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Abstract Head and neck squamous cell carcinoma

(HNSCC) is a heterogeneous group of malignant tumours

that affects over 500,000 patients per year. Treatment

failure is generally due to the heterogeneity of these

tumours and to the serious adverse effects associated with

treatment. Immunological system impairment, which is

common in HNSCC, further contributes to treatment fail-

ure by mediating tumour escape mechanisms. To date, the

only clinically approved targeted therapy agent is cetux-

imab, a monoclonal antibody (mAb) that binds to, and

inhibits, epidermal growth factor receptor, which is widely

overexpressed in HNSCC. Cetuximab has been proven to

induce antibody-dependent cellular cytotoxicity, further

magnifying its therapeutic effect. DNA sequencing of

HNSCC cells has identified the presence of mutated genes,

thus making their protein products potential targets for

therapeutic inhibition. Immune mechanisms have been

found to have a significant impact on carcinogenesis, thus

providing the rationale to support efforts to identify anti-

cancer compounds with immunomodulatory properties. In

the context of the rapid development of novel targeted

agents, the aim of the present paper is to review our current

understanding of HNSCC and to review the novel

anticancer agents (mAbs and TKIs) introduced in recent

years, including an assessment of their efficacy and

mechanisms of action.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the

sixth most common neoplasm worldwide, comprising a

heterogeneous group of malignancies arising from the

mucosal surfaces of the paranasal sinuses, the oral and

nasal cavities, the pharynx, and the larynx [1]. Although

our understanding of these tumours has improved signifi-

cantly in recent years, treatment outcomes have barely

improved [2]. The three most commonly reported risk

factors for HNSCC are alcohol, tobacco, and human

papilloma virus (HPV) infection [2]. Tobacco smoke has

over 5000 chemicals, with at least 60 proven to be cyto-

toxic, mutagenic, and carcinogenic, which explains the

important impact of tobacco on the incidence of HNSCC

[3]. Tobacco smoke also increases the level of reactive

oxygen species (ROS), which in turn stimulate expression

of interleukin 8 (IL-8), a pro-inflammatory cytokine,

leading to prolonged inflammation [4].

The most common treatments for head and neck cancer

include surgery, radiation, and chemotherapy (CT), or a

combination thereof. Currently, six agents have received

Food and Drug Administration (FDA) approval for the

treatment of HNSCC: cisplatin, 5-fluorouracil, docetaxel,

methotrexate, bleomycin, and cetuximab, a monoclonal

antibody (mAb). Platinum-based chemotherapy agents

such as carboplatin and cisplatin, with an efficacy of up to

40%, are standard treatments for HNSCC, often used in
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combination with ionizing radiation [5]. Their mechanism

of action is related to the formation of covalent bonds with

nucleic acids. Docetaxel, which was approved by FDA in

2006 for use in locally advanced inoperable tumours, is a

taxane that promotes cell cycle arrest and apoptosis [6].

Cisplatin is often used to treat non-resectable malignancies,

metastatic lesions, and as a complementary chemotherapy

agent. However, an important disadvantage of cytostatic

agents is their lack of selectivity in targeting cells.

Tumours are more susceptible to CT only because of their

higher rate of division compared to healthy cells [6], which

explains why CT is associated with high cytotoxicity and

serious adverse effects including neutropenia, alopecia,

stomatitis, and mucositis. These adverse effects are rele-

vant because they can significantly decrease overall quality

of life [7].

To date, cetuximab remains the only targeted agent for

the treatment of HNSCC. Cetuximab was first proposed for

use in HNSCC after it was discovered that epidermal

growth factor receptor (EGFR) was significantly overex-

pressed in HNSCC and this overexpression is associated

with worse prognosis [8] and greater radioresistance [9].

HNSCC tumours also significantly increase immunosup-

pression in patients, as evidenced by decreased absolute

lymphocyte counts compared to healthy individuals [10].

Elevated levels of inflammatory cytokines (IL-6, TGF-b,
VEGF, HGF) at the tumour site enhance cellular prolifer-

ation and migration [11, 12] and also increase the risk of

relapse and metastasis [13]. Other characteristics observed

in immunosuppressive HNSCC include impaired antigen-

presenting functions [14], aberrant natural killer (NK) cell

activity [15], and increased apoptosis of CD8? cells [16].

In addition, dysregulation of antigen-presenting mecha-

nisms is also typically present in HNSCC [14] and the

impact of a dysregulated cytokine profile is crucial because

tumours tend to favour immunosuppressive and pro-in-

flammatory cytokines rather than stimulatory cytokines, an

imbalance that contributes to tumour immune escape

mechanisms [11].

Given the rapid development of new agents with ther-

apeutic potential for HNSCC, the aim of this paper is to

review our current understanding of HNSCC and to assess

the efficacy and mechanisms of action of the novel anti-

cancer agents introduced in recent years.

mAbs-based immunotherapy

Molecular heterogeneity in HNSCC significantly lowers

the chance of identifying a single therapeutic agent that is

effective for all HNSCC tumour types. However,

sequencing analysis of HNSCC tumours has provided data

to help identify numerous new potential therapeutic targets

that are overexpressed in these carcinomas and believed to

contribute to tumourigenesis [17, 18]. Such targets include

the following: EGFR, vascular endothelial growth factor

(VEGF), programmed cell death protein (PD-1), hepato-

cyte growth factor (HGF), phosphatidylinositol-4,5-bis-

phosphate 3-kinase (PI3K), c-Met pathway elements,

cytotoxic T lymphocyte-associated protein 4 (CTLA-4),

and CD137.

Cetuximab is a monoclonal chimeric antibody with the

ability to bind to EGFR, a cell surface receptor of the

EGFR tyrosine kinase inhibitor (TKI) family. The four

other members of this family include EGFR1, HER2,

HER3, and HER4 [4, 19]. Activated EGFR homo- or

heterodimerizes along with other receptors result in phos-

phorylation of tyrosine and subsequent activation of sig-

nalling pathways such as MAPK, PI3K/Akt, or STAT.

Induction of these pathways may result in dysregulation of

apoptosis, proliferation, and transcription [11, 20].

Apart from targeting EGFR, cetuximab also stimulates

the induction of antibody-dependent cellular cytotoxicity

(ADCC). Recent studies have found that ADCC can be

further enhanced by activating CD137, a co-stimulatory

molecule overexpressed by NK and T cells after stimula-

tion. CD137 expression in NK cells is triggered by expo-

sure to cetuximab, thus increasing ADCC [21]. Based on

this effect, it has been postulated that an additional appli-

cation of CD137 agonists after cetuximab-based therapy

might improve treatment response [22].

Kohrt et al. reported that cetuximab response is highly

dependent on CD8? cells. Enhancement of cetuximab

response is mediated by dendritic cell maturation, induced

by NK cells [23]. Furthermore, stimulation of peripheral

blood cells through TLR 8? (Toll-like receptor 8) further

augments cetuximab-induced ADCC and promotes den-

dritic cell maturation in HNSCC [24].

However, HNSCC tumours can develop resistance to

cetuximab. The mechanism behind this resistance process

is signalling based, leading to activation of the other

members of the EGFR family: HER2, HER3, as well as

c-Met and insulin growth factor receptor (IGFR) [4, 19].

Another aim of therapeutic inhibition is activation of the

c-Met/HGF signalling pathway, which is recognized as a

major contributing factor to HNSCC resistance to EGFR,

cisplatin, and radiation [25]. Antibodies targeting those

pathways are under clinical evaluation and currently

include transtuzumab, pertuzumab, onartuzumab, and cix-

utumumab [26, 27]. HGF also contributes to the inhibition

of dendritic cell (DC) maturation. Anti-HGF mAb (AMG-

102, rilotumumab) has been developed to eliminate this

effect, and AMG-102 is currently undergoing evaluation in

the treatment of renal cell carcinoma (RCC) [28], advanced

solid tumours, and metastatic gastric esophagogastric

adenocarcinoma [29]. Activation of c-Met can be blocked
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by ficlatuzumab, a humanized anti-HGF mAb currently

being tested in combination with cetuximab in HNSCC

[30]. Increased expression of c-Met correlates with resis-

tance to platinum-based agents, radiation, and to EGFR-

targeting agents; given that most HNSCC samples over-

express c-Met, this may be a novel therapeutic target [31].

Hayakawa et al. [32] found that IL-6 levels were

upregulated in HNSCC, and elevated levels of IL-6 are

associated with STAT3 signalling and blockage of DC

maturation, which makes them a potential target for ther-

apeutic inhibition. Siltuximab, a chimeric monoclonal

antibody directed against IL-6, was designed to restore

physiological STAT3 signalling and DC maturation. The

efficacy of siltuximab in the treatment of metastatic pros-

tate cancer is under evaluation [33].

Another EGFR-targeting antibody is zalutumumab [34].

This human IgG1 mAb is characterized by high affinity to

EGFR and low immunogenicity. The main advantage of

zalutumumab is its immunogenicity, which, while

improving overall tolerance, does not impair ADCC

induction [35]. The efficacy of zalutumumab has been

evaluated in incurable HNSCC, where it increased overall

survival by 1.5 months versus healthy controls [36]. Pan-

itumumab, another anti-EGFR molecule, is a human IgG2

mAb with less capacity to enhance ADCC compared to

cetuximab. Panitumumab, which has a reduced affinity for

the CD16 receptor, has been shown to present fewer

hypersensitivity reactions. Panitumumab has been evalu-

ated in combination with cisplatin and 5-FU in HNSCC,

yielding a greater than threefold decrease in disease pro-

gression when compared to CT alone; however, this com-

bined treatment was also associated with a significant

increase in serious adverse effects [37]. The efficacy of

panitumumab in monotherapy [38] is currently being

evaluated [20]. Nimotuzumab is a recombinant humanized

murine antibody targeting EGFR. The activity of nimo-

tuzumab as a complement to standard chemotherapy has

been evaluated in locally advanced HNSCC [39]; assess-

ment of its efficacy combined with CRT is ongoing [40].

MEHD7945A is another anticancer mAb whose main

advantage is an affinity for both EGFR and HER3 [41].

MEHD7945A may act as a radiation sensitizer in both lung

cancer and HNSCC. Studies conducted to date have shown

that this drug can effectively enhance radiation response in

those neoplasms, both in vitro and in vivo [41].

Angiogenesis is crucial to tumour proliferation, inva-

sion, and metastasis. The process is enhanced by low

oxygen levels and VEGF overexpression [42]. Considering

the importance of VEGF in inducing vascularization, ele-

vated levels of VEGF (both the growth factor and its

receptors) correlate with poor prognosis [24], which

explains the interest in bevacizumab, a VEGF-targeted

mAb. The main advantage of bevacizumab is its affinity for

all five VEGF isophorms [43]. However, studies that have

investigated bevacizumab as monotherapy have found no

significant change in response or overall survival [44]. By

contrast, when it is added as a complementary treatment to

standard, platinum-based CT, it substantially improves the

outcomes of patients with advanced non-small cell lung

carcinoma (NSCLC) [43]. This raises the possibility that

bevacizumab could have a similar effect in HNSCC [44]. A

trial of bevacizumab with CT in locally advanced HNSCC

is currently ongoing [45].

The clinical use of mAbs such as cetuximab and tras-

tuzumab (which targets EGFR and HER2), designed to

inhibit signalling promoting cell proliferation and evasion

of apoptosis, yields a better overall response than TKIs

targeting the same molecules [11]. Those findings suggest

that some other immune mechanisms, apart from blockage

of downstream signalling, must contribute to the clinical

success of these agents [11]. In xenograft models

expressing HER2, trastuzumab and pertuzumab induced

ADCC [46], leading the authors to suggest that co-targeting

tumour antigens (TA) with mAbs might further enhance

immune response.

The loss of phosphatase and tensin homologue (PTEN)

and transforming growth factor b receptor 1 (TGF-bR1) are
associated with PD-L1 activation, possibly through the Akt

signalling pathway [47, 48]. Studies have found PD-1

overexpression in 68–70% of HNSCC malignancies [26],

regardless of HPV infection status [49, 50]. PD-1 is a

receptor present on the surface of cytotoxic T lymphocytes

(CTLs), B and NK cells, and macrophages. PD-1 is

expected to be superior to CTLA-4 in negative signalling.

PD-L1 and PD-L2 are ligands of PD-1. After prolonged

exposure to antigens, macrophages and dendritic cells start

to overexpress PD-L1, which, in the HNSCC setting, leads

to decreased CTL and NK cell activity [51]. If antigen

stimulation continues, CTLA-4 and PD-1 receptors down-

regulate CTL response, thus resolving post-infectious

inflammation and thwarting the autoimmune response.

Those ‘‘immune checkpoints’’ serve a useful purpose in

cancers; however, they may lead to pathologic tolerance

and thus contribute to tumour immune escape [48]. A

humanized IgG4 anti-PD-1 mAb (nivolumab) has been

developed to release CTLs and NK cells from anergy, and

this drug has been evaluated in renal carcinoma, mela-

noma, and NSCLC. The evaluation of nivolumab in

HNSCC is ongoing [52]. Pembrolizumab, an anti-PD1

mAb, is currently in phase 2 clinical trial in patients with

metastatic HNSCC after standard platinum-based therapy

[53]. Durvalumab also targets PD-L1, however is less

effective than pembrolizumab, and evokes approximately

11% response [54].

The development of agents to reduce co-inhibitory sig-

nalling and activate CTLs is a recent aim of HNSCC
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treatment and ipilimumab is one of the agents that is

potentially capable of achieving this effect. This anti-

CTLA-4 IgG1 mAb is currently used to treat melanoma

[55]. A decrease in co-inhibitory CTLA-4 signalling leads

to amplification of tumour-specific CTLs, thus having a

therapeutic effect [56]. However, such agents should be

administered with caution since they have been reported to

cause severe adverse effects such as hypopituitarism or

colitis [57]. Another agent with a similar mechanism in

current trials is tremelimumab [58].

mAbs targeting PD-1 and PDL-1 have shown a signifi-

cant response in solid tumours such as melanoma, renal

cell carcinoma, and NSCLC [11]. Recent studies indicate

that application of anti-PD-1 mAb in HNSCC significantly

inhibits proliferation and decreases levels of myeloid-

derived suppressor cells (MDSCs) and tumour-associated

macrophages (TAMs), while elevating CD8? cell popula-

tion levels [49]. Nivolumab, an anti-PD-1 mAb, has been

shown to have lower toxicity than CTLA-4-targeted anti-

bodies; moreover, the adverse effects associated with

therapy tend to be less severe and include fatigue and

pyrexia [46]. Currently, nivolumab is in phase III trial in

metastatic HNSCC [59].

OX40 (a tumour necrosis factor receptor) is a compo-

nent of the co-stimulatory pathway, which can strengthen T

cell memory and anti-tumour activity, thus reducing cancer

immune escape mechanisms [60]. Main reason to use

OX40 is that it has a proven co-expression with PD-1 and

CTLA-4 [48]. Antibodies targeting OX40 might increase T

cell signalling and enhance the proliferation of these T

cells, memory, and cytotoxicity. Several studies have found

that OX40-targeting mAbs may have synergistic effects

when administered with other immunotherapeutics [61].

Guo et al. have shown that the combination of anti-OX40

mAb and anti-PD-1 improves overall survival compared to

any of these agents alone [62, 63].

Tyrosine kinase inhibitors (TKIs)

Another group of agents that has emerged recently are

TKIs. These are a class of chemotherapeutics that block

specific tyrosine kinases involved in pathways essential for

tumour growth, invasion, and metastasis. By binding to the

tyrosine kinase domain of EGFR, TKIs block subsequent

signalling, resulting in inhibition of cell proliferation [62].

Two most commonly used TKIs are gefitinib and erlo-

tinib. Gefitinib, which targets EGFR, causes reversible

inhibition of the receptor; this TKI has been tested in

conjunction with standard CT or CRT in HNSCC, and in

2015, it was approved by the FDA for monotherapy

treatment of NSCLC. Erlotinib is another EGFR kinase

inhibitor whose efficacy has been proven in over 80 clinical

trials. It is currently approved for NSCLC and pancreatic

cancer. Although trials have shown that erlotinib yields

good results when added to radiotherapy, its use in com-

bination with cisplatin is not recommended. A phase III

clinical trial of erlotinib–cisplatin–radiation efficacy is

ongoing [64].

Since heterodimerization of EGFR with other receptors

is suspected to limit the benefits of mAbs and TKIs, it has

been suggested that agents that can simultaneously inhibit

several members of the EGFR family could be useful [62].

This explains the growing interest in small molecule inhi-

bitors—such as lapatinib, afatinib, sorafenib, and suni-

tinib—that target multiple receptors. Lapatinib is a

reversible TKI, directed against both EGFR and HER2

kinases. Afatinib, through covalent bond formation, irre-

versibly blocks EGFR, HER2, and HER4 kinases. One trial

showed that co-administration of afatinib with cetuximab

in HNSCC significantly reduced cell viability, suggesting

an additive or synergistic effect [65]. The efficacy of

sunitinib and sorafenib is due to inhibition of VEGFR,

PDGFR, Flt3, and c-kit.

The hallmark of HNSCC tumour cells is an imbalance in

STAT1/STAT3 signalling. While downregulation of the

STAT1 signalling pathway decreases the concentration of

CCL5 and CXCL10 (cytokines that promote T cell

migration), upregulation of STAT3 increases cytokine

secretion. IL-6, IL-10, TGF-b1, and VEGF contribute to

impaired DC maturation and NK cell-mediated cytolysis

[66]. The function of IFN-c is to enhance HLA and antigen

presentation in tumour and dendritic cells. This process is

downregulated in the tumour environment due to lack of

IFNc-induced STAT1 signalling. Moreover, DC matura-

tion is inhibited by the downregulation of the STAT3

pathway mediated by secretion of IL-6 by tumour cells.

The therapeutic aim is to restore the balance between the

STAT1/STAT3 pathways, either by inhibiting enhanced

STAT3 or by inducing suppressed STAT1. In vitro studies

have shown that downregulation of STAT3 signalling

reduces the immunosuppressive characteristics of HNSCC

[67]. An anti-Src TKI (dasatinib) may be useful due to

STAT3 mediation execution. Two clinical trials have

evaluated the efficacy of dasatinib in combination with

cetuximab and CT [68, 69].

The use of Janus kinases offers another approach to

reverse the STAT1/STAT3 imbalance. STAT3 is activated

after interaction with JAK1, and JAK2 and Src. JAK1 and

JAK2 are phosphorylated through IL-6-mediated stimula-

tion. For this reason, researchers have recently sought to

develop agents to downregulate STAT3 by targeting JAK

receptors. Research in this area has led to the development

of the novel drug ruxolitinib. JAK1 and JAK2 inhibitors

have been approved for the treatment of myeloproliferative

neoplasms [70]. A second JAK1 and JAK2 inhibitor—
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Table 1 Compilation of the novel targeted therapy agents in HNSCC treatment

Drug Mechanism Target Phase Status Sponsor References

Cetuximab mAb EGFR FDA

approved

ImClone Systems, Inc.

Panitumumab EGFR II Ongoing Amgen [38]

Nimotuzumab EGFR II Ongoing National Cancer Centre [40]

Zalutumumab EGFR III Completed Genmab [36]

MEDH7945A EGFR, HER3 II Completed Genentech [74]

Transtuzumab HER2 II Unknown Bristol-Myers Squibb, Genentech [75]

AV-203 HER3 I Completed AVEO Pharmaceuticals, Inc. [76]

Cixutumumab IGFR II Completed ImClone LLC [77]

Bevacizumab VEGF II Ongoing Woondong Jeong [45]

Pembrolizumab PD-1 II Ongoing Merck Sharp and Dohme Corp [53]

Nivolumab PD-1 III Ongoing Bristol-Myers Squibb [59]

Durvalumab PD-L1 II Recruiting AstraZeneca [54]

Onartuzumab c-Met II Completed Genentech, Inc. [78]

Rilotumumab HGF II Completed Amgen [28]

Ficlatuzumab HGF I Recruiting Julie E. Bauman, MD, MPH [30]

Siltuximab IL-6 II Completed Southwest Oncology Group [33]

Ipilimumab CTLA-4 I Recruiting National Cancer Institute [79]

Tremelimumab CTLA-4 III Recruiting AstraZeneca [58]

Urelumab CD137 I Ongoing Bristol-Myers Squibb [80]

Gefitinib TKI EGFR II Completed AstraZeneca [81]

Erlotinib EGFR III Ongoing Grupo de Investigación Clı́nica en

Oncologı́a Radioterapia

[64]

Dacomitinib EGFR I,II Completed University Health Network [82]

Lapatinib EGFR, HER2 III Completed GlaxoSmithKline [83]

Afatinib EGFR, HER2,

HER4

III Recruiting Centre Leon Berard [84]

Sunitinib VEGFR, PDGFR,

Flt3, c-kit

I Terminated National Cancer Institute [85]

AZD-1480 JAK1, 2 I Terminated AstraZeneca [86]

Ruxolitinib JAK1, 2 0 Not yet

recruiting

University of Pittsburgh [87]

Tivantinib c-Met II Ongoing National Cancer Institute [88]

Foretinib VEGFR, c-Met II Completed GlaxoSmithKline [89]

Sorafenib VEGFR, PDGFR,

Raf

I, II Completed Duke University [90]

Dasatinib Src I, II Ongoing Sidney Kimmel Comprehensive Cancer

Center

[69]

GDC-0941 PI3K I Completed Genentech, Inc. [91]

PX-866 PI3 K I, II Completed Oncothyreon Inc. [92]

NVP-BKM120 PI3K II Ongoing Novartis Pharmaceuticals [93]

PVP BYL719 PI3K II Recruiting Novartis Pharmaceuticals [94]

Everolimus mTOR I Not yet open M.D. Anderson Cancer Center [95]

IL-2 Immunomodulators II Completed H. Lee Moffitt Cancer Center and Research

Institute

[96]

IL-12 I, II Ongoing National Cancer Institute [97]

IFN-a2a III Completed Eastern Cooperative Oncology Group [98]

Bortezomib Proteasome II Completed Vanderbilt-Ingram Cancer Center [99]
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AZD1480—has been tested both in vitro and in vivo, with

findings showing that AZD1480 effectively decreases IL-6-

mediated STAT3 activation, thus inhibiting cell prolifera-

tion and inducing apoptosis. In mice, administration of

AZD1480 has been reported to increase overall survival

[71].

PI3Ks (phosphatidylinositide 3-kinases) are a family of

enzymes engaged in various cellular processes such as

proliferation, differentiation, and motility, which are rela-

ted to tumourigenesis. The PIK3A gene is often mutated in

HNSCC, making the pathway an attractive target for

therapeutic inhibition. Furthermore, mutations in PIK3A

elements are responsible for the subsequent activation of

the Akt and mTOR pathways. To date, several small

molecule inhibitors of PI3K have been developed, includ-

ing GDC-0941, PX-866, NVP-BKM120, and

NVPBYL719.

NK cells are one of the most important components of

innate immunity, and these large cytotoxic lymphocytes

are the main drivers of ADCC execution [72]. However,

their activity in HNSCC may be impaired due to down-

regulation of the NK cell receptor (NKG2D). NKG2D

depletion is promoted by increased TGF-b levels [51]. For

this reason, it has been suggested that immunotherapy

could improve response provided that expression of TGF-b
concentrations at the tumour site can be decreased; one

approach to reducing TGF-b expression is through c-Met

blockage, which lowers the production of TGF-b, thus

sensitizing tumour cells to immune mechanisms. Kumai

et al. have shown that tivantinib, a TKI targeting c-Met,

leads to a significant decrease in TGF-b production, thus

resulting in better response and improved immune mech-

anisms. Collectively, previous studies have found a critical

role for the c-Met/HGF pathway in cancer proliferation and

metastasis, indicating that the c-Met/HGF may be a viable

target for future therapy development [73]. Table 1 shows

a compilation of the novel targeted therapy agents that may

be useful in HNSCC treatment.

Conclusions

Immune response is crucial in most cancers, particularly in

HNSCC, because the tumour response may contribute to

tumour evasion mechanisms, resistance to therapeutic

agents, and disease progression. At present, the main aim

of immunotherapy in HNSCC is to magnify the immune

response, such as ADCC, and to sensitize cells to con-

ventional treatments. Compared to standard treatments, the

main advantage of immunotherapy is its distinctly higher

specificity, which implies less cytotoxicity and better

overall tolerance. The immunosuppressive characteristics

of HNSCC stem from elevated levels of inflammatory

cytokines in the tumour microenvironment. This, apart

from mediating cellular proliferation and migration, also

contributes to higher relapse rates and metastasis. There-

fore, restoring balance to the cytokine profile could yield

treatment benefits. The search for novel agents will

undoubtedly continue, and it is essential that we determine

the most effective combinations of known therapeutic

compounds in order to improve treatment outcomes in

HNSCC.
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