysis (ssGSEA), ESTIMATE, and
CIBERSORT in R. ssGSEA investigated congenital and adaptive
immune cells as well as a variety of immune-related functions.
The Normalized Enrichment Score (NES) was to embody the
relative amount of each TIME infiltration unit in patients.
ESTIMATE predicted the level of infiltrating matrix and
immune cells by calculating stromal and immune scores,
comprehensively obtained the ESTIMATE score for evaluating
the TIME. We also evaluated the relative fraction of 22 tumor-
infiltrating immune cells (TIICs), including B cells, T cells,
natural killer (NK) cells, macrophages, dendritic cells (DCs),
eosinophils, neutrophils, and so on in each cancer sample with
CIBERSORT algorithm. p < .05 was the threshold of a credible
sample for estimating the proportion of immune cells.

Evaluation of Immunotherapy and
Chemotherapy on IronMetabolism Patterns
Tumor Immune Dysfunction and Exclusion (TIDE) score is a
computational framework developed based on the analysis and
modeling of characteristic genes for T cell exclusion and T cell
dysfunction in immunosuppression at high levels of cytotoxic T
lymphocytes (CTL) (Jiang et al., 2018). We applied four
indicators to predict the efficacy of immunotherapy, including
exclusion score, dysfunction score, microsatellite instability
(MSI), and TIDE. The chemotherapeutic response of BLCA
patients was evaluated by Genomics of Drug Sensitivity in
Cancer (GDSC) (https://www.cancerRxgene.org). Six
chemotherapeutic drugs in BLCA treatment were chosen,
including Gemcitabine, Cisplatin, Docetaxel, Mitomycin-C,
Doxorubicin, and Paclitaxel. The ridge regression algorithm

was used to calculate the half-maximal inhibitory
concentration (IC50), and satisfactory prediction accuracy was
obtained through 10 times cross-validation (Geeleher et al.,
2014). The calculation process was completed by the
“pRRophetic” R package.

Construction and Validation of IMRG
Prognostic Signature
According to the prognosis-related IMRGs in the univariate Cox
regression model, the “glmnet” package in R performed the least
absolute shrinkage and selection operator (LASSO) to identify
important prognostic IMRGs and select one standard error (SE)
above the minimum criteria. The multivariate Cox regression
model made it more optimized and practical. Finally, the
IMRGscore formula was obtained:

Risk score � (expGene1 × coefficient gene1)

+(expGene2 × coefficient gene2) + . . .

+(expGeneN × coefficient GeneN)

On the basis of the optimal cut-off of IMRGscore obtained by
the “surv_cutpoint” function in R, we divided BLCA patients into
high-risk and low-risk groups. With the help of Kaplan-Meier
analysis (“survival” package) and receiver operating characteristic
(ROC) curve (“timeROC” package), the predictive ability of the
prognostic signature was evaluated. The diagnostic accuracy was
estimated by the area under the curve (AUC). The same
IMRGscore calculation formula, cut-off value and, analysis
methods were applied in the GSE13507 cohort to validate the
signature.

Establishment and Evaluation of the
Nomogram
Nomogram is an intuitive clinical prognosis prediction model
integrating a variety of clinicopathological features related to
prognosis. We established a nomogram model to provide a more
accurate prediction of prognosis for clinical patients based on
IMRGscore and clinical pathological characteristics. First,
univariate Cox regression analysis was utilized to assess the
predicted values of variables. Then further determined the
coefficient via multivariate Cox regression analysis. The “rms”
R package then established a nomogram for predicting the
operating system. Concordance index (C-index) and
calibration analysis were applied to estimate the accuracy and
consistency. Finally, the clinical application value of the
nomogram is evaluated using Decision Curve Analysis (DCA).
These analyses were performed with “survival” package.

Statistical Analysis
All statistical analyses were completed with R software (version
4.0.4) in this study. Before establishing and verifying the
prognostic signature, the batch differences between the TCGA
dataset and GEO datasets were removed through the “sva”
package. Wilcoxon rank-sum test was to verify the significance
of the difference in two groups. When comparing more than two
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groups, the Kruskal Wallis test was selected to verify the
difference. Set p-value <.05 as a statistically significant standard.

RESULTS

To describe our research intuitively and systematically, we
showed the research process in Figure 1.

Characterization of Iron Metabolism
Patterns in BLCA
Through the univariate COX regression analysis (p < .05) of the
TCGA-BLCA patients with integrated survival information and
cancer tissue expression profile, 95 IMRGs were selected as
prognosis-related genes (Table 1). Then we clustered the
TCGA-BLCA cohort by NMF algorithm based on these genes.
According to cophenetic coefficients, we decided k = 4 as the best
cluster number (Figure 2A). Figure 2B was the NMF matrix
heatmap when k = 4, including C1 subtype 89 cases, C2 subtype
141 cases, C3 subtype 91 cases, and C4 subtype 79 cases. Kaplan-
Meier survival curves showed that the prognosis of patients in C1
and C3 patterns was better than that of C1 and C2 patterns (p =
.020) (Figure 2C).

Figure 2D shows the expression of prognosis-related IMRGs
in iron metabolic patterns. We also analyzed the
clinicopathological differences among distinct iron metabolism
patterns (Figure 2E). It was found that the proportion of TNM

stages, pathologic stage, histologic grade, OS, DSS, and PFI events
was dissimilar among patterns, and the incidence of advanced
clinicopathological results in C2 and C4 patterns tended to
increase.

Through GSVA analysis, we obtained the rich-concentration
pathways among iron metabolism patterns (Figure 2F). We
found that C4 pattern was positively related to multiple
stromal, carcinogenic, and immune activation related
pathways, including TGF-β signaling pathway, WNT signaling
pathway, MAPK signaling pathway, JAK-STAT signaling
pathway, T cell receptor signaling pathway, chemokine
signaling pathway, B cell receptor signaling pathway,
cytokine–cytokine receptor interaction, NOD-like receptor
signaling pathway, TOLL-like receptor signaling pathway and
so on. C2 pattern showed a similar trend to C4 pattern, but C2
was also significantly expressed in a variety of DNA damage
repair related pathways. The correlation score of most
carcinogenic and immune activation-related pathways was
reduced in C1 and C3 patterns. While C3 pattern was also
found to exhibit an enriched trend in DNA damage repair
related pathways.

Tumor Immune Microenvironment of Iron
Metabolism Patterns
In order to investigate whether there are differences in TIME
among distinct iron metabolism patterns, we used ESTIMATE
and ssGSEA scores for evaluation. ESTIMATE showed that there

FIGURE 1 | Flow chart of our study.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8102725

Song et al. Iron Metabolism in Bladder Cancer

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


were significant differences in the stromal score (p < .001),
immune score (p < .001), and ESTIMATE score (p < .001)
among the three patterns, of which C4 was the highest, C1
and C3 were the lowest (Figure 3A). Then we analyzed the
infiltration differences in immune cells among iron metabolism
patterns. The ssGSEA score suggested that the infiltration of all 22
TIICs in iron metabolism patterns was significantly different,
among which, the ssGSEA score of TIICs in C1 and C3 patterns
was lower and C2 and C4 patterns were higher (Figure 3B). And
the enrichment trend of immune-related functions in iron
metabolism patterns was similar to that of immune cell
infiltration (Figure 3C). Additionally, the expression levels of
major histocompatibility complex (MHC) molecules,
costimulatory molecules, and adhesion molecules roundly
decreased in C1 and C3 patterns (Figure 3D).

Tumor SomaticMutation in IronMetabolism
Patterns
The tumorigenesis frequently occurs after the accumulation of
gene mutations (Martincorena and Campbell, 2015). It is also
reported that tumor mutation burden (TMB) can be used as a
potential prognostic indicator for BLCA (Chan et al., 2019).
Consequently, we used the “maftools” R package to show the
distribution of somatic mutations and the differences of TMB in

various iron metabolism patterns. Through the simple nucleotide
variation information of TCGA-BLCA, the mutation spectrum
and TMB of each sample was obtained. In BLCA samples, the 20
genes with the highest mutation rate were TP53, TTN, KMT2D,
MUC16, ARID1A, KDM6A, PIK3CA, SYNE1, RB1, HMCN1,
FGFR3, RYR2, KMT2C, MACF1, EP300, FLG, FAT4, STAG2,
ATM and OBSCN (Figures 4A–D). C2 pattern had the highest
mutation rate of TP53, while the mutation of TTN and KMT2D
mostly happened in C3 pattern. The mutation rates of these three
genes in C1 and C4 patterns were significantly reduced. Most
gene mutations were missense-mutation. In patients with BLCA,
high TMB indicated a better prognosis (hazard ratio [HR] = .65
(.48–.88), p = .005) (Figure 4E). Additionally, we found that the
TMB of C2 and C3 patterns was significantly upper than that of
C1 and C4 patterns (Figure 4F).

Evaluation of Immunotherapy in Iron
Metabolism Patterns
Lately, immune checkpoint inhibitors (ICIs) have gradually become
the second-line treatment for advanced BLCA. Therefore, we
analyzed the expression of some immune checkpoints (PDCD1
(PD-1), CD274 (PD-L1), PDCD1LG2 (PD-L2), LAG3, TIGIT,
IDO1, and CTLA4) among different iron metabolism patterns to
predict the efficacy of immunotherapy (Figure 5A). The expression

FIGURE 2 | Non-negative matrix factorization clustering of iron metabolism patterns in TCGA-BLCA cohort. (A) Cophenetic coefficients of NMF algorithm
clustering number from 2–10 (B)NMFmatrix heatmapwhen k = 4. (C)Kaplan-Meier survival analysis of ironmetabolism patterns. (D) Expression Heatmap of prognosis-
related IMRGs. (E)Correlation between iron metabolism pattern and clinicopathological characteristics. (F)Heatmap of GSVA analysis among iron metabolism patterns.
*p < 0.05; **p < 0.01; ***p < 0.001.
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of all immune checkpoints in C2 and C4 patterns was signally
higher than that in the other two patterns. This suggested that C2
and C4 might be more suitable for ICIs treatment. However, the
high expression level of immune checkpoints may be related to the
formation of the immunosuppressive microenvironment (Dunn
et al., 2002). This conclusion was confirmed in Figures 5B,C. C4
immune exclusion score was observably higher than other iron
metabolism patterns. The immune dysfunction score of C4 pattern
also increased signally, while C3 was the lowest. Moreover, we used

the TIDE algorithm to evaluate ICIs response, in which the MSI of
C1 and the TIDE of C4 were the highest (Figures 5D,E).

Chemotherapeutics Drugs Response in Iron
Metabolism Patterns
Chemotherapeutics drugs are widely used in the treatment of
BLCA, including intravesical instillation and systemic
chemotherapy. Consequently, we evaluated the IC50 values of

FIGURE 3 | Tumor immune microenvironment of iron metabolism patterns. (A) Differences of stromal, immune, and ESTIMATE scores among iron metabolism
patterns (B) Infiltration of 22 TIICs in iron metabolism patterns. (C) Immune-related functions in iron metabolism patterns. (D) Difference analysis in MHC molecules,
costimulatory molecules, and adhesion molecules of iron metabolism patterns. *p < 0.05; **p < 0.01; ***p < 0.001.
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six commonly used chemotherapeutic drugs (Gemcitabine,
Cisplatin, Docetaxel, Mitomycin-C, Doxorubicin, and
Paclitaxel) in each sample (Figures 6A–F). Among the six
drugs, C2 patterns showed the lowest IC50 value. In
Gemcitabine, Cisplatin, Docetaxel, and Paclitaxel, the IC50
value of C4 pattern was also lower than that of C1 and C3
patterns. As for C3 pattern, the IC50 value in Gemcitabine,
Doxorubicin, and Paclitaxel was higher than that of C1
pattern. The above results strongly indicated that C2 was the
most sensitive to chemotherapeutic drugs, C4 was the second,
while C3 was more insensitive to chemotherapeutic drugs.

Establishment of the IMRG Prognostic
Signature in the TCGA-BLCA Cohort
We selected 400 BLCA patients with explicit, non-zero OS and
survival status to establish an IMRG signature from the TCGA
database. Then used the LASSO Cox regression model to
calculate, and selected an SE higher than the minimum
standard to further screen the prognostic genes. Finally,
through the multivariate COX regression analysis, we obtained
the optimal prognostic signature containing 13 IMRGs, including
TCIRG1, CTSE, ATP6V0A1, CYP2C8, RNF19A, CYP4Z1,

YPEL5, PLOD1, BMP6, CAST, SCD, IFNG, and ASIC3
(Figures 7A,B). And constructed a formula to evaluate the
IMRGscore of each patient: IMRGscore = −(.18775 × TCIRG1
expression) − (.073 × CTSE expression) + (.33856 × ATP6V0A1
expression) − (.37089 × CYP2C8 expression) − (.30306 ×
RNF19A expression) − (.27636 × CYP4Z1 expression) −
(.35016 × YPEL5 expression) + (.17559 × PLOD1 expression)
+ (.25065 × BMP6 expression) + (.23398 × CAST expression) +
(.13313 × SCD expression) − (.52087 × IFNG expression) −
(.57726 × ASIC3 expression). And according to the optimal cut-
off value (cut point = 1.78265), samples were decomposed into
low- and high-risk groups. Kaplan-Meier survival analysis
showed that the OS of the low-risk group was longer (hazard
ratio [HR] = 4.49 (3.29–6.14), p < .001) (Figure 7C). And the
AUCs for the 1-, 3-, and 5-year OS survival rates were .741, .772,
and .755, respectively (Figure 7D). The risk score distribution,
survival status graph, and expression profile heatmap were shown
in Figures 7E–G. The proportion of patient deaths was
observably positively correlated with the IMRGscore. The
expression of ATP6V0A1, PLOD1, BMP6, CAST, and SCD
were up-regulated in the high-risk group, while TCIRG1,
CTSE, CYP2C8, RNF19A, CYP4Z1, YPEL5, IFNG, and ASIC3
were down-regulated.

FIGURE 4 | Somatic mutations in distinct iron metabolism patterns. Waterfall plots of 20 genes with the highest mutation rate in C1 pattern (A), C2 pattern (B), C3
pattern (C), and C4 pattern (D). (E)Kaplan-Meier survival analysis of TMB in BLCA patients. (F)Difference analysis of TMB among different ironmetabolism patterns. *p <
0.05; **p < 0.01; ***p < 0.001.
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FIGURE 5 | Evaluation of immunotherapeutic therapy in iron metabolism patterns. (A) The expression of immune checkpoints in iron metabolism patterns. The
comparisons of exclusion score (B), dysfunction score (C), MSI (D) and TIDE (E) among iron metabolism patterns. *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 6 | Evaluation of chemotherapy in iron metabolism patterns. The comparisons in IC50 value of Gemcitabine (A), Cisplatin (B), Docetaxel (C), Mitomycin-C
(D), Doxorubicin (E), and Paclitaxel (F) among iron metabolism patterns.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8102729

Song et al. Iron Metabolism in Bladder Cancer

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Confirmation of the IMRG Signature in the
GSE13507 Cohort
As the test set, 165 BLCA samples in the GSE13507 cohort were
grouped using the same IMRGscore calculation formula and cut-
off value of the train set to validate the applicability and stability
of the IMRG signature. Consistent with the above conclusion,
patients in the low-risk group had a better OS (hazard ratio [HR]
= 2.65 (1.52–4.60), p = .001) in the GSE13507 cohort (Figure 8A).
The AUCs for the 1-, 3-, and 5-year OS survival rates were .753,
.630, and .552, respectively (Figure 8B). The conclusions of the
risk score distribution, survival status graph, and expression
profile heatmap were consistent with the training set
(Figures 8C–E).

Clinical Relevance of the IMRG Signature
To further supplement the clinical application value of the IMRG
prognostic signature, we integrated the significant differences in
IMRGscore among distinct subgroups of BLCA patients with
clinicopathological characteristics (Figure 9A). Heatmap
indicated that the advanced TNM stages, pathologic stage,
histologic grade, aging, and worse OS, DSS, and PFI events
had an elevated trend in IMRGscore.

Since the significant correlation between signature and
clinicopathological stage, we determined whether the
IMRGscore was a clinically independent predictor of BLCA
patients (Figures 9B,C). Univariate Cox regression analysis
showed that advanced pathologic stage (p < .001), aging (p =
.005), and higher IMRGscore (p < .001) were unfavorable factors
for OS. After performing the multivariate Cox regression analysis,
we confirmed that the IMRGscore was an independent
prognostic parameter.

Establishment of a NomogramBased on the
IMRG Signature
According to the above result from univariate Cox regression
analysis of the TCGA-BLCA cohort, we established a nomogram
model containing pathologic stage, age, and IMRGscore
(Figure 10A). After removing the patients without complete
information and the subgroups of variables with few samples,
a total of 362 patients were included. We standardized each
variable with a score from 0 to 100 and summed the scores to
obtain the total number of points for each BLCA patient. The
predicted 1-, 3-, and 5-year survival probabilities of each patient
were standardized according to the relationship between the
positions along with the prognosis and total points axes. The
C-index reached 0.694 (95% CI: 0.653–0.735). Figures 10B–D
suggested that the nomogram model predicted that the prognosis
results of TCGA-BLCA patients would fit well with the actual
prognosis results. Besides, DCA curves revealed that the signature
provided patients with a stable and significant net benefit in
BLCA patients (Figures 10E–G). Then based on the nomogram
model, we built the Kaplan-Meier survival curve and the time-
dependent ROC curves. In the TCGA-BLCA cohort, we divided
samples into high- and low-risk groups with the optimal cut-off
value (cut point = −.122532). Patients in the high-risk group
showed a significantly poor OS (hazard ratio [HR] = 4.22
(2.92–6.10), p < .001, Figure 10H). The AUCs for the 1-, 3-,
and 5-year OS survival rates were .764, .769, and .760, respectively
(Figure 10I). Additionally, we verified the nomogram model in
the GSE13507 cohort. The cut-off value was consistent with the
train set. Kaplan-Meier survival analysis showed that patients in
the low-risk group had a better OS than those in the high-risk
group (hazard ratio [HR] = 6.47 (2.89–14.49), p < .001,

FIGURE 7 | Construction of IMRG signature and prognosis analysis based on the training set. (A,B) LASSO regression identified 13 IMRGs. (C) Kaplan-Meier
survival analysis between IMRGscore-defined groups. (D) Time-dependent ROC curves of IMRG signature. (E) IMRGscore distribution. (F) Survival status map. (G)
IMRGs expression profiles heatmap.
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Figure 10J), and the AUCs were .896, .906, and .915
(Figure 10K).

GSEA
To further comprehend the effect of IMRGs expression on the
biological characteristics of BLCA, we carried on GSEA analysis
in IMRGscore-defined groups (Figures 11A,B). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) results revealed
that in the high-risk group, the main enrichment pathways were
ECM receptor interaction, regulation of actin cytoskeleton, MAPK
signaling pathway, WNT signaling pathway, pathways in cancer.
While the low-risk group ismainly concentrated in allograft rejection,
asthma, primary immunodeficiency, and so on. Furthermore,
Figures 11C,D showed the enrichment of the high- and low-risk
groups in the Gene Ontology biological process (GOBP). We found
that the low-risk group was enriched in multiple immune functions,
such as activation of immune response, adaptive immune response, B
cell-mediated immunity, and so on.

Correlation Between Tumor Immune
Microenvironment and IMRG Signature
As we mentioned before, iron metabolism is closely related to
TIME. Based on the CIBERSORT algorithm, we calculated the

proportion of 22 TIICs in each TCGA-BLCA sample
(Figure 12A). After selecting samples with significant immune
cell fraction results (p < .05), 195 samples were included in the
difference analysis, including 141 cases in the low-risk group and
54 cases in the high-risk group. Then the difference in the
proportion of TIICs between the IMRGscore-defined groups
was shown in Figure 12B. It was found that the fraction of
CD8 T cells, activated CD4 memory T cells, follicular helper
T cells (TFH) and regulatory T cells (Treg) in the low-risk group
was significantly higher. In contrast, the fraction of M0
macrophages was upper in the high-risk group. Furthermore,
high levels of CD8 T cells (p = .004), activated CD4 memory
T cells (p = .013) and TFH (p = .041) were observably associated
with better OS (Figures 12C–E), while increased M0
macrophages (p = .035) indicated a poor OS (Figure 12F).

DISCUSSION

Bladder cancer is a heterogeneous malignancy. Patients with
BLCA generally show different prognoses because of the
molecular discrepancy (Knowles and Hurst, 2015; Guo and
Czerniak, 2019). At present, it is generally believed that
clinical or pathological stages were insufficient to predict the

FIGURE 8 | Validation of IMRG signature based on the test set. (A) Kaplan-Meier survival analysis between IMRGscore-defined groups. (B) Time-dependent ROC
curves of IMRG signature. (C) IMRGscore distribution. (D) Survival status map. (E) IMRGs expression profiles heatmap.
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prognosis of patients with BLCA (Konety, 2006; Rosenberg et al.,
2013). Therefore, it is essential to develop a more accurate and
efficient model to predict the survival prognosis for patients. In
recent years, some studies have found iron involvement in the
appearance and progression of cancers. Abundant researches
have revealed that iron metabolism is involved in the entire
process of cancer progression. Murata M. demonstrated that
iron released from the damaged transferrin could mediate the
Fenton reaction and produce ROS, which contributes to the
carcinogenic process in multiple ways (Murata, 2018). A cross-
sectional study found that the serum iron concentration in
patients with BLCA was lower than that in the control group
(Mazdak et al., 2010). However, studies on the potential function
of iron metabolism in the treatment and prognosis of BLCA are
scarce.

In this study, patients in the TCGA-BLCA cohort were divided
into four iron metabolism patterns based on the expression of

prognosis-related IMRGs. Survival analysis suggested that C1 and
C3 had a better prognosis. Our results also showed that C2 and
C4 patterns have higher enrichment scores in multiple
carcinogenic and immune activation-related pathways. For
instance, abnormal activation of NOD-like receptors (NLRs)
occurs in various cancers, coordinates the tumor immune
microenvironment, and promotes angiogenesis, cancer cell
stem cells, and chemotherapy resistance, thereby enhancing
tumor risk (Liu et al., 2019). Toll-like receptor (TLR) is a
transmembrane pattern recognition receptor that detects and
defends microbial pathogens through the innate immune
response (Brennan and Gilmore, 2018). The activation of the
Notch signaling pathway can be seen in most components of the
tumor microenvironment (TME), such as angiogenesis, tumor
stem cell maintenance, immune infiltration, or therapeutic
resistance (Meurette and Mehlen, 2018). Besides, C2 and C4
iron metabolism patterns were highly infiltrated by immune cells,

FIGURE 9 | Clinical relevance of IMRG signature. Correlation between IMRGscore and clinicopathological characteristics, including T stage (A), N stage (B), M
stage (C), pathologic stage (D), histologic grade (E), age (F), gender (G), OS event (H), DSS event (I), and PFI event (J). Univariate (K) andmultivariate (L)Cox regression
analysis of risk-group and clinicopathological characteristics. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 10 | Nomogram model based on clinicopathological characteristics and IMRGscore. (A) Nomogram for predicting the probability of OS over 1, 3, and 5
years. (B–D) Calibration curves for predicting the fitness of the nomogram model in 1, 3, and 5 years. (E–G) DCA curves based on three predictors of 1, 3, and 5 years.
(H) Kaplan-Meier analysis of nomogram model in the TCGA-BLCA cohort. (I) Time-dependent ROC curves of nomogram model in the TCGA-BLCA cohort. (J) Kaplan-
Meier analysis of nomogram model in the GSE13507 cohort. (K) Time-dependent ROC curves of nomogram model in the GSE13507 cohort.
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and the expression of MHC genes was highly elevated. These
characteristics are consistent with an immune-inflamed
phenotype. On the other hand, C1 and C3 are suspected to be
immune-desert phenotypes due to lack of immune infiltration
and antigen presentation. Additionally, we found that multiple
immune checkpoints (PD-1, PD-L1, PD-L2, LAG3, TIGIT,
IDO1, and CTLA4) were highly expressed in C2 and C4
patterns, which might indicate that immunotherapy has a
better effect on them. Furthermore, studies have shown that
the high-level expression of immune checkpoint genes might
be a stimulative to the immunosuppressive microenvironment
and led to the immune escape of tumor cells (Dunn et al., 2002).
The TIDE algorithm confirmed this conclusion. Therefore,
we speculate that the reason why C2 and C4 patterns do not
show a better prognosis of immunoinflammatory phenotype
is that the antitumor effect based on the activated immune
pathway and high infiltration level of T cells were eliminated
by the formation of the immunosuppressive microenvironment.
The above evidence proved that iron metabolism is of

great significance in shaping various TME landscapes in
BLCA.

Somatic mutation is not only the driving factor of cancer, but
also the guiding basis for diagnosis and treatment. The three
genes with the highest mutation rate in BLCA were TP53, TTN,
and KMT2D. The mutation rate of TP53 in C2 iron metabolism
pattern was the highest, while in C1 pattern was the lowest. In C2
and C3 patterns, the incidence of TTN and KMT2D mutations
was significantly higher. Detection of TP53 mutation was
conducive to estimating the high risk of early lesions (Olivier
et al., 2010). Single TTN gene mutation often indicated high
TMB (Oh et al., 2020). The mutation of epigenetic regulator
KMT2D was a biomarker of poor prognosis in some cancers
(Ferrero et al., 2020). Additionally, we found that high TMB
suggested that patients with BLCA had a better prognosis
through the TCGA database. Consistently, the TMB of C1
and C4 patterns was observably decreased. These results show
that iron metabolism has a complex interaction with somatic
mutation.

FIGURE 11 | Correlation between IMRG signature and biological functions. KEGG results of the high-risk group (A) and low-risk group (B). GOBP results of the
high-risk group (C) and low-risk group (D).
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Chemotherapy is still one of the main treatments for BLCA.
According to the latest guidelines of the European Association of
Urology (EAU), all muscle-invasive bladder cancer (MIBC)
patients with physical conditions can apply platinum-based
neoadjuvant chemotherapy before operation (Witjes et al.,
2021). This study investigated the efficacy of six common
chemotherapeutic drugs on iron metabolism mode, including
Gemcitabine, Cisplatin, Docetaxel, Mitomycin-C, Doxorubicin,
and Paclitaxel. The results showed that C2 pattern was the most
sensitive to these chemotherapeutic drugs, while C3 pattern was
the most insensitive. This provided a reference basis for the
selection of clinical chemotherapy drugs.

Due to the effect of iron metabolism on the tumorigenesis and
progression of cancer, it is of great importance to establish an
IMRG signature for predicting the prognosis of patients with
BLCA. Herein, we applied stepwise regression analysis to
compose a clinical prognostic signature for BLCA patients
with 13 IMRGs (TCIRG1, CTSE, ATP6V0A1, CYP2C8,
RNF19A, CYP4Z1, YPEL5, PLOD1, BMP6, CAST, SCD,
IFNG, and ASIC3). A test set was utilized to confirm its
accuracy and stability. Moreover, the IMRGscore was elevated
in multiple advanced clinicopathological stages. And multivariate
Cox regression analysis verified that IMRGscore was an
independent prognostic index of BLCA patients. Finally,
we combined some clinicopathological features, including

pathologic stage, age, and IMRGscore to construct a
nomogram that accurately predicted the prognosis of patients
with BLCA. The accuracy and clinical contributions were verified
by calibration analysis and DCA.

Several studies have shown that these 13 IMRGs are closely
related to cancers, and some of these genes have been confirmed
about BLCA. TCIRG1, one of the V-ATPase subunits, is
abnormally overexpressed in patients with recurrent
hepatocellular carcinoma, and enhances the ability of
metastasis by regulating the growth, death, and epithelial to
mesenchymal transition of cancer cells (Yang et al., 2018). A
retrospective study suggests that CTSE can be used as an
independent prognostic marker for NMIBC, so as to guide the
treatment of patients (Lin et al., 2001). ATP6V0A1was
demonstrated that it could enhance the fusion of
autophagosomes and lysosomes, up-regulate autophagy
volume accumulation, and finally induce autophagic cell death
(Hsin et al., 2012). CYP2C8 can be regulated by GAS5/miR-382-
3p in hepatocellular carcinoma and play an anticancer role (Li
and Chen, 2020). RNF19A was confirmed to be overexpressed in
non-small cell lung cancer, which plays a carcinogenic role by
destroying the function of p53 (Cheng et al., 2021). CYP4Z1 was
confirmed to be highly expressed in BLCA and positively
correlated with the progression of histologic grade and
pathologic stage (Al-Saraireh et al., 2021). YPEL5 was found

FIGURE 12 | Tumor immune microenvironment of IMRG signature. (A) The proportion of 22 TIICs in BLCA. (B) Infiltration of 22 TIICs in low- and high-risk groups.
Correlation between the infiltration level of TIICs (CD8 T cells (C), activated CD4memory T cells (D), follicular helper T cells (E), andM0macrophages (F) and prognosis of
patients with BLCA. *p < 0.05; **p < 0.01.
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to be inhibited by METTL3-m6A (N6-methyladenosine)-
YTHDF2 axis in colorectal cancer, promoting the growth and
metastasis of tumor (Zhou et al., 2021). The expression of PLOD1
was an independent prognostic factor in BLCA patients, and
downregulated by inhibitor could significantly reduce the
invasiveness of BLCA cells (Yamada et al., 2019). The
expression of BMP6, a key endogenous regulator of iron
metabolism, was affected by Med19, which could promote
bone metastasis and invasiveness of bladder cancer
(Andriopoulos Jr et al., 2009; Wen et al., 2013). Public clinical
data also confirm that BMP6 is a prognostic marker for bladder
cancer (Yuen et al., 2012). Calpastatin (CAST) is involved in
many important physiological processes, including cell cycle,
ECM, cancer cell proliferation, metastasis, and apoptosis (Nian
and Ma, 2021). SCD can protect cancer cells from oxidative stress
and ferroptosis through mediated lipogenesis in prostate cancer
with over-activation of PI3K-AKT-mTOR signaling (Yi et al.,
2020). SCD has also been shown to reduce proliferation and
invasion of BLCA cells when inhibited (Piao et al., 2019). Iron
metabolism can affect innate immune response by affecting IFNG
mediated immune response pathway in macrophages (Nairz
et al., 2014). And IFNG was demonstrated to inhibit the
activity of bladder cancer stem cells (Qiu et al., 2020). ASIC3
has an H+ gating function, which promotes the acid-induced
epithelial-mesenchymal transition in pancreatic cancer cells (Zhu
et al., 2017).

GSEA analysis showed that several cancer-related pathways
were enriched in the high-risk group. The unique biochemical
and biophysical properties of ECMwhen it is dysregulated are the
key drivers of cancer progression (Walker et al., 2018). The
MAPK signaling pathway is considered to be related to cell
proliferation, differentiation, migration, aging, and apoptosis
(Sun et al., 2015). The Wnt signaling pathway is an important
driving factor to maintain tissue development and homeostasis.
Abnormal Wnt signaling will cause the occurrence and
progression of many cancers by affecting cancer stem cells
(Duchartre et al., 2016). Furthermore, CIBERSORT analysis
indicated that several TIICs with differential infiltration levels
had significant correlations between the prognosis of BLCA
patients, and played a regulatory role in the balance of iron
metabolism. After being activated by immunotherapy, CD8
T cells can enhance ferroptosis-specific lipid peroxidation and
increase ferroptosis in tumor cells, which contributes to the anti-
tumor effect (Wang et al., 2019). Macrophages are the regulatory
hub of iron metabolism. Macrophages phagocytize and degrade
aging and damaged erythrocytes to recover iron, and also have the
ability to release iron. The accumulation of M2 macrophages is
often associated with poor prognosis, and M2 macrophages
possess iron release characteristics (Recalcati et al., 2010).
Therefore, the accumulation of M2 macrophages may further
aggravate the disorder of iron metabolism.

Our research has obvious advantages in the study of iron
metabolism characteristics and the clinical application of BLCA.
First, we divided BLCA patients into distinct iron metabolism
landscapes to further confirm the relationship between iron

metabolism and TME and somatic mutations. At the same
time, we also verified that iron metabolism landscapes had
guiding significance for chemotherapy drugs and immunotherapy
selection. Next, we established the IMRG prognostic signature
and proved IMRGscore was an independent prognostic factor
for BLCA patients, and it also had the predictive ability for
clinicopathological characteristics. At present, our research is still
insufficient. First, it is a retrospective study. Deviations in variables
such as clinicopathological characteristics of patients most likely
exist. Second, our prognostic signature depends on gene expression
and does not take into account the effects of gene mutation,
methylation, or other factors on the prognosis of BLCA patients.
Finally, the prognostic signature can be incorporated into large
sample prospective studies to further verify its clinical value.

DATA AVAILABILITY STATEMENT

Raw data for this study were generated at the TCGA database
with the cancer type of BLCA. The datasets used and/or
analyzed during the current study are available from the
GEO database (GSE13507). Derived data supporting the
findings are available from the corresponding author (WS)
on reasonable request.

AUTHOR CONTRIBUTIONS

XL and WS designed and guided the work. XS and SX
participated in data collecting, data processing, figures
preparation, and manuscript writing. YZ, JM, and CD
contributed to statistical analysis. KC, LC, and FL contributed
to manuscript writing and article publishment. ZL and TW
contributed to manuscript draft writing. JL revised the
manuscript critically. All authors provided critical advice for
the final manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant Number: 82072838), Tongji
Outstanding Young Researcher Funding (Grant number:
2020YQ13), Huazhong University of Science and Technology
(Grant Number: 2019kfyXKJC06), Natural Science Foundation of
Hubei Province (Grant Number: ZRMS2020002466).

ACKNOWLEDGMENTS

The authors thank the members of the Urology Department of
Tongji Hospital of Huazhong University of science and
technology for their valuable support and useful discussion.
We also thank TCGA, GEO, and MSigDB databases for the
availability of the data.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 81027216

Song et al. Iron Metabolism in Bladder Cancer

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


REFERENCES

Al-Saraireh, Y. M., Alshammari, F. O. F. O., Youssef, A. M. M., Al-Sarayreh, S.,
Almuhaisen, G. H., Alnawaiseh, N., et al. (2021). Profiling of CYP4Z1 and
CYP1B1 Expression in Bladder Cancers. Sci. Rep. 11 (1), 5581. doi:10.1038/
s41598-021-85188-4

Andrews, N. C. (2008). Forging a Field: the golden Age of Iron Biology. Blood 112
(2), 219–230. doi:10.1182/blood-2007-12-077388

Andriopoulos Jr, B., Jr., Corradini, E., Xia, Y., Faasse, S. A., Chen, S., Grgurevic, L.,
et al. (2009). BMP6 Is a Key Endogenous Regulator of Hepcidin Expression and
Iron Metabolism. Nat. Genet. 41 (4), 482–487. doi:10.1038/ng.335

Babjuk, M., Burger, M., Compérat, E. M., Gontero, P., Mostafid, A. H., Palou, J.,
et al. (2019). European Association of Urology Guidelines on Non-muscle-
invasive Bladder Cancer (TaT1 and Carcinoma In Situ) - 2019 Update. Eur.
Urol. 76 (5), 639–657. doi:10.1016/j.eururo.2019.08.016

Battaglia, A. M., Chirillo, R., Aversa, I., Sacco, A., Costanzo, F., and Biamonte, F.
(2020). Ferroptosis and Cancer: Mitochondria Meet the "Iron Maiden" Cell
Death. Cells 9 (6), 1505. doi:10.3390/cells9061505

Berdik, C. (2017). Unlocking Bladder Cancer. Nature 551 (7679), S34–s35. doi:10.
1038/551S34a

Bialasek, M., Kubiak, M., Gorczak, M., Braniewska, A., Kucharzewska-Siembieda,
P., Krol, M., et al. (2019). Exploiting Iron-Binding Proteins for Drug Delivery.
J. Physiol. Pharmacol. 70 (5). doi:10.26402/jpp.2019.5.03

Brennan, J. J., and Gilmore, T. D. (2018). Evolutionary Origins of Toll-like
Receptor Signaling. Mol. Biol. Evol. 35 (7), 1576–1587. doi:10.1093/molbev/
msy050

Brunet, J.-P., Tamayo, P., Golub, T. R., and Mesirov, J. P. (2004). Metagenes and
Molecular Pattern Discovery Using Matrix Factorization. Proc. Natl. Acad. Sci.
101 (12), 4164–4169. doi:10.1073/pnas.0308531101

Chan, T. A., Yarchoan, M., Jaffee, E., Swanton, C., Quezada, S. A., Stenzinger, A.,
et al. (2019). Development of Tumor Mutation burden as an Immunotherapy
Biomarker: Utility for the Oncology Clinic. Ann. Oncol. 30 (1), 44–56. doi:10.
1093/annonc/mdy495

Cheng, Y., Hu, Y., Wang, H., Zhao, Z., Jiang, X., Zhang, Y., et al. (2021). Ring finger
Protein 19A Is Overexpressed in Non-small Cell Lung Cancer and Mediates
P53 Ubiquitin-Degradation to Promote Cancer Growth. J. Cel Mol Med 25 (16),
7796–7808. doi:10.1111/jcmm.16674

Duchartre, Y., Kim, Y.-M., and Kahn, M. (2016). The Wnt Signaling Pathway in
Cancer. Crit. Rev. Oncology/Hematology 99, 141–149. doi:10.1016/j.critrevonc.
2015.12.005

Dufès, C., Al Robaian, M., and Somani, S. (2013). Transferrin and the Transferrin
Receptor for the Targeted Delivery of Therapeutic Agents to the Brain and
Cancer Cells. Ther. Deliv. 4 (5), 629–640. doi:10.4155/tde.13.21

Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., and Schreiber, R. D. (2002). Cancer
Immunoediting: from Immunosurveillance to Tumor Escape. Nat. Immunol. 3
(11), 991–998. doi:10.1038/ni1102-991

Ferrero, S., Rossi, D., Rinaldi, A., Bruscaggin, A., Spina, V., Eskelund, C. W., et al.
(2020). KMT2D Mutations and TP53 Disruptions Are Poor Prognostic
Biomarkers in Mantle Cell Lymphoma Receiving High-Dose Therapy: a FIL
Study. Haematologica 105 (6), 1604–1612. doi:10.3324/haematol.2018.214056

Fonseca-Nunes, A., Jakszyn, P., and Agudo, A. (2014). Iron and Cancer Risk-A
Systematic Review and Meta-Analysis of the Epidemiological Evidence.
Cancer Epidemiol. Biomarkers Prev. 23 (1), 12–31. doi:10.1158/1055-9965.
Epi-13-0733

Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: an R Package for
Prediction of Clinical Chemotherapeutic Response from Tumor Gene
Expression Levels. PLoS One 9 (9), e107468. doi:10.1371/journal.pone.0107468

Guo, C. C., and Czerniak, B. (2019). Bladder Cancer in the Genomic Era. Arch.
Pathol. Lab. Med. 143 (6), 695–704. doi:10.5858/arpa.2018-0329-RA

Hassannia, B., Vandenabeele, P., and Vanden Berghe, T. (2019). Targeting
Ferroptosis to Iron Out Cancer. Cancer Cell 35 (6), 830–849. doi:10.1016/j.
ccell.2019.04.002

Hsin, I.-L., Sheu, G.-T., Jan, M.-S., Sun, H.-L., Wu, T.-C., Chiu, L.-Y., et al. (2012).
Inhibition of Lysosome Degradation on Autophagosome Formation and
Responses to GMI, an Immunomodulatory Protein fromGanoderma
Microsporum. Br. J. Pharmacol. 167 (6), 1287–1300. doi:10.1111/j.1476-
5381.2012.02073.x

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T Cell
Dysfunction and Exclusion Predict Cancer Immunotherapy Response. Nat.
Med. 24 (10), 1550–1558. doi:10.1038/s41591-018-0136-1

Jung, M., Mertens, C., Tomat, E., and Brüne, B. (2019). Iron as a Central Player and
Promising Target in Cancer Progression. Int. J. Mol. Sci. 20 (2), 273. doi:10.
3390/ijms20020273

Knowles, M. A., and Hurst, C. D. (2015). Molecular Biology of Bladder Cancer:
New Insights into Pathogenesis and Clinical Diversity. Nat. Rev. Cancer 15 (1),
25–41. doi:10.1038/nrc3817

Konety, B. R. (2006). Molecular Markers in Bladder Cancer: a Critical Appraisal.
Urol. Oncol. Semin. Original Invest. 24 (4), 326–337. doi:10.1016/j.urolonc.
2005.11.023

Li, K., and Chen, Y. (2020). CYP2C8 Regulated by GAS5/miR-382-3p Exerts Anti-
cancerous Properties in Liver Cancer. Cancer Biol. Ther. 21 (12), 1145–1153.
doi:10.1080/15384047.2020.1840886

Lin, C. K., Lai, K. H., Lo, G. H., Cheng, J. S., Hsu, P. I., Mok, K. T., et al. (2001).
Cathepsin E and Subtypes of Intestinal Metaplasia in Carcinogenesis of the
Human Stomach. Zhonghua Yi Xue Za Zhi (Taipei) 64 (6), 331–336.

Liu, P., Lu, Z., Liu, L., Li, R., Liang, Z., Shen, M., et al. (2019). NOD-like Receptor
Signaling in Inflammation-Associated Cancers: From Functions to Targeted
Therapies. Phytomedicine 64, 152925. doi:10.1016/j.phymed.2019.152925

Manz, D. H., Blanchette, N. L., Paul, B. T., Torti, F. M., and Torti, S. V. (2016). Iron
and Cancer: Recent Insights. Ann. N.Y. Acad. Sci. 1368 (1), 149–161. doi:10.
1111/nyas.13008

Martincorena, I., and Campbell, P. J. (2015). Somatic Mutation in Cancer and
normal Cells. Science 349 (6255), 1483–1489. doi:10.1126/science.aab4082

Mazdak, H., Yazdekhasti, F., Movahedian, A., Mirkheshti, N., and Shafieian, M.
(2010). The Comparative Study of Serum Iron, Copper, and Zinc Levels
between Bladder Cancer Patients and a Control Group. Int. Urol. Nephrol.
42 (1), 89–93. doi:10.1007/s11255-009-9583-4

Meurette, O., and Mehlen, P. (2018). Notch Signaling in the Tumor
Microenvironment. Cancer Cell 34 (4), 536–548. doi:10.1016/j.ccell.2018.07.009

Mou, Y., Wang, J., Wu, J., He, D., Zhang, C., Duan, C., et al. (2019). Ferroptosis, a
New Form of Cell Death: Opportunities and Challenges in Cancer. J. Hematol.
Oncol. 12 (1), 34. doi:10.1186/s13045-019-0720-y

Murata, M. (2018). Inflammation and Cancer. Environ. Health Prev. Med. 23 (1),
50. doi:10.1186/s12199-018-0740-1

Nairz, M., Haschka, D., Demetz, E., and Weiss, G. (2014). Iron at the Interface of
Immunity and Infection. Front. Pharmacol. 5, 152. doi:10.3389/fphar.2014.00152

Nian, H., and Ma, B. (2021). Calpain-calpastatin System and Cancer Progression.
Biol. Rev. 96 (3), 961–975. doi:10.1111/brv.12686

Oh, J.-H., Jang, S. J., Kim, J., Sohn, I., Lee, J.-Y., Cho, E. J., et al. (2020). Spontaneous
Mutations in the Single TTN Gene Represent High Tumor Mutation burden.
Npj Genom. Med. 5, 33. doi:10.1038/s41525-019-0107-6

Olivier, M., Hollstein, M., and Hainaut, P. (2010). TP53 Mutations in Human
Cancers: Origins, Consequences, and Clinical Use. Cold Spring Harbor Perspect.
Biol. 2 (1), a001008. doi:10.1101/cshperspect.a001008

Piao, C., Cui, X., Zhan, B., Li, J., Li, Z., Li, Z., et al. (2019). Inhibition of Stearoyl
CoA Desaturase-1 Activity Suppresses Tumour Progression and Improves
Prognosis in Human Bladder Cancer. J. Cel Mol Med 23 (3), 2064–2076.
doi:10.1111/jcmm.14114

Qiu, Y., Qiu, S., Deng, L., Nie, L., Gong, L., Liao, X., et al. (2020). Biomaterial 3D
Collagen I Gel Culture Model: A Novel Approach to Investigate Tumorigenesis
and Dormancy of Bladder Cancer Cells Induced by Tumor Microenvironment.
Biomaterials 256, 120217. doi:10.1016/j.biomaterials.2020.120217

Recalcati, S., Locati, M., Marini, A., Santambrogio, P., Zaninotto, F., De Pizzol, M.,
et al. (2010). Differential Regulation of Iron Homeostasis during Human
Macrophage Polarized Activation. Eur. J. Immunol. 40 (3), 824–835. doi:10.
1002/eji.200939889

Rosenberg, E., Baniel, J., Spector, Y., Faerman, A., Meiri, E., Aharonov, R., et al. (2013).
Predicting Progression of Bladder Urothelial Carcinoma Using microRNA
Expression. BJU Int. 112 (7), a–n. doi:10.1111/j.1464-410X.2012.11748.x

Rouanne, M., Roumiguié, M., Houédé, N., Masson-Lecomte, A., Colin, P., Pignot,
G., et al. (2018). Development of Immunotherapy in Bladder Cancer: Present
and Future on Targeting PD(L)1 and CTLA-4 Pathways.World J. Urol. 36 (11),
1727–1740. doi:10.1007/s00345-018-2332-5

Siegel, R. L., Miller, K. D., and Jemal, A. (2020). Cancer Statistics, 2020. CA A.
Cancer J. Clin. 70 (1), 7–30. doi:10.3322/caac.21590

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 81027217

Song et al. Iron Metabolism in Bladder Cancer

https://doi.org/10.1038/s41598-021-85188-4
https://doi.org/10.1038/s41598-021-85188-4
https://doi.org/10.1182/blood-2007-12-077388
https://doi.org/10.1038/ng.335
https://doi.org/10.1016/j.eururo.2019.08.016
https://doi.org/10.3390/cells9061505
https://doi.org/10.1038/551S34a
https://doi.org/10.1038/551S34a
https://doi.org/10.26402/jpp.2019.5.03
https://doi.org/10.1093/molbev/msy050
https://doi.org/10.1093/molbev/msy050
https://doi.org/10.1073/pnas.0308531101
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1093/annonc/mdy495
https://doi.org/10.1111/jcmm.16674
https://doi.org/10.1016/j.critrevonc.2015.12.005
https://doi.org/10.1016/j.critrevonc.2015.12.005
https://doi.org/10.4155/tde.13.21
https://doi.org/10.1038/ni1102-991
https://doi.org/10.3324/haematol.2018.214056
https://doi.org/10.1158/1055-9965.Epi-13-0733
https://doi.org/10.1158/1055-9965.Epi-13-0733
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.5858/arpa.2018-0329-RA
https://doi.org/10.1016/j.ccell.2019.04.002
https://doi.org/10.1016/j.ccell.2019.04.002
https://doi.org/10.1111/j.1476-5381.2012.02073.x
https://doi.org/10.1111/j.1476-5381.2012.02073.x
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.3390/ijms20020273
https://doi.org/10.3390/ijms20020273
https://doi.org/10.1038/nrc3817
https://doi.org/10.1016/j.urolonc.2005.11.023
https://doi.org/10.1016/j.urolonc.2005.11.023
https://doi.org/10.1080/15384047.2020.1840886
https://doi.org/10.1016/j.phymed.2019.152925
https://doi.org/10.1111/nyas.13008
https://doi.org/10.1111/nyas.13008
https://doi.org/10.1126/science.aab4082
https://doi.org/10.1007/s11255-009-9583-4
https://doi.org/10.1016/j.ccell.2018.07.009
https://doi.org/10.1186/s13045-019-0720-y
https://doi.org/10.1186/s12199-018-0740-1
https://doi.org/10.3389/fphar.2014.00152
https://doi.org/10.1111/brv.12686
https://doi.org/10.1038/s41525-019-0107-6
https://doi.org/10.1101/cshperspect.a001008
https://doi.org/10.1111/jcmm.14114
https://doi.org/10.1016/j.biomaterials.2020.120217
https://doi.org/10.1002/eji.200939889
https://doi.org/10.1002/eji.200939889
https://doi.org/10.1111/j.1464-410X.2012.11748.x
https://doi.org/10.1007/s00345-018-2332-5
https://doi.org/10.3322/caac.21590
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Stevens, R. G., Graubard, B. I., Micozzi, M. S., Neriishi, K., and Blumberg, B. S.
(1994). Moderate Elevation of Body Iron Level and Increased Risk of Cancer
Occurrence and Death. Int. J. Cancer 56 (3), 364–369. doi:10.1002/ijc.
2910560312

Sun, Y., Liu, W.-Z., Liu, T., Feng, X., Yang, N., and Zhou, H.-F. (2015). Signaling
Pathway of MAPK/ERK in Cell Proliferation, Differentiation, Migration,
Senescence and Apoptosis. J. Receptors Signal Transduction 35 (6), 600–604.
doi:10.3109/10799893.2015.1030412

Thévenod, F. (2018). 15. Iron and its Role in Cancer Defense: A Double-Edged
Sword. Met. Ions Life Sci. 18, 437–468. doi:10.1515/9783110470734-021

Torti, S. V., Manz, D. H., Paul, B. T., Blanchette-Farra, N., and Torti, F. M. (2018).
Iron and Cancer. Annu. Rev. Nutr. 38, 97–125. doi:10.1146/annurev-nutr-
082117-051732

Torti, S. V., and Torti, F. M. (2013). Iron and Cancer: More Ore to Be Mined. Nat.
Rev. Cancer 13 (5), 342–355. doi:10.1038/nrc3495

Walker, C., Mojares, E., and del Río Hernández, A. (2018). Role of Extracellular
Matrix in Development and Cancer Progression. Int. J. Mol. Sci. 19 (10), 3028.
doi:10.3390/ijms19103028

Wang, Y., Yu, L., Ding, J., and Chen, Y. (2018). Iron Metabolism in Cancer. Int.
J. Mol. Sci. 20 (1), 95. doi:10.3390/ijms20010095

Wang, W., Green, M., Choi, J. E., Gijón, M., Kennedy, P. D., Johnson, J. K., et al.
(2019). CD8+ T Cells Regulate Tumour Ferroptosis during Cancer
Immunotherapy. Nature 569 (7755), 270–274. doi:10.1038/s41586-019-1170-y

Wen, H., Feng, C.-c., Ding, G.-x., Meng, D.-l., Ding, Q., Fang, Z.-j., et al. (2013).
Med19 Promotes Bone Metastasis and Invasiveness of Bladder Urothelial
Carcinoma via Bone Morphogenetic Protein 2. Ann. Diagn. Pathol. 17 (3),
259–264. doi:10.1016/j.anndiagpath.2012.11.004

Witjes, J. A., Bruins, H. M., Cathomas, R., Compérat, E. M., Cowan, N. C., Gakis,
G., et al. (2021). European Association of Urology Guidelines on Muscle-
Invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur.
Urol. 79 (1), 82–104. doi:10.1016/j.eururo.2020.03.055

Wu, T., Sempos, C. T., Freudenheim, J. L., Muti, P., and Smit, E. (2004). Serum
Iron, Copper and Zinc Concentrations and Risk of Cancer Mortality in US
Adults. Ann. Epidemiol. 14 (3), 195–201. doi:10.1016/s1047-2797(03)00119-4

Xu, T., Ding, W., Ji, X., Ao, X., Liu, Y., Yu, W., et al. (2019). Molecular Mechanisms
of Ferroptosis and its Role in Cancer Therapy. J. Cel Mol Med 23 (8),
4900–4912. doi:10.1111/jcmm.14511

Yamada, Y., Kato, M., Arai, T., Sanada, H., Uchida, A., Misono, S., et al. (2019).
Aberrantly Expressed PLOD 1 Promotes Cancer Aggressiveness in Bladder
Cancer: a Potential Prognostic Marker and Therapeutic Target. Mol. Oncol. 13
(9), 1898–1912. doi:10.1002/1878-0261.12532

Yang, H. D., Eun, J. W., Lee, K.-B., Shen, Q., Kim, H. S., Kim, S. Y., et al.
(2018). T-cell Immune Regulator 1 Enhances Metastasis in Hepatocellular
Carcinoma. Exp. Mol. Med. 50 (1), e420. doi:10.1038/emm.2017.166

Yi, J., Zhu, J., Wu, J., Thompson, C. B., and Jiang, X. (2020). Oncogenic Activation
of PI3K-AKT-mTOR Signaling Suppresses Ferroptosis via SREBP-Mediated
Lipogenesis. Proc. Natl. Acad. Sci. USA 117 (49), 31189–31197. doi:10.1073/
pnas.2017152117

Yin, M., Joshi, M., Meijer, R. P., Glantz, M., Holder, S., Harvey, H. A., et al. (2016).
Neoadjuvant Chemotherapy for Muscle-Invasive Bladder Cancer: A Systematic
Review and Two-step Meta-Analysis. Oncologist 21 (6), 708–715. doi:10.1634/
theoncologist.2015-0440

Yuen, H.-F., McCrudden, C. M., Grills, C., Zhang, S.-D., Huang, Y.-H., Chan, K.-
K., et al. (2012). Combinatorial Use of Bone Morphogenetic Protein 6, Noggin
and SOST Significantly Predicts Cancer Progression. Cancer Sci. 103 (6),
1145–1154. doi:10.1111/j.1349-7006.2012.02252.x

Zhou, D., Tang, W., Xu, Y., Xu, Y., Xu, B., Fu, S., et al. (2021). METTL3/YTHDF2
m6A axis Accelerates Colorectal Carcinogenesis through Epigenetically
Suppressing YPEL5. Mol. Oncol. 15 (8), 2172–2184. doi:10.1002/1878-0261.
12898

Zhu, S., Zhou, H.-Y., Deng, S.-C., Deng, S.-J., He, C., Li, X., et al. (2017). ASIC1 and
ASIC3 Contribute to Acidity-Induced EMT of Pancreatic Cancer through
Activating Ca2+/RhoA Pathway. Cell Death Dis 8 (5), e2806. doi:10.1038/
cddis.2017.189

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Song, Xin, Zhang, Mao, Duan, Cui, Chen, Li, Liu, Wang, Liu, Liu
and Song. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 81027218

Song et al. Iron Metabolism in Bladder Cancer

https://doi.org/10.1002/ijc.2910560312
https://doi.org/10.1002/ijc.2910560312
https://doi.org/10.3109/10799893.2015.1030412
https://doi.org/10.1515/9783110470734-021
https://doi.org/10.1146/annurev-nutr-082117-051732
https://doi.org/10.1146/annurev-nutr-082117-051732
https://doi.org/10.1038/nrc3495
https://doi.org/10.3390/ijms19103028
https://doi.org/10.3390/ijms20010095
https://doi.org/10.1038/s41586-019-1170-y
https://doi.org/10.1016/j.anndiagpath.2012.11.004
https://doi.org/10.1016/j.eururo.2020.03.055
https://doi.org/10.1016/s1047-2797(03)00119-4
https://doi.org/10.1111/jcmm.14511
https://doi.org/10.1002/1878-0261.12532
https://doi.org/10.1038/emm.2017.166
https://doi.org/10.1073/pnas.2017152117
https://doi.org/10.1073/pnas.2017152117
https://doi.org/10.1634/theoncologist.2015-0440
https://doi.org/10.1634/theoncologist.2015-0440
https://doi.org/10.1111/j.1349-7006.2012.02252.x
https://doi.org/10.1002/1878-0261.12898
https://doi.org/10.1002/1878-0261.12898
https://doi.org/10.1038/cddis.2017.189
https://doi.org/10.1038/cddis.2017.189
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	Identification and Quantification of Iron Metabolism Landscape on Therapy and Prognosis in Bladder Cancer
	Introduction
	Materials and Methods
	Retrieval of Iron Metabolism-Related Genes
	Acquisition and Process of Original Data
	NMF Clustering for Iron Metabolism Patterns
	GSVA
	Evaluation of Tumor Immune Microenvironment
	Evaluation of Immunotherapy and Chemotherapy on Iron Metabolism Patterns
	Construction and Validation of IMRG Prognostic Signature
	Establishment and Evaluation of the Nomogram
	Statistical Analysis

	Results
	Characterization of Iron Metabolism Patterns in BLCA
	Tumor Immune Microenvironment of Iron Metabolism Patterns
	Tumor Somatic Mutation in Iron Metabolism Patterns
	Evaluation of Immunotherapy in Iron Metabolism Patterns
	Chemotherapeutics Drugs Response in Iron Metabolism Patterns
	Establishment of the IMRG Prognostic Signature in the TCGA-BLCA Cohort
	Confirmation of the IMRG Signature in the GSE13507 Cohort
	Clinical Relevance of the IMRG Signature
	Establishment of a Nomogram Based on the IMRG Signature
	GSEA
	Correlation Between Tumor Immune Microenvironment and IMRG Signature

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


