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Immittance Data Validation using Fast Fourier
Transformation (FFT) Computation – Synthetic and
Experimental Examples
T. Malkow,*[a] G. Papakonstantinou,[a, c] A. Pilenga,[a] L. Grahl-Madsen,[b] and G. Tsotridis[a]

Exact data of an electric circuit (EC) model of RLC (resistor,

inductor, capacitor) elements representing rational immittance

of LTI (linear, time invariant) systems are numerically Fourier

transformed to demonstrate within error bounds applicability of

the Hilbert integral tranform (HT) and Kramers-Kronig (KK)

integral tranform (KKT) method. Immittance spectroscopy (IS)

data are validated for their HT (KKT) compliance using non-

equispaced fast Fourier transformation (NFFT) computations.

Failing of HT (KKT) testing may not only stem from non-

compliance with causality, stability and linearity which are

readily distinguished using anti HT (KKT) relations. It could also

indicate violation of uniform boundedness to be overcome

either by using singly or multiply subtracted KK transform (SSKK

or MSKK) or by seeking KKT of the same set of data at a

complementary immit- tance level. Experimental IS data of a

fuel cell (FC) are also numerically HT (KKT) validated by NFFT

assessing whether LTI principles are met. Figures of merit are

suggested to measure success in numerical validation of IS data.

In a companion communication,[1] we note the usefulness and

need for data validation of immittance spectroscopy (IS)

measurements and models.[2–12] Immittance (e. g. admittance, Y,

impedance, Z, complex capacitance, C = (jw)�1Y, complex in-

ductance, L = (jw)�1Z) is known under various other names and

appears in modified form too in many other fields of natural

sciences and engineering[6–12] where validation of measure-

ments and verification of model data is often likewise required.

They basically adhere all to the same principles, comply with

the same relations and face the same dilemmas as presented

here.

For inertial systems (materials, interfaces or devices)

whether oscillatory (dynamic) or at rest, we derived for linear,

stable & causal systems[13–17] in the real angular frequency

domain (Fourier space), <ef�jsg ¼ w; s ¼ s þ jw; 0 � s 2 R;

w ¼ 2pf 2 R; ð�jÞ2 ¼ �1 using integral transform properties

(theorems)[2,18,19] for continuous, bounded (convergent), rational
immittance,

of finite degree, deg N � deg D <1 with zeros (roots of N),

zi 2 C and poles (roots of D), pj 2 C� :¼ fs 2 C : <es < 0g
Hilbert integral transform (HT) and Kramers-Kronig (KK) integral

transform (KKT) relations,[1]

(1)

with 2a2 +a+ 1 =b; * denotes complex conjugation. Taking

a= 0 thus b= 1,

(2)

with g= 0, g=�1 and g= + 2 are anti HT (KK) relations

complementary to (1) when respectively IS linearity (super-

position), causality (cause precedes its effect) and stability

(dilation, translation & rotation invariance) is violated.[1]

is the linear HT[2,20–23] (forward, Hþ and inverse H�) on R where

P signifies the (Cauchy’s) principal value taken at w=n and all
I(w) poles (isolated singularities).

is the linear KKT (forward, Kþ and inverse K�) pair on

Rþ :¼ fx 2 R : 0 � xg. It is also known as dispersion rela-

tion[13–17,24–26] for the real and imaginary immittance parts,

<eIðwÞ ¼ 0:5ðI þ I*ÞðwÞ and =mIðwÞ ¼ �0:5jðI � I*ÞðwÞ, re-
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spectively. Note, HT and KKT are interrelated by the w domain

parity,

(3)

stemming from time, t domain reality, IðtÞ ¼ I*ðtÞ 2 R;8t 2 R.

Comparing the right hand side (RHS) of (2) to that of (1)

and using (3), we conclude that compared to linear, causal &
stable IS data the real part of the immittance becomes

imaginary and the imaginary part becomes real and negated

for non-linear data (g= 0). For acausal data (g=�1), the real

and imaginary parts both become negated. Instability in IS data

(g= + 2) is exhibited by the real part to become imaginary and

negated and the imaginary part to become real.[1] These

implications have obviously no consequence for the immittance

magnitude (modulus), jIðwÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

<e2IðwÞ þ =m2IðwÞ
p

.

In contrast, acausal data compared to causal data would

exhibit a shift of �p (counted anti clockwise) in the principal

argument (phase) of the immittance,

arg IðwÞ ¼qðwÞ ¼ tan�1 =m
<e IðwÞ
� �

; �p � Arg I < p while the

loss (dissipation) factor (LF), tan q(w) remains unaltered. Non-

linear and unstable data would both exhibit a LF change from

tan q(w) to �cotq(w) compared to HT (KKT) compliant data.[1]

These implications are the cornerstones of our numerical

validation to reveal LTI violation in the IS data.

Further, causality, I(t<0) = 0 implies as outlined elsewhere[1]

vanishing (conjugate) instantaneous immittance,

(4)

by the initial value theorem of the Fourier integral transform

(FT) (forward, F and backward or inverse, F�1),[2,18,19]

(5)

Diverging Iðjwj ! 1Þ, needs division of I(w) by

ðjwÞn;n 2 Nnf0g to meet (4) and ensure convergence of the

RHS of (1). Finite Iðjwj ! 1Þ6¼0 requires its subtraction from

the left hand side (LHS) of (1) to meet (4) yielding, noting

P
R

R jw� nj�1dn ¼ 0, singly subtractive (SS) HT (KKT) rela-

tions,[4,5,27]

(6)

Remark, any open right half s plane (RHP) pole, pj 2 Cþ :¼
fs 2 C : <efsg > 0g implies by the residue theorem,[28]

jIðjtj ! 1Þj ! 1. Thus, unless zero-pole cancellation,

jpjj ¼ jzij occurs, I in (1) and (5) would diverge. In this case,

multiply subtractive (MS) KK relations,[4,5,27]

with npi
> 0; 8i can be used to yield piecewise (sectionally)

continuous I with all RHP poles (counting multiplicities)

removed to meet (4).

The dilemma is knowing a priori all singularities in the

measured IS data to be validated or to assume a physically

significant model which describes well the yet to be validated

raw IS data.

In the sequel, we briefly outline our quantitative approach

on the validation of IS data by fast FT (FFT) computation[29,30]

using (1) demonstrated on two examples namely exact data of

an electric circuit (EC) model (Figure 1) and of experimental fuel

cell (FC) data. First, we use (1) to analytically integrate

(7)

the impedance and admittance of the EC model displayed in

Figure 1 which represents an inherent LTI (linear, time invariant)

system with passive elements such as resistors, R1 & R2,

inductor, L1, and capacitor, C2 (RLC network).

What follows is the numerical validation of exact data of Z(7)

& Y(7) to check for linearity, causality and stability violations with

figures of merit (Table 1) before performing the same for the

experimental data (Table 2). We conclude with some general

suggestions to enhance IS data analysis.

Note, the numerical validation makes use of the FT

convolution theorem[18] to apply FFT forth and back to the LHS

of (1) to obtain �DðwÞ ¼ F�F�IðwÞ and to its RHS to obtain

for HT[31–36] D�HTðwÞ ¼ ð2pÞ�1F� sgnð�tÞF�IðwÞ
� �

and for KKT,

D�KKTðwÞ ¼ ð2pÞ�1F� 0:25 sgnð�tÞF�IðwÞ
� �

employing the

Fubini-Tonelli theorem;[2,37,38] sgnðt 6¼0Þ ¼ t=jtj & sgn(0) = 0 is the

signum function.[19] The mismatch,

DðwÞ ¼ ðI�D�ÞðwÞ ð8Þ

with D�ðwÞ ¼ 0:5 D� þ D�½ �ðwÞ is a measure of validation of

numerical error,

eðwÞ ¼ ðI��DÞ ðwÞ ð9Þ

where �DðwÞ ¼ 0:5 �Dþ� D½ �ðwÞ. These quantities are com-

puted by the non-equispaced FFT (NFFT) C subroutine library[39]

Figure 1. Example of an EC model with time constants, t1 = L1/R1 = 1 s,
t2 = R2C2 = 12.5 ms & t12 = R1C2 = 0.125 ns; Y(7) poles (Z(7) zeros), p

Yð7Þ
1;2 ¼ z

Zð7Þ
1;2 ¼

j=2ðt�1
1 þ t�1

2 Þ ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4t�1
1 ðt�1

2 þ t�1
12 Þ=ðt�1

1 þ t�1
2 Þ2

p

� ð�80þ 40jÞ kHz
and Z(7) pole (Y(7) zero), pZð7Þ ¼ zYð7Þ ¼ jt�1

2 ¼ 80j kHz.
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which contains routines for the fast summation of complex

valued trigonometric series of discrete, irregularly sampled data

on the half open interval � 1
2 ;

1
2

� �

.

Mapping w : R! � 1
2 ;

1
2

� �

for HT validation through
w�minfwg

maxfwg�minfwg �
1
2 and w : Rþ ! 0; 1

2

� �

for KKT validation through
w�minfwg

2 maxfwg�minfwgð Þ,
[40] the immittances of (5) are evaluated as

approximations to the Fourier coefficients of the respective

discrete version of the FT integrals (5). It neglects at the

expense to introduce an unknown error in the computation of

(8) & (9) any existent but unmeasured I(w) at

jwj 2�minfwg;maxfwg½ to avoid immittance extrapolation to

frequencies outside the measured range which is likewise

vulnerable to errors.

NFFT rather than FFT is used since the latter requires

uniformly spaced data, not always feasible particularly in the

presence of apparent outliers in the data and incomplete

measurement records.

Note, interpolation to obtain uniformally spaced frequency

data is already implemented in NFFT[39] using the Kaiser-Bessel

window function[41–43] by default. For this reason we are not

attempting to employ any additional window (weighting)

function to improve data validation.[30]

Ideally, �n :¼ �ðwnÞ;n 2 f1; . . . ;Ng where · is a placeholder

for D and e, yield the inevitable measurement noise in the IS

data presumably randomly distributed over all N frequencies

measured. Practically, numerical errors blend in too besides the

errors due to spectrum truncation within the measured

frequency range.[30]

Note, invalid data would far beyond reasonably expected

errors in the spectra be characterised by too great a magnitude

in Dn,

(10)

Table 1. Comparison of figures of merit for the HT (KKT) validation by NFFT computation of synthetic data of Z(7) and Y(7) using (1) to those of C(12).

– 2 % additive white noise
D(�sD) e(�se) D(�sD) e(�se)

HT validation

Z(7) �absh i 1.28(�0.912) · 10+ 10 3.15(�3.849) · 10+ 08

Y(7) 1.52(�0.748) · 10+ 02 2.58(�2.996) · 10+ 01

C(12) 1.46(�0.744) · 10�10 2.23(�2.902) · 10�11 1.47(�0.752) · 10�10 2.26(�2.936) · 10�11

Z(7) �arg

� 	 0.005(�1.5706) 5 · 10�07(�1.4789)

Y(7) 0.002(�0.8928) 2 · 10�09(�1.5361)
C(12) 0.062(�0.5803) �2 · 10�10(�1.5055) 0.062(�0.5800) 4 · 10�08(�1.5056)

KKT validation

Z(7) �absh i 6.17(�2.508) · 10+ 08 8.65(�4.790) · 10+ 07

Y(7) 3.61(�1.700) · 10+ 01 5.00(�2.869) · 10+ 00

C(12) 3.64(�1.671) · 10�11 4.87(�2.809) · 10�12 3.68(�1.691) · 10�11 4.93(�2.842) · 10�12

Z(7) �arg

� 	 1.138(�1.5377) 0.894(�1.5640)

Y(7) �1.367(�1.5196) �1.442(�1.5109)
C(12) 1.765(�1.4657) 1.877(�1.5002) 1.766(�1.4628) 1.877(�1.5026)

Table 2. Figures of merit for the HT (KKT) validation of experimental Z, Y, L & C data and their respective MS pendants (13) by NFFT computation of (1).

– a = 1 a = 2
D(�sD) e(�se) D(�sD) e(�se) D(�sD) e(�se)

HT validation

Z �absh i 6.39(�3.251) · 10+ 01 1.16(�0.367) · 10+ 03 1.90(�1.001) · 10+ 01 2.97(�1.186) · 10+ 01 7.03(�3.125) · 10�02 1.96(�0.973) · 10�01

Y 3.90(�1.929) · 10+ 04 7.89(�2.085) · 10+ 01 1.14(�0.598) · 10+ 04 1.78(�0.708) · 10+ 04 4.20(�1.862) · 10+ 01 1.05(�0.526) · 10+ 02

L 4.82(�0.252) · 10�01 1.18(�0.510) · 10+ 00 3.32(�1.642) · 10�01 5.17(�2.006) · 10�01 2.97(�6.235) · 10�02 1.52(�1.124) · 10+ 00

C 2.51(�1.297) · 10+ 02 6.13(�2.628) · 10+ 02 1.59(�0.777) · 10+ 02 2.46(�0.951) · 10+ 02 1.53(�3.323) · 10+ 01 7.89(�5.743) · 10+ 02

Z �arg

� 	 �0.020(�1.5245) 9 · 10�18(�0.0673) 0.246(�0.7704) 0.331(�1.5149) 1.631(�1.5254) �8 · 10�16(�1.3437)

Y 0.016(�1.4883) 4 · 10�18(�0.0638) �0.421(�0.7857) �0.331(�1.4347) �1.412(�1.5289) �2 · 10�15(�1.3590)
L �0.233(�0.8910) 2 · 10�15(�1.4349) �0.303(�0.9382) �8 · 10�15(�1.1504) �1.269(�1.5341) 1 · 10�14(�1.5674)
C �0.200(�1.0352) �3 · 10�15(�1.5120) �0.322(�1.3910) �1 · 10�15(�1.1375) 1.542(�1.5597) �4 · 10�15(�1.5678)

KKT validation

Z �absh i 1.89(�0.496) · 10+ 01 2.31(�1.014) · 10+ 01 6.64(�1.627) · 10+ 00 8.01(�3.616) · 10+ 00 4.45(�1.132) · 10�02 1.12(�0.481) · 10�01

Y 1.11(�0.309) · 10+ 04 1.37(�0.574) · 10+ 04 3.79(�0.942) · 10+ 03 4.59(�2.074) · 10+ 03 2.59(�0.640) · 10+ 01 6.50(�2.579) · 10+ 01

L 1.06(�0.240) · 10+ 01 1.25(�0.551) · 10+ 01 1.03(�0.241) · 10+ 02 1.22(�1.546) · 10+ 02 6.51(�1.985) · 10�01 3.77(�1.342) · 10+ 00

C 5.47(�1.240) · 10+ 03 6.48(�2.847) · 10+ 03 5.30(�1.239) · 10+ 04 6.271(�2.814) · 10+ 04 3.35(�1.022) · 10+ 02 1.94(�0.691) · 10+ 03

Z �arg

� 	 �0.451(�0.5241) �0.394(�1.4505) 0.172(�0.8709) 0.191(�1.5186) 0.045(�0.0113) 0.120(�0.0481)

Y �0.081(�0.3395) �0.427(�1.3555) 1.165(�1.2954) �0.470(�1.5191) �0.156(�1.5415) �0.973(�1.5332)
L �1.628(�1.5138) �0.984(�1.5177) 1.560(�1.5597) 0.251(�1.2707) �1.502(�1.4964) �1.098(�1.5019)
C �1.570(�1.5693) �0.844(�1.3514) 1.563(�1.5627) 0.253(�1.2920) �1.499(�1.4936) �1.014(�1.5220)
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More accurate implications are deduced by quantifying the

validation through figures of merit such as the normalised

absolute mean,

(11)

with unbiased standard deviation,

sh�absi :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N�1

P

n �abs;n � h�i
� �2

r

. Then, principally the smaller

hDabsi, the greater in extent is the validation success.

But, the mean (11) is essentially the same given the very

definition of the modulus (10) when HT (KKT) validating raw IS

data using the RHS of either (1) or (2). In fact, their validation

differs in the computed I for the very same data only by the

factor, (�j)g with g= + 1 for linear, causal & stable data

compliant with HT (KKT) relation (1) and with g= 0 for non-

linear data, g=�1 for acausal data and g= + 2 for unstable

data.

Since the latter three cases of LTI violations result as said

before in phase changes, we define two argument (phase)

deviations,

Then, for (almost) vanishing hDargi, the underlying data are

least likely to be non-linear, unstable or acausal. Thus, HT (KKT)

compliant raw IS data have both small hDabsi and small hDargi
virtually vanishing.

Note, the underlying raw IS data are likely to be acausal

where hDargi is similar to �p. Non-linear and unstable data may

be revealed by appropriately defining hDtani & hDcoti when

indeed interested in the cause of non-compliance.

Caution is advised when applying the polar form,

IðwÞ ¼ jIðwÞjej arg IðwÞ to (1) or (6). Their corresponding HT (KK)

relations for ln jIðwÞj and q(w) known as Bode’s gain-phase

relations are strictly valid only for minimum phase (MP)

systems[27] where the absolute difference in upper half s plane

(UHP) zeros and RHP poles is at most unity; thus,

jmaxfqðwÞgj � p;8w by the Principle Argument theorem.[44]

They inevitably fail for non-minimum phase (NMP) systems

particular active systems with jmaxfqðwÞgj > p. This is unless

all their RHP poles and UHP zeros are known a priori to resolve

the ambiguity in the determination of q(w) from ln jIðwÞj and

vice versa.

Thus, numerical validation of IS data by Bode relations

along with the estimation of all RHP poles and UHP zeros is

preposterous.

Turning to our synthetic example, we note the use of the

impedance (7) in (1) is not possible as its imaginary part

diverges at jwj ! 1. Also, ðZðwÞ � Zð1ÞÞ=ðw�1Þ ¼ 1 van-

ishes when applying HT (KKT).

Using instead the admittance (7) requires accounting for its

two RHP poles, p
Yð7Þ
1 & p

Yð7Þ
2 (see Supporting Information, SI) and

for vanishing at jwj ! 1 of the resultant admittance to be also

non-singular at w!0; hence, we arrive at the complex

capacitance,

(12)

Using (12) in (7) with a= 0 hence b= 1, we obtain analyti-

cally by integration

to conclude with lnð�1Þ ¼ ð1þ 2kÞpj; k 2 Z that j R1

2 Cð12Þ is HT

(KKT) compliant. By the Principle Argument, the winding

number, k ¼ 1 is the difference in the number of UHP zeros

and RHP poles of j R1

2 Cð12Þ namely zjR1

2 Cð12Þ ¼ zYð7Þ and none,

respectively.

Numerically, the HT (KKT) validation of Z(7) & Y(7) by NFFT

computation (see SI) reveals through too great means (Table 1)

their non-compliance with (1). In contrast, the means of the

NFFT computed C(12) data (see SI) are well below unity

indicating as expected compliance with (1) inherently owed to

finiteness and continuity (convergence) of C(12) absent for Z(7)

and Y(7). From the synthetic nature of the Z(7) & Y(7) data

consisting in our example of logarithmically spaced data points

per decade of frequency, f 2 ½10�3; 106�Hz (see SI), we know

that failing numerical validation is attributable to unbounded-

ness, j=mZð7Þðj1jÞj ! 1 and the discontinuity at

p
Yð7Þ
1 � ð80þ 40jÞ kHz rather than to violated linearity, causality

or stability. In this respect, we remind that convergence is

prerequisite for the existence of the principal value integrals (1).

Further, we note for all computed D and e rather marginal

differences in the HT and KKT validation approaches. Essentially,

the very same set of data are used in the two approaches with

the only distinction of the data duplicated in the HT case using

(3) and simply duplicated in the KKT case.

Owing to parity (3) linking HT and KKT, a disparity beyond

numerical error between both validations could suggest anti-

symmetry, Ið0�Þ þ Ið0�Þ ¼ 0 compared to symmetry,

Ið0�Þ � Ið0�Þ ¼ 0.

Also, against additive random noise of 2 % in magnitude

representative of measurement error in the IS data, the method

of NFFT computation is evidently robust for both approaches

(cf C(12) the last two columns in Table 1).

Another example demonstrating HT (KKT) validation are

experimental fuel cell (FC) impedance data measured in

logarithmic spacing in the frequency range, f 2 ½5 � 10�2; 104�Hz

(see SI). For the NFFT computation, we derive from these data

their corresponding data of admittance, inductance and

capacitance (see SI). We also use exemplary for a = 1 and a = 2
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their MS pendants,

(13)

to verify improved convergence of (1)[4,5,27] in the NFFT

computations (see SI).

Notably, among the immittance data only those at the

inductance level are with certainty LTI compliant as the

magnitude mean is below unity and the argument mean

almost vanishes for HT validation (Table 2). Also, the con-

vergence at this level is evidently improved using subtracted

HT (KKT) relations (13) as the magnitude mean further reduces

with a = 1 and more so with a = 2. This is also true for the

impedance level of the measured data. But, the picture is not

that conclusive when comparing the computed argument

mean of these data.

We are nevertheless prompted to regard the experimental

data at least at the impedance and inductance level as LTI

compliant. At the other two levels, these data may contain

singularities or may prove unbounded.

This could be of value when simulating the measured IS

data by an equivalent electric circuit (EEC) model for further

analysis.

Also, comparing HT validation to KKT validation for both

our synthetic data and experimental data we are with regard to

the computed magnitude mean and the computed argument

inclined to prefer the former by the latter validation method to

give credit to parity (3) over plainly duplicating the measured

data.

In summary, we exemplary show applicability of numerical

validation using the convolution theorem to NFFT compute

synthetic and experimental IS data for their HT (KKT) compli-

ance to quantitatively check by figures of merit for linearity,

causality and stability violations.

Furthermore, we demonstrate on a simple RLC network

analytically and numerically that IS data are only HT (KKT)

transformable when convergence (continuity & finiteness) is

also accounted for, e. g. by excluding removable singularities in

the data.

We remind that the relations (1), (6) and (13) apply to

rational, irreducible immittances (of RLC networks) correspond-

ing in the time domain to ordinary differential equations of

integer order with constant coefficients rather than to irrational

immittances (i. e. Warburg and Gerischer like) constituting

partial differential equations with or without memory (delay) of

integer, fractional and/or fractal order in the time domain.[45–60]

But truncated series expansions[61] could most often assist in

approximating irrational by rational immittances to seek the

validation of the latter instead.

Given the invariance of the dispersion relations by dilation,

translation and rotation, we suggest to also include imaginary

frequencies by letting w!� jw in (1) with a=�1, b= 2 or a=

1, b= 4 in data validation (see SI). The same may be applied in

parameter identification of equivalent EC models, pole-zero

estimation and determination of relaxation (retardation) time

constants.

FT of (1) may even be used by letting w! s 2 C to obtain

spectra of complex frequency from real frequency data.

The first principle derivation of linear dispersion relations

truly applicable to irrational immittances (transfer functions)

occurring in many other fields of natural sciences and engineer-

ing[2–9,13–17] is a future challenge. Note, spatial coordinate, wave

number, momentum and energy could readily replace w and n

as variables in the relations (1), (6) and (13) when applied to

complex valued quantities other than immittances. Also a non-

integer a in (1) merits future consideration.
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