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ABSTRACT
The numerous temperature and precipitation reconstructions in China based on tree-ring-width data have
played significant roles in furthering the understanding of past climate changes. However, the geographical
variability in the responses of trees to climate variations in China remains largely undetermined. Here, we
describe an important spatial boundary in the response of trees to climate variations, namely the 600-mm
annual precipitation isoline. We found that, to the north of this line, tree-ring widths are usually positively
correlated with precipitation and negatively correlated with growing-season temperature. To the south of
this line, the tree-ring widths respond positively to temperature, and winter half-year temperatures are the
main reconstructed parameters, especially on the third topographical step of China. We also found that
precipitation reconstructions based on tree-ring data and the Palmer Drought Severity Index almost
exclusively fall in the region of the 200- to 600-mm annual precipitation isolines, not other regions. Our
findings indicate that, when using multiple tree-ring-width chronologies for large-scale past climate
reconstructions, the climatic signal of each tree-ring-width series should be carefully considered.
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INTRODUCTION
Tree rings have become an important source of data
on past climatic and environmental change due to
their high temporal resolution (annual or seasonal),
accurate dating, wide geographical distribution and
high continuity [1–6]. They play an important role
in quantifying high-resolution climate changes dur-
ing the past millennium. For example, temperature
variations reconstructed primarily by tree-ring data
from the Northern Hemisphere show the existence
of the Little Ice Age, theMedievalWarm Period and
global warming in the late twentieth century [4–6].

It is well known that moisture is an important
factor that influences tree growth. Therefore, the
amount of precipitation at a sampling site partly
affects how trees respond to different climatic fac-
tors. China is mainly affected by the Asian monsoon
[7,8], which is composed of a summer monsoon
(warm and wet) phase and a winter monsoon (cold
and dry) phase [8]. An important indicator of the
strength of the summer monsoon is precipitation.

Precipitation during the summer monsoon de-
creases along a gradient from the southeast to the
northwest, which shapes the natural landscapes of
the humid, sub-humid, semi-arid and arid regions
from southeastern to northwestern China. The
Xinjiang region of northwest China, where the
Asian summer monsoon cannot penetrate, has a
climate dominated by the westerlies and the climate
of this region has distinct differences compared to
other regions of China [9]. This paper focuses on
the Asian summer monsoon climate zone that lies
east of 90◦E longitude.

In China, many sequences of temperature, pre-
cipitation, Palmer Drought Severity Index (PDSI)
and other variables have been reconstructed us-
ing single-site tree-ring-width data [10–15], which
have established the foundation for large-scale cli-
mate reconstructions. Although the available data
have not yet been fully utilized for large-scale cli-
mate integrations in China or Asia, a small sub-
set of tree-ring data from China has been used in
Asian climate reconstructions [1,2,16]. However,
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Figure 1. The geographical distribution of climatic factors reconstructed using tree-ring-width data across China. The purple region is the first geomor-
phic step, the yellow region is the second step and the green region is the third step. The blue dots denote precipitation (P) reconstruction; the green
dots denote PDSI; the red dots represent the growing-season temperatures (Tg); the pink dots are the winter half-year temperatures (Tw). The orange
line indicates the 200-mm/yr precipitation isoline; the green line denotes the 400-mm/yr; the blue line is the 600-mm/yr. Topographic profile along the
32◦N latitude. All study sites are shown in Supplementary material, available as Supplementary Data at NSR online. This map was created using the
software Arcview Version 3.3.

there are three topographical steps from east to west
[17] and monsoon-related precipitation gradients
decline from the southeast to the northwest inChina
[18] (Fig. 1). Therefore, the limitations of the tree-
ring climate responses and the regional uncertainty
of such reconstructions need to be investigated.

Here, we use data from 308 published tree-ring
research sites in China (Fig. 1 and Supplemen-
tary Table 1, available as Supplementary Data
at NSR online) to determine the tree–climate-
response patterns.This paper uses climate responses
presented in existing publications, rather than

(re-)calculating climate responses for tree growth
at any of the sites. After projecting the climate-
response ‘type’ derived from tree-ring widths
(TRWs) at each site on the map, we found that
the 600-mm annual precipitation isoline (API),
which divides the climate response into two geo-
graphical divisions, is a crucial boundary of tree-ring
climate response. This study identified very sig-
nificant spatial variability of the climatic response
of TRWs in China. Therefore, we recommend
that these differences should be considered when
using TRW data for climate reconstruction, and
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suitable chronologies should be carefully selected to
reconstruct different climate factors.

DATA AND METHODS
Data source
We collected published Chinese TRW-related arti-
cles before the end of 2016 from Elsevier, Springer,
Wiley and CNKI (in Chinese).The articles were se-
lected according to the following criteria: (i) stud-
ies were published in reputable peer-reviewed jour-
nals and (ii) studies produced definite relationships
between TRWs and seasonal climatic data. Only
those results with a correlation coefficient between
ring-width index and climate variable of r > 0.54
with P < 0.05 were sufficiently strong to be part of
our study—that is, the explained variance was larger
than 29%. In total, 308 sites from 185 papers were
selected for further review.

Methods
The reconstructed climatic parameter and the cor-
relation coefficients between tree-ring chronologies
and climate obtained from all collected articles are
shown in Supplementary Table 1, available as Sup-
plementary Data at NSR online. Sites were marked
on the map of China according to the climate re-
sponse in order to identify patterns (Fig. 1). Based
on the knowledge of Chinese climatic and topogra-
phy (the three ‘steps’ in decline in elevation from
west to east in China), after we projected all 308
available tree-ring sites and different annual precip-
itation isolines (e.g. 200, 300, 400, 500, 600, 800
and 1000 mm, etc.) on the map, we found that
the 600-mm API is particularly important, which
distinguishes the different tree-growth and climate-
response patterns to the north and south.

EASTERN SUB-REGIONWITH AN API
BETWEEN 200 AND 600 MM
This sub-region is part of the gradient of precipita-
tion from semi-arid to arid, which corresponds to
gradients of agriculture to animal husbandry and
loess todesert areas [19] (on the second step).Mon-
soon precipitation is the main source of rainfall in
this region. High temperature is often accompanied
by lower precipitation and, conversely, more precip-
itation also corresponds to lower temperatures.

Numerous dendrochronological studies have re-
vealed a common positive response of TRWs to
precipitation and a negative response to growing-
season temperature in this region. Ninety (about
99% of total 91 sites) TRW-based precipitation re-

constructions appear in the region between 200- and
600-mm API (Fig. 2), except for one site in this re-
gion exceeding600-mmAPI.Thus, it ismore reason-
able to do large-scale precipitation integration in this
precipitation-sensitive region than in the othermore
humid regions.

The pattern of TRWs positively correlated with
precipitation and negatively correlated with tem-
perature is typical in the semi-arid areas of China
[20–24] (Figs 2 and 3). During the pre- and early
growth seasons, there is less precipitation, since the
monsoon has not yet fully arrived in this region [8].
High temperature accelerates not only the evapo-
ration of soil moisture, which dries out soils, but
also the transpiration rates in trees, which further
depletes soil moisture and causes soil drought [25].
Severe drought contributes to water stress that lim-
its or even stops radial growth [26]. However, there
are fewdifferences among the tree–climate-response
patterns in this region.

In the region where annual precipitation is ap-
proximately 200–400 mm, the TRW has a stronger
response to growing-season or annual precipita-
tion than to temperature (Figs 2 and 3). For
example, in Baotou [27], Baiyinaobao [28], Helan
[29], Chifeng-Weichang [30], Hailaer [31], the
Loess Plateau [32–34] and other western areas,
the precipitation reconstructions based on tree-ring-
width data show similar decadal variations [30,32],
which jointly reflect the variations in the inland ex-
tent of the Asian summer monsoon in northern and
northwestern China.

However, the limiting period of precipitation to
tree growth shortens from the northwest to the
southeast in the sub-region. For example, in the
Changling–Shoulu, Liancheng andXinglongMoun-
tains in Gansu Province [32–34], TRW responds
to the total precipitation throughout the year (from
previous July to current June or from previous Au-
gust to current July). In Baotou, TRW mainly re-
sponds to the total precipitation from February to
July [27], while, in Xiaowutai, it responds to precip-
itation from February to May [35].The well-known
late-1920s extreme drought event in northernChina
was captured inmost of the tree-ring records in these
areas [30,32], indicating that this drought event was
probably caused by aweakenedAsian summermon-
soon.

The trees living in areas with APIs of approxi-
mately 400–600 mm show extremely strong neg-
ative responses to the average temperature of the
growing season, such as those in Kongtong [23],
Shimen [36], Lvliang [37], Huanglong [38], Heng
[39], Nanwutai [40] and Funiu [41]. In terms of
tree physiology, the primary growing season for trees
is from the late spring to early summer. If there is
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Figure 2. The distribution of the response relationship between tree-ring width and precipitation (P) (blue dots). The orange line indicates the 200-
mm/yr precipitation isoline; the green line denotes the 400-mm/yr; the blue line is the 600-mm/yr. This map was created using the software Arcview
Version 3.3.

insufficient precipitation during this time interval,
high temperatures will accelerate transpiration and
lead towater stress that can limit net photosynthesis.
High temperatures often reduce net photosynthesis
by increasing the rate of respiration over the rate of
photosynthesis, thereby reducing the accumulation
of stored photosynthetic products, which results in
the formation of narrow rings [26,42].

Tree-ring temperature reconstructions in this
sub-region indicate relatively consistent variations
at the decadal scale. The temperature reconstruc-
tions mentioned above not only show the same
warm/cold intervals, but also reflect the characteris-
tics of rapid heating and slow cooling, and jointly re-
veal late twentieth-century warming. The high tem-
peratures in the 1920s to 1930s echoed the drought
events during the same period in northern China.
High temperatures generally accompanied droughts
on the Chinese Loess Plateau, indicating that high
temperatures enhance the effects of drought.

In general, in the areas with an API within the
range of 200–600 mm, TRW has a negative re-
sponse to temperature and a positive response to
precipitation, which makes it reasonable for tree

rings to positively respond to the PDSI changes.
TRW-PDSI responses almost entirely appear be-
tween the 200- and 600-mm API (Fig. 4). TRWs
from some sites in the region were used to recon-
struct past PDSI changes that reflect the drought his-
tory in northern China [22,23,43] and east of the
Tibetan Plateau [44]. PDSI reflects the variations
between dry–wet conditions and the changes in the
strengthof theAsian summermonsoon[45,46].Un-
doubtedly, the region with an API between 200 and
600 mm is an appropriate choice to reconstruct a
wide range of PDSI changes in China.

The factors that affect the climate of China are
complex [47,48]; different climate systems simulta-
neously affect tree growth. Our analysis shows that
precipitation reconstruction based on tree-ring data
in the region with an API between 200 and 600 mm
is not only influenced by the Asian summer mon-
soon [45], which generally contains a 2.5- to 2.8-
year quasi-biennial oscillation (QBO characteristic)
according to the characteristics of the Asian sum-
mermonsoon variations [49], but also influenced by
other factors such as the Pacific Decadal Oscillation,
El Niño-Southern Oscillation (ENSO) and solar



REVIEW Liu et al. 363

Figure 3. The distribution of the response relationship between tree-ring width and growing-season temperature (Tg). The orange line indicates the
200-mm/yr precipitation isoline; the green line denotes the 400-mm/yr; the blue line is the 600-mm/yr. This mapwas created using the software Arcview
Version 3.3.

activity. Since these sequences generally contain
3- to 5-year, 7- to 8-year, 11-year and centennial
periodicities [12,50], synthetic influences by both
ENSO and solar activity are also likely [45]. In ad-
dition, large-scale land–sea coupling is also reflected
in the TRW records in this region, as they show
very high correlation with the sea-surface temper-
atures of the tropical Indian Ocean, the equatorial
Pacific Ocean, the East China Sea and the Sea of
Japan [43], indicating that the sea-surface temper-
ature changes surrounding China have a direct im-
pact on the strength of the Asian summer monsoon,
thereby affecting the changes in precipitation in the
area. In addition to the above factors, the Pacific
Decadal Oscillation [51] exhibits a degree of impact
on the regional temperature changes, but the warm-
ing after 1850 is apparently associated with increas-
ing human activities [52].

WESTERN SUB-REGIONWITH AN API
BETWEEN 200 AND 600 MM
In the western sub-region with an API of 200–
600 mm on the east Tibetan Plateau (on the first

elevational step), TRWs are significantly positively
correlated with precipitation throughout the year
(fromprevious July to current June) [11,12] (Fig. 2)
and showa significant, positive correlationwith tem-
perature (the whole year/winter half-year temper-
ature) [10,53,54]. Due to the dry and cold climate
on the plateau, the tree-ring chronologies here are
more than 3000 years and the longest in China. Re-
constructed precipitation series in this region are
highly consistent with the temperature variations
of the Northern Hemisphere on multi-decadal and
longer time scales [11,13], and all of them show syn-
chronous Medieval Warm Period [10,54,55], Little
Ice Age [10,54–56] and global warming in the late
twentieth century [10,54–56]. This indicates that
the climate changes in theNorthernHemisphere are
similar and driven by the samemechanism on a cen-
tennial scale.

REGIONWITH AN API GREATER THAN
600 MM
In the region where the API is greater than 600 mm,
very few TRW data responded to precipitation
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Figure 4. The distribution of the response relationship between tree-ring width and PDSI. The orange line indicates the 200-mm/yr precipitation isoline;
the blue line is the 600-mm/yr. This map was created using the software Arcview Version 3.3.

(Fig. 2) or PDSI (Fig. 4), but most TRW data re-
sponded to temperature changes [57,58] (Figs 3 and
5).

In the first topographical step at a high altitude,
the TRW data exhibit a typical positive response to
the temperature during the growing season [59,60]
or over the entire year [61–63] (Fig. 3). The low-
frequency temperature changes are consistent with
the glacier fluctuation cycles in the surrounding area
[57,59,64]. Existing research results show that the
trends of growing-season temperature, average an-
nual temperature or other single seasonal tempera-
tures are not consistent, and many of these trends
donot showa regionalwarming trend [59,63].Thus,
whether these sequences are very suitable for tem-
perature integration in China (or Asia or even glob-
ally) needs further investigation. We found that, for
this region, only a few tree-ring chronologies re-
sponded to precipitation (Fig. 2) and PDSI changes
(Fig. 4), namely the five sites located in the Heng-
duan Mountains and two other sites in southeast-
ern China. The mean annual precipitation is slightly
higher than 600 mm in southwest China. Drought

usually happens in springwhen themonsoonhas not
arrived. At the same time, more water is needed to
support cambial activity. In this case, some trees re-
spond significantly to PDSI variations.

In the vast region from southeast to northeast
China on the third topographical step with an
API greater than 600 mm, the TRW data mainly
positively respond to the winter half-year temper-
ature [65–70] (Fig. 5) and very few data series
are negatively correlated with the growing-season
temperatures [71–74].This region is affected by the
Asian summer monsoon and has the largest amount
of annual precipitation in China, which easily meets
the growth requirements of trees and is unlikely
to be a limiting factor for growth. The relationship
between climate and TRW is complicated, and false
rings are very common; thus, advances in tree-ring
climate research are more challenging in the region
with rainfall larger than 600 mm. The limited
amounts of currently published tree-ring data show
that TRW exhibits a relatively similar response to
climate changes in this area. While the TRWs re-
spond to PDSI at only two sites [75], the remaining
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Figure 5. The distribution of the response relationship between tree-ring width and the temperature of winter half-year (Tw). The orange line indicates
the 200-mm/yr precipitation isoline; the green line denotes the 400-mm/yr; the blue line is the 600-mm/yr. This map was created using the software
Arcview Version 3.3.

sites all respond to temperature (Figs 3 and 5).
This might be caused by different tree species. One
recent publication found that the Chinese subtrop-
ical pine ecosystem was more strongly regulated
by net photosynthetic energy than environmental
(climate) factors [76]. Whether this finding may be
applicable to subtropical broadleaf species remains
unsolved and merits further investigation.

In the third topographical step, the temperature
data in the winter half-year weakly reflect the warm-
ing in the twentieth century [66,67], but some data
do not reflect this warming [69].This situationmust
be taken into considerationwhen building a regional
model of temperature changes. Studies have shown
that the reconstructed winter temperature in this
area is mainly affected by the Asian winter monsoon
[69], the atmospheric circulation at 500-hPa terrain
height and the Siberian High [67].

This result clearly shows that, in the vast area
of China where precipitation is greater than
600 mm/yr, the TRW data may be applied to
reconstruct only regional temperature, but not
precipitation or PDSI reconstructions. One more

problem of tree-ring research in this area is that the
tree-ring chronology is too short, at merely approxi-
mately 200 years, and thus is unfavorable for synthe-
sizing long-term temperature data.

CONCLUSION
To summarize, based on a now large number of
studies, we propose an important boundary in mon-
soonal China to explain the climatic response differ-
ences of tree-ring width: namely the 600-mm API
isoline. In the region north of the 600-mmAPI, pre-
cipitation is the main limiting factor of tree growth
and TRWs have a positive response to the growth
season or annual precipitation. In the eastern sub-
regionwith anAPIbetween200 and600mm,TRWs
show extremely strong negative responses to tem-
perature, while TRWs have a positive response to
temperature in the western sub-region. South of the
600-mm API and on the first topographical step,
temperature significantly affects tree growth and
TRW shows a positive response to the growing-
season temperature. In the region with precipitation
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greater than600mmon the third topographical step,
TRW shows a positive correlation with winter half-
year temperature.

It is worth noting that, in China, the climate
systems are complicated, and the responses of
TRWs to climate have distinct geographical
distribution differences. Thus, when using mul-
tiple TRW chronologies for large-scale climate
reconstructions, the climatic significance of TRW
sequences across multiple regions should be fully
considered. TRW data from a single site cannot be
used to reliably reconstruct all climatic factors. To
reconstruct the regional temperature, the selected
chronologies should all have temperature or PDSI
signals; to reconstruct a wide range of precipitation
changes inChina (or even inAsia), itmay be feasible
to select the chronologies that strongly respond to
precipitation in the areas with API values below
600 mm. The general climatic characteristics of
monsoonal China, namely ‘southern flood north-
ern drought’ [77], determine the reconstructed
precipitation curves in the region with an API
below 600 mm in northern China, cannot represent
the precipitation patterns of southern China and
cannot represent precipitation more widely in Asia.
Although it is urgent to understand the regional
climate variability and mechanisms in the context
of global change, cautious attention should be paid
to the results of this study when a paleoclimate
reconstruction is being planned. The tree-ring data
from one site are not almighty.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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