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The ONDRISeq panel: custom-designed next-generation

sequencing of genes related to neurodegeneration

Sali MK Farhan'?, Allison A Dilliott"?, Mahdi Ghani®, Christine Sato®, Eric Liang', Ming Zhang®, Adam D Mcintyre', Henian Cao’,
Lemuel Racacho*>, John F Robinson', ONDRI Investigators, Michael J Strong™®, Mario Masellis”, Peter St George-Hyslop*%,
Dennis E Bulman®®, Ekaterina Rogaeva® and Robert A Hegele'?

The Ontario Neurodegenerative Disease Research Initiative (ONDRI) is a multimodal, multi-year, prospective observational cohort
study to characterise five diseases: (1) Alzheimer’s disease (AD) or amnestic single or multidomain mild cognitive impairment (aMCl)
(AD/MCI); (2) amyotrophic lateral sclerosis (ALS); (3) frontotemporal dementia (FTD); (4) Parkinson’s disease (PD); and (5) vascular
cognitive impairment (VCI). The ONDRI Genomics subgroup is investigating the genetic basis of neurodegeneration. We have
developed a custom next-generation-sequencing-based panel, ONDRISeq that targets 80 genes known to be associated with
neurodegeneration. We processed DNA collected from 216 individuals diagnosed with one of the five diseases, on ONDRISeq. All
runs were executed on a MiSeq instrument and subjected to rigorous quality control assessments. We also independently validated
a subset of the variant calls using NeuroX (a genome-wide array for neurodegenerative disorders), TagMan allelic discrimination
assay, or Sanger sequencing. ONDRISeq consistently generated high-quality genotyping calls and on average, 92% of targeted
bases are covered by at least 30 reads. We also observed 100% concordance for the variants identified via ONDRISeq and validated
by other genomic technologies. We were successful in detecting known as well as novel rare variants in 72.2% of cases although
not all variants are disease-causing. Using ONDRISeq, we also found that the APOE E4 allele had a frequency of 0.167 in these
samples. Our optimised workflow highlights next-generation sequencing as a robust tool in elucidating the genetic basis of
neurodegenerative diseases by screening multiple candidate genes simultaneously.
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INTRODUCTION

Dementia encompasses a heterogeneous group of neuro-
degenerative diseases characterised by a progressive decline in
cognitive function, language deficiency, and in some cases, motor
impairment and behavioural anomalies. Currently, dementia has a
global prevalence of 47.5 million cases and an incidence of
7.7 million new cases annually."” Although today there are no
direct treatments available to alter the progressive disease course,

Genetics is an important risk factor for neurodegenerative
disease. Approximately 5-10% of cases with neurodegenerative
diseases are familial and can be attributed to several genes.””’
However, it is likely we are underestimating the incidence of
familial cases based on clinical ascertainment, as the death
of presymptomatic individuals may be due to other medical or
extrahealth incidents prior to the development of the neuro-
degenerative syndrome. Furthermore, genetic testing is not

early diagnosis has been one of the best predictors of disease
outcome>* Further understanding of the molecular basis of
dementia can lead to earlier diagnosis and the eventual
development of targeted and efficacious treatment modalities.

Our group is part of the Ontario Neurodegenerative Disease
Research Initiative (ONDRI), a multimodal, multi-year, prospective
observational cohort study designed to address the effect of small
vessel disease in neurodegeneration. ONDRI is recruiting ~600
participants diagnosed with one of the following five diseases: (1)
Alzheimer’s disease (AD) or amnestic single- or multidomain mild
cognitive impairment (@aMCl) (AD/MCI); (2) amyotrophic lateral
sclerosis (ALS); (3) frontotemporal dementia (FTD); (4) Parkinson'’s
disease (PD); and (5) vascular cognitive impairment (VCI).

universally recommended in the clinical management guidelines
of neurodegenerative diseases®'® As such, most neurologists,
if they choose to pursue genetic testing, only screen for a small
subset of genes and often choose to genotype their patients for
highly penetrant and known variants rather than agnostically
sequencing all neurodegenerative disease genes. Together,
these common clinical ascertainments as well as the high costs
associated with genetic testing skew the incidence rates to
significantly less than what is perhaps biologically accurate.
The five neurodegenerative disorders under study could partly
be caused by single, rare, pathogenic variants (monogenic) or
multiple, small effect variants acting synergistically to mediate
disease expression (oligogenic).
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Table 1. Patient demographics

Disease ID Cases Mean age Min age  Max age  Male:  Self-reported ethnicity as  Family history of

(years £s.d.) (years) (years) female Caucasian (%) neurodegeneration?

Total 216 69.4+7.8 40 85 140:76 823 Mainly sporadic
Alzheimer’s disease/mild 40 (18.5%) 745+6.6 59 85 24:16 93.3

cognitive impairment

Amyotrophic lateral sclerosis 22 (10.2%) 61.9+9.1 40 77 12:10 67.9

Frontotemporal dementia 21 (9.8%) 68.8+6.6 55 79 10:11 82.6

Parkinson’s disease 56 (25.9%) 68.0+5.9 57 82 43:13 83.8

Vascular cognitive impairment 77 (35.6%) 702+74 55 85 51:26 84.0
Table 2. Quality control metrics for sequencing runs on ONDRISeq

Parameters Mean (%s.d.) Best performance Poorest performance
Cluster density (x10%/mm?) 1433.6 (+165) 1320 1835
Target size (bp) 971,388 971,388 971,388
Total reads (x10°) 29.8 (+2.5) 29.1 356
Reads PF (x10°) 22.8 (+0.9) 24.1 22.1
Reads PF (%) 77 (+5.8) 83 62
Targets bases > 30 (%) 92.0% 95.3 84.9
Mean target coverage 76 (+18)

Max target coverage 259

Min target coverage 0

Abbreviation: PF, passed quality filter.
Mean of 9 runs. Blank spaces represent ‘not applicable’

Advancements in next-generation sequencing (NGS) have
allowed for efficient genetic variant detection at reduced costs.
Currently, there are three main types of NGS applications
including: (1) whole-genome sequencing (WGS); (2) whole-
exome sequencing (WES); and (3) targeted gene panels.'*
WGS is an indiscriminate approach that evaluates the genetic
information in an individual's entire genome. In contrast,
WES targets only the protein-coding regions of the genome as
disease-associated variants are significantly over-represented in
coding regions.'* Consequently, WES has been one of the most
widely used NGS approaches, however it still presents with several
challenges. First, the cost of WES with adequate coverage
(i.e., minimum X 30) still remains high at approximately $700. This
makes the cumulative cost for studies with a large sample size
prohibitively expensive. Second, the amount of genetic variation
generated from the exome is excessive and often overwhelming
for many researchers and more so for clinicians who may
require the patient's genetic diagnosis to determine whether
any genotype-specific treatments are available. Third, WES can
generate secondary findings unrelated to the disease of interest,
which should be reported to the patient’s primary healthcare
provider, in accordance with the guidelines proposed by the
American College of Medical Genetics.' Thus, in both clinical and
research applications, WGS or WES data are still often reduced to
focus on likely pathogenic disease-specific loci. In contrast, the use
of a targeted gene panel that is clinically focused on the genes
underlying the disease(s) of interest, overcomes these issues that
often arise when sifting through WGS and WES data.

Herein, we describe the development of a NGS based custom-
designed resequencing neurodegeneration gene panel, which we
have used to identify genetic variants in neurodegenerative
disease cases. ‘ONDRISeq’ allows the screening of patients
for variants in 80 genes implicated in neurodegenerative and
cerebrovascular disease pathways. However, analysis of 80 genes
can still yield an excess of genetic variation. We dichotomised all
clinically relevant variants from those of uncertain significance
using our integrated custom bioinformatics workflow. Our
application of NGS in complex, multifactorial disorders has the
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potential to identify disease-specific risk markers and potentially,
overlapping pathways common across all five diseases.

RESULTS

Study subjects

We recruited 216 participants affected with one of the following
disorders: (1) AD/MCI, n=40; (2) ALS, n=22; (3) FTD, n=21; (4) PD,
n=56; and (5) VCl, n=77 as part of the ONDRI study (Table 1).
The average age of our participants was 69.4+7.8 years. Not
surprisingly, individuals diagnosed with ALS were the youngest in
our cohort with an average age of 61.9+9.1 years. AD/MCI cases
were the oldest patients (mean age of 74.5+6.6 years). The
youngest participant in our study is a 40-year-old male diagnosed
with ALS; the oldest are four 85-year-old participants (three males,
one female); two diagnosed with AD/MCI and two with VCI.
In general, sex ratios showed an over representation of males
(male:female, 1.8:1.0), which was largely driven by the PD and VCI
cases (3.3:1.0 and 2.0:1.0, respectively) similar to the known sex
distribution of these disorders in prior population studies. In
contrast, in the AD/MCI, ALS, and FTD cohorts, the male:female
ratios did not differ considerably (1.5:1.0, 1.2:1.0; and 0.9:1.0,
respectively). The self-reported ethnicity of the participants was
predominantly Caucasian (82.3%) with some admixture. Overall,
participants did not have a family history of neurodegenerative
disease and were considered sporadic cases in our study as
determined by participant recall, which was confirmed by the
participant’s caregiver. Potential confounders such as age, sex,
ethnicity and family history did not affect our study objectives or
analysis.

Quality assessment of ONDRISeq data

In total, 9 independent runs of 24 samples were processed on
ONDRISeq (Table 2). All targets across the 216 DNA samples were
sufficiently covered (> x30; mean coverage x 76+ 18; Table 2).
On average, 22.8 million of 29.8 million reads passed quality filter
equating to 77%. With the exception of the poorest performance
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Table 3. Other risk variants identified in a cohort of 216 disease cases

Disease ID C9orf72 expansion APOE E2/E2 APOE E2/E3 APOE E2/E4 APOE E3/E3 APOE E3/E4 APOE E4/E4

carriers genotype genotype genotype genotype genotype genotype

Total (n=216) 3 (1.40%) 0 (0.00%) 26 (12.0%) 1 (0.46%) 131 (60.6%) 45 (20.8%) 13 (6.02%)
AD/MCI 0 (0.00%) 0 (0.00%) 1 (2.50%) 0 (0.00%) 17 (42.5%) 15 (37.5%) 7 (17.5%)
(n=40)

ALS (n=22) 2 (9.09%) 0 (0.00%) 4 (18.2%) 0 (0.00%) 12 (54.5%) 6 (27.3%) 0 (0.00%)
FTD (n=21) 1 (4.76%) 0 (0.00%) 1 (4.76%) 0 (0.00%) 13 (61.9%) 5 (23.8%) 2 (9.52%)
PD (n=56) 0 (0.00%) 0 (0.00%) 10 (17.9%) 1 (1.79%) 39 (69.6%) 5 (8.90%) 1 (1.79%)
VCl (h=77) 0 (0.00%) 0 (0.00%) 10 (13.0%) 0 (0.00%) 50 (64.9%) 14 (18.2%) 3 (3.90%)

disease; VCI, vascular cognitive impairment.

Abbreviations: AD/MCI, Alzheimer’s disease/mild cognitive impairment; ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; PD, Parkinson’s

Table 4. Diagnostic yield of ONDRISeq in a cohort of 216 disease cases

Disease ID Individuals without any  Individuals with variants Individuals with 1 Individuals with 2 Individuals with > 3
variants variants variants variants
Total (n=216) 60 (27.8%) 156 (72.2%) 76 (48.7%) 57 (36.5%) 23 (14.8%)
AD/MCI (n=40) 7 (17.5%) 33 (82.5%) 18 (54.5%) 10 (30.3%) 5 (15.2%)
ALS (n=22) 6 (27.3%) 16 (72.7%) 6 (37.5%) 8 (50.0%) 2 (12.5%)
FTD (n=21) 4 (19.0%) 17 (81.0%) 9 (52.9%) 7 (41.2%) 1 (5.9%)
PD (n=56) 16 (28.6%) 40 (71.4%) 22 (55.0%) 13 (32.5%) 5 (12.5%)
VCl (h=77) 27 (35.1%) 50 (64.9%) 21 (42.0%) 19 (38.0%) 10 (20%)

disease; VCI, vascular cognitive impairment.

Abbreviations: AD/MCI, Alzheimer’s disease/mild cognitive impairment; ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; PD, parkinson’s

Variant criteria were based on non-synonymous, rare variants (< 1% in ExAC). The variants here and in Table 5 are the same but tabulated differently.

run, all ONDRISeq runs had reads passed quality filter of >80%.
Overall, 92.7% of all reads were mapped with 95% and 78% of
reads mapped in the best and poorest performing runs,
respectively. All other ONDRISeq runs had >90% of reads
mapped. Of the mapped reads, 87.1% had a Phred quality score
of >30 representing a base call accuracy of 99.9%. Similarly, with
the exception of the poorest performing run, all ONDRISeq runs
had >85% of reads with scores >Q30. Although the poorest
performing run produced lower quality data compared with the
other 8 ONDRISeq runs, 84.9% of its targets were covered > x 30
and were still analysed in our study.

Furthermore, an additional four DNA samples were extracted
from brain tissue of deceased individuals. Post autopsy, sections of
the brain from all four individuals were frozen for over a decade.
However, we were still able to generate adequate sequence calls.
Among the four samples, 96% of reads were mapped and each
sample had an average coverage of x71.

ONDRISeq is concordant with NeuroX, TagMan allelic
discrimination assay, and Sanger sequencing

We used three independent genomic techniques, NeuroX,
a genome-wide array for neurodegenerative disorders, TagMan
allelic discrimination assays, and Sanger sequencing to assess the
concordance with ONDRISeq in variant detection. The NeuroX
array captures known polymorphic variants within the genes
represented on ONDRISeq; therefore, we evaluated whether
ONDRISeq could detect the same variants as NeuroX. In doing
so, we processed 115 DNA samples and ONDRISeq detected all
122 non-synonymous variants initially detected by NeuroX.
Furthermore, we assessed rare and common, non-synonymous
and synonymous variants called by the two platforms and
observed 100% concordance between calls. Of note, there were
variants detected by ONDRISeq but not included on the NeuroX
array. However, there were no false negatives with ONDRISeq: all
variants detected by NeuroX were also detected by ONDRISeq.
Furthermore, we used a TagMan allelic discrimination assay to
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genotype the same 115 DNA samples for APOE. Similarly,
we observed 100% concordance between APOE genotyping calls
on ONDRISeq and TagMan.

To explore the rate of false-positive variant calls by ONDRISeq,
we performed an independent concordance study for ~10%
(n=20) of randomly selected variants from samples that were
called as variants by ONDRISeq using Sanger sequencing. Similar
with the results of NeuroX and TagMan allelic discrimination assay,
we observed 100% concordance in variants initially detected by
ONDRISeq and validated via Sanger sequencing. Thus, there were
no false positives with ONDRISeq: all variants called as variants by
ONDRISeq were also called as variants by validation using Sanger
sequencing.

Clinical utility of ONDRISeq

All DNA samples were independently screened for a hexanucleo-
tide expansion (G4C5) within C90rf72, a type of DNA variation that
was not detectable by ONDRISeq or NeuroX. Of the 216 samples,
only three (1.4%) carried an expansion within C9orf72, two were
diagnosed with ALS and one with FTD (Table 3).

In total, we found that only 60 out of 216 samples (27.8%) were
free from rare (minor allele frequency (MAF) < 1%) potentially
deleterious variants (missense, nonsense, frameshift, in frame
insertions and/or deletions, splicing) in ONDRISeq genes (Table 4).
Of the remaining 156 cases, the AD/MCI and FTD cases had the
highest variant rate based on ONDRISeq (>80%), although not
necessarily disease causative. In the ALS and PD cases, we
identified rare coding variants in 72.7% and 71.4% of individuals,
respectively. The VCI disease cohort had the lowest number of
variant carriers (65%) although still significantly higher than
previous reports.'®'” Furthermore, we tabulated the number of
individuals with one, two, or three or more variants. Overall,
76 (48.7%) of 156 individuals carried one variant; 57 (36.5%)
carried two variants; and 23 (14.8%) carried three or more variants
(Table 4).
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Table 5. Variants identified in a cohort of 216 disease cases as detected by ONDRISeq

Disease ID Individuals with ONDRISeq Variants in disease gene Variants in other Variants in disease  Variants not found in

variants variants as diagnosed ONDRISeq disease genes databases disease databases

Total 156 (72.2%) 266 107 (40.2%) 159 (59.8%) 62 (23.3%) 204 (76.7%)
(n=216)

AD/MCI 33 (82.5%) 55 19 (34.5%) 36 (65.5%) 12 (21.8%) 43 (78.2%)
(n=40)

ALS (n=22) 16 (72.7%) 28 17 (60.7%) 11 (39.2%) 10 (35.7%) 18 (64.3%)
FTD (n=21) 17 (81.0%) 27 12 (44.4%) 15 (55.6%) 3 (11.1%) 24 (88.9%)
PD (n=56) 40 (71.4%) 63 31 (49.2%) 32 (50.8%) 11 (17.5%) 52 (82.6%)
VCl (hn=77) 50 (64.9%) 93 28 (30.1%) 65 (69.9%) 26 (28.0%) 67 (72.0%)

disease; VCI, vascular cognitive impairment.

Abbreviations: AD/MCI, Alzheimer’s disease/mild cognitive impairment; ALS, amyotrophic lateral sclerosis; FTD, frontotemporal dementia; PD, Parkinson’s

‘ONDRISeq variants refers to the total number of variants identified in each disease cohort or the total number of neurodegenerative disease cases. ‘Variants in
disease gene as diagnosed'’ refers to variants in genes known to cause the disease the patient is diagnosed with. ‘Variants in other ONDRI disease genes’ refers
to variants identified in genes that are not typically associated with the disease the patient is diagnosed with as categorised on the ONDRISeq gene panel.
‘Variants in disease databases’ were classified as variants present within HGMD or ClinVar. Similarly, ‘Variants not found in disease databases’ were classified as
variants absent from HGMD or ClinVar. Values in parentheses in columns 4-7 were calculated by dividing the values by the total ONDRISeq variants listed in
column 3. The variants in Table 4 and here are the same but tabulated differently.

Among the 156 cases with potentially deleterious variants, we
identified a total of 266 non-synonymous, rare variants (Table 5),
including 107 (40.2%) within genes known to cause the disease
with which the patient has been diagnosed (e.g., variation in an
AD gene in an AD patient; Table 6). An additional 159 variants
(59.8%) were found in genes that were not previously associated
with the respective clinical phenotype of the patient, but within a
gene responsible for another disease (e.g., variation in FTD gene in
an AD patient). Of the 266 variants, which will be reported on in
detail upon completion of the ONDRI study of ~600 patients,
62 (23.3%) were previously reported in HGMD and/or ClinVar;
whereas 204 (76.7%) were absent from disease databases
(Table 5). The majority of variants not found in disease databases
were observed in FTD and PD cases (88.9% and 82.6%,
respectively); whereas the majority of variants present in disease
databases were observed in ALS and VCI cases (35.7% and 28%,
respectively; Table 5). On average, we observed four rare variants
(MAF < 1%) per individual; and 1 variant per individual that met
criteria set by ACMG and was considered here, as candidate
variants.'”> More rare variants were observed in individuals of
African descent (16 rare variants per individual; 2 variants that met
ACMG guidelines, per individual). Individuals of South Asian and
Chinese origin on average carried 4.5 and 4 rare variants; and 2.5
and 2 variants meeting ACMG guidelines, respectively. These
observations are likely due to ascertainment bias in the databases
as they typically contain significantly more individuals of European
descent than any other ethnic cohort.

Importantly, ONDRISeq is able to provide genotypes for APOE,
which is not available through NeuroX and other arrays. In 216
cases, we did not identify a single case of APOE E2/E2 (Table 3). We
identified 26 (12%) individuals who had an APOE E2/E3 genotype
and 131 (60.6%) individuals who had an APOE E3/E3 genotype
(Table 3). In total, 46 (21.3%) individuals were heterozygous for
APOE E4 by possessing either an APOE E2/E4 or APOE E3/E4
genotype; whereas 13 (6.02%) individuals were homozygous for
APOE E4 (Table 3). Not surprisingly, of the 13 APOE E4/E4
individuals, 7 (53.8%) were diagnosed with AD (Table 3).

Case report: strong evidence of pathogenicity for APP p.Ala713Thr
in AD patient
We provide an example of a single neurodegenerative disease
case to demonstrate the clinical utility of ONDRISeq and our
complementary bioinformatics workflow.

The patient is a 73-year-old male diagnosed with AD.
We identified a heterozygous variant, namely g.11248C>T
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(c.2137G>A), resulting in a missense variant p.AlaZ713Thr in APP,
a gene known to be associated with familial autosomal dominant
AD (Figure 1a).'® The introduction of a polar amino acid within the
beta APP domain (amino-acid residues 675-713) is predicted to
affect protein function according to multiple in silico analyses and
generated a CADD score of 5.483 (Figure 1a,b). The affected codon
is also highly conserved in evolution within the APP protein when
aligned to a set of diverged species within the animal kingdom
(Figure 1c). The variant is very rare with MAF of 0.006% according
to Exome Aggregation Consortium (ExAC) and is absent from the
1000 Genomes database and the National Heart, Lung and Blood
Institute Exome Variant Server. Furthermore, the patient is the only
carrier of p.Ala713Thr in APP, among the 216 samples in our study.
However, the variant has been previously observed in AD cases as
it is reported in both HGMD and ClinVar databases and has
been previously reported in multiple publications.”®?" Indeed,
the variant had sufficient coverage of Xx94, nevertheless, we
independently validated the presence of the variant using NeuroX
and Sanger sequencing (Figure 1a,d,e). The patient is also
homozygous for APOE E3/E3.

DISCUSSION

Herein, we describe a NGS based custom-designed resequencing
panel to assess genes related to neurodegenerative diseases
and small vessel disease. ONDRISeq is a rapid and economical
diagnostic approach that screens 80 neurodegenerative genes in
parallel. We have processed a total of 216 samples on ONDRISeq
in 9 runs with 24 batched samples and evaluated each run using
highly stringent quality assessment criteria. With ONDRISeq, we
have consistently generated high-quality data and when coupled
with our bioinformatics workflow, we have been able to identify
rare genetic variants in >70% of patients diagnosed with one of
five diseases: AD/MCI, ALS, FTD, PD, or VCI.

The ONDRISeq calls were highly reliable based on validation by
three established genetic techniques: NeuroX, a rapid and
economical genome-wide genotyping-based neurodegeneration
array, TagMan allelic discrimination assay, and Sanger sequencing.
Although NeuroX is able to genotype >250,000 SNPs, the
advantage of ONDRISeq is that it is sequencing-based and is able
to detect novel variants.?? This way, we can agnostically screen
individuals for any novel or known variants within the 80
neurodegenerative genes. Furthermore, although the TagMan
allelic discrimination assay is a rapid genotyping approach,
specific probes have to be designed for all SNPs of interest,
becoming ultimately costly and inefficient. Also, unlike Sanger
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8
vE>g sequencing, ONDRISeq is rapid, efficient, and economical.
B
w Vs - Following library preparation, we are able to analyse the genetic
d ..T§ y y
v v .= . .
S5 = 9] .
o cown o $355¢ data for 24 samples in <30h . .
o ¥ i 3 r_Eu =2 We calculated the cost of sequencing 80 genes using standard
N . . .
% g & s % 5943 '8> Sanger sequencing. The total size of ONDRISeq is 971,388 base
| w wnme o gg3%? pairs, which can be processed via ~1,943 PCR reactions
g % X QL © ,_?, é E 59 (estimation of 500 base pairs per reaction). Had we processed
£ 5 . ) -
2s|Y 822 & Sgac> the sequencing reactions in bulk, the cost per sample for Sanger
E3 |5 oo S 3 o —a q 9 p p g
28| g <6< o £ S35¢ sequencing would have been $38,860 CND per individual. Using
S9|13 28R 8. V5§Ss5s NGS-based approaches like WGS or WES with adequate coverage,
S RS N O O O N v ovm-g - . . . . .
388 283 g° ErS 3¢ the price still remains relatively high at $1,400 and $700 CND,
£ 5 g8 _g respectively (prices based on The Centre for Applied Genomics,
c .
§ < Q-E ¥ 5 S Toronto, ON, Canada; www.tcag.ca). Conversely, through strategic
o 4 a4 8 s~ cw» H B
o 23856~ cost management we were able to bring our overall expenditures
K Qo o . ", - .
5 =T g g >C' to a highly competitive price of $340 per sample—a reduction of
g g Cf; %% g S >99% in cost of Sanger sequencing; a > 75% reduction relative to
- = & gce g WGS, and >50% reduction relative to WES.
[T g 205 Ce
§ @ § . ) i 28 2 <Z Despite its efficiency and rapidity, there are still some
S °© 53= = g2v%<g limitations with ONDRISeq. First, it can only capture variants
£ v 2T T - =>5=2 s : e :
3 z —;‘ 6 % _l; 52823 within the selected 80 genes, which prevents the discovery of
) S w . . . . . .
s & 9vEc ¢ E°T $= novel disease loci. However, its custom design allows its genetic
—~ =3 . . . .
S £ N o NN 8 veeg content to be altered to include novel genomic regions of interest.
s g ;g s = s huliga) Second, ONDRISeq is unable to capture multi-nucleotide repeat
= < <<< < e £ §_ = expansions in genes, a limitation across all NGS platforms.?> Many
v g 'g ) Tt neurological diseases such as Huntington’s disease, myotonic
c —_ e . . ’ . .
E’ S . .¢ £ 8 °5= dystrophy, Friedreich’s ataxia, Fragile X syndrome, and a subset
= = S 0 25 o . . - . .
E & 8 ®0 G a<c 8L of spinocerebellar ataxias arising due to multi-nucleotide
S =35 B35 o2 - .
E g 2 % % 8 IS g g § repeat expansions cannot be detected with current NGS
& §20 Ug |glEsE methodologies.?*?*> More recently, a hexanucleotide (G,C,) repeat
= °oY 2 ‘a_.v 2 v g expansion in C9orf72 has been observed in familial and sporadic
— — - . — . .
2 SOE ET ‘8:._8% di ALS and FTD cases, and very rarely in PD cases.?*® Since its
g é 35 £% |[sgg=zs discovery in 2011, it has been one of the top investigated genes as
- - - © . . .
y |E SES S5 |g£8< 23 both a diagnostic marker and a therapeutic target.***” C9orf72
wv wn . .
2 £ €9 P E ; s5¢g2 alleles can range from 2 to 20 repeats, which are common in the
T C & . . .
S N .gé T so0f|ZESJ ¢ healthy population and are likely benign; 20 to few hundred
S |3258% 538%|w8xs3s hich confer risk; han few hundred d
S 2E523 33¢9|esE8s repeats, which confer risk; or more than few hundred repeats an
= wv . . .
s 2,9 98E|E% 889 are pathogenic.”*® As such, we independently examined all
2 EERET LT 8| 552382 individuals in our cohort for the C9orf72 expansion using: (1) an
Q 90 o33 x| 8§88z . . .
2 52<f802023|%2§5-5 amplicon length PCR analysis and (2) a repeat primed PCR
< SAUEC2<221F3 g % g analysis. In doing so, we identified that 1.4% of the participants
O © g © . .
o s 80 were carriers of a C9orf72 repeat expansion.
c8Lg2 . o -
ERE ég Despite these limitations and the complex heterogeneity in the
>V S RE five neurodegenerative diseases that are being assessed with
- E TV YO . 9 . g .
£ = e 2 aegy ONDRISeq, we were able to capture rare variants with a probable,
~ i g % g9 3.:;2 jfc.g but not certain disease association based on allele frequency in
& ¢g?o > gueN °D'. « the general population and the predictive score of multiple
w v . o . .
s 522 2 SZEwWe g in silico software in 72.2% of cases. As the aetiology of
= B T % P 835 8_% 0 neurodegenerative diseases is often heterogeneous and multiple
= (o)l o = . . . i e .
B v 8006 = E® g 25 ¢ factors (e.g., genetics, dietary intake, traumatic brain injury, serious
Q o c © [T =1 . . . . .
IS = g€ 5 g 5565 § = !nfectlons or toxin exposure) can confer risk to disease onset, we
;L < §g 5§ o < § ZSESD intend to functionally validate the genetic variants, especially the
N o o . . . . . .
& 2 <5 'g £ QLES3 g8 novel variants, to determine their effect size and contribution to
%’ S E g z 9 238 < cZ disease. Of particular interest are variants in genes with multiple
wv m ~ . . . . .
228583 disease associations as they may provide clues on the potential for
E® ‘: 5 £ § development of therapy to treat symptoms common across all five
b U2l5g neurodegenerative diseases
IS S8 ¥Yscwm
g s£E85E%,
e MmN Emc @ e
\ © =
g é s § P R g é ‘g 2 é E MATERIALS AND METHODS
o S = = ~ = O PT T © = .
5|8 °3 gg-é" :‘,{ 39 -83 g3 Design of ONDRISeq
g =0T - a3 2ggv Using multiple databases, we catalogued literature of neurodegeneration
£ ¥ k= tad § genetic studies. We surveyed 25 content experts (professors, scientists and
5 il 2092 clinicians within ONDRI) in molecular genetics of neurodegeneration, and
Y SZ22gad used their consensus opinions to select 80 genes within the human
. ¥ - *a _ § é :; 2 ; ° genome that were involved in one or more of the five neurodegenerative
: L A S § 3 g 2 ﬁ § o disorders under study (Table 6). Most genes were selected based on being
= N 8 ':E g S & R R implicated in neurodegeneration from human genetic studies; however,
o <scvTEZ< -
some of the genes were added based on pathway analysis. Furthermore,

npj Genomic Medicine (2016) 16032 Published in partnership with the Center of Excellence in Genomic Medicine Research


www.tcag.ca

The ONDRISeq gene panel
SMK Farhan et al

npj

9
a
D Gene cDNA Amino acid Type of CADD MAF (%) Disease Clinvar | HGMD ONDRI NeuroX | Sanger
change change variant associated cases
1, AD APP c.2137G>A p.A713T Missense 5.483 0.006 AD Yes Yes Single Yes Yes
case
b
- D D s T WM -co.
c .
Mutation 670 KMDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVITTVIVITLVMLKKKQYT 729
Human 670 KMDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITLVMLKKKQYT 729
Monkey 670 KMDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITLVMLKKKQYT 729
Chicken 670 KMDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITLVMLKKKQYT 729
Mouse 670 KMDAEFGHDSGFEVRHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITLVMLKKKQYT 729
Rat 670 KMDAEFGHDSGFEVRHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITLVMLKKKQYT 729
Pig 670 KMDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITLVMLKKKQYT 729
Dog 670 KMDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITLVMLKKKQYT 729
kkhkhkhkdh hhkhkh hhk Ak hAhA At h A bbb bbb bbb bbb bbb bbb bbb
d 2L272§3108C>T e 21:27264108C>T
BATCACTGTCGCTATGAQG
BATCACTGTCGCTATGAQ
BATCACTGTCGCTATGAQ
BATCACTGTCGTTATGAQ
BATCACTGTCGTTATGAQ
CATCACTGTCGTYTATGA
Ala/Thr
Figure 1. Case study: APP variant in AD case. (a) Schematic of the gene and variant discovery process in a neurodegenerative disease case.

AD, Alzheimer’s disease, patient 1; *MAF was retrieved using EXAC database. (b) APP protein structure shown from N- to C-terminal, 1: amyloid
A4 N-terminal heparin-binding domain; 2: copper-binding of amyloid precursor; 3: Kunitz/Bovine pancreatic trypsin inhibitor domain; 4:
E2 domain of amyloid precursor protein; 5: beta-amyloid peptide domain; 6: beta-amyloid precursor protein C-terminus domain. The gold star
represents the location of the missense variant. (c) Multiple alignments demonstrate high conservation of wild-type amino-acid residue
p.Ala713 (in bold; the variant residue p.Thr173 is not bold) across a set of species-specific APP homologues. The asterisks below indicate fully
conserved residues. (d) The ONDRISeq output showing heterozygosity at the position of the genetic variant, 21:27264108G > A. ONDRISeq
output produced X 94 coverage. (e) An electropherogram showing the DNA sequence analysis of APP from a patient diagnosed with AD. Our
reported cDNA and amino-acid positions are based on NM_000484.3 and NP_000475.1, respectively.

some genes were omitted from the ONDRISeq panel due to technical
challenges, such as those involving repetitive sequence regions in the
genome. This was the case for GBA gene, which is associated with an
increased risk of developing PD*® and will thereby be assessed in separate
sequencing experiments. Another gene that was omitted from the panel is
C9orf72, which contains a repeat expansion and was therefore assessed
with a separate genotyping assay as described in subsequent sections.

We designed a composition for detecting variants in the protein-coding
regions of 80 genes summing to 1,649 targets. The 80 genes selected have
a total target size of 972,388 base pairs. Using the NGS chemistry Nextera
Rapid Custom Capture (lllumina, San Diego, CA, USA), we designed a total
of 14,510 target specific probes that are each ~ 80 base pairs in length. For
regions that were difficult to sequence, we incorporated additional probes
to ensure sufficient coverage during sequencing thereby producing fewer
false discoveries. Chromosome scaffold coordinates were obtained from
the University of California Santa Cruz Genome Browser using the February
2009 GRCh37/hg19 genome build and were submitted to the lllumina
Online Design Studio (lllumina).

Sample collection and DNA isolation

Blood samples were collected from 216 subjects following appropriate and
informed consent in accordance with the Research Ethics Board at
Parkwood Hospital (London, Ontario, Canada); London Health Sciences
Centre (London, Ontario, Canada); Sunnybrook Health Sciences Centre
(Toronto, Ontario, Canada); University Health Network-Toronto Western
Hospital (Toronto, Ontario, Canada); St Michael's Hospital (Toronto, Ontario,
Canada); Centre for Addiction and Mental Health (Toronto, Ontario,
Canada); Baycrest Centre for Geriatric Care (Toronto, Ontario, Canada);
Hamilton General Hospital (Hamilton, Ontario, Canada); McMaster (Hamil-
ton, Ontario, Canada); Elizabeth Bruyére Hospital (Ottawa, Ontario,
Canada); and The Ottawa Hospital (Ottawa, Ontario, Canada).

Published in partnership with the Center of Excellence in Genomic Medicine Research

All clinical diagnoses were supplied by each patient's healthcare
provider in accordance with the criteria from the general ONDRI
protocol’. DNA was isolated from 4 to 8 ml of blood collected from
every participant using the Gentra Puregene Blood kit (Qiagen, Venlo, The
Netherlands) according to the manufacturer’s instructions. DNA quality
and concentration were initially measured by NanoDrop-1000 Spectro-
photometer (Thermo Fisher Scientific, Waltham, MA, USA) and followed by
subsequent serial dilutions to obtain ~5 ng/ul. Qubit 2.0 fluorometer
technology (Invitrogen, Carlsbad, CA, USA) was then used to measure
lower concentrations of DNA at a higher sensitivity.

Library preparation

Libraries were prepared in house using the Nextera Rapid Custom Capture
Enrichment kit in accordance with manufacturer’s instructions. DNA
samples were processed in sets of 12. DNA samples were fragmented
followed by ligation of Nextera Custom Enrichment Kit-specific adapters,
amplified via PCR using unique sample barcodes, equimolar pooled, and
hybridised to target probes (two cycles of 18 h each). Samples were then
amplified again to ensure specificity and greater DNA yield. A small aliquot
of each library was analysed using the Agilent 2100 BioAnalyzer (Agilent
Technologies, Palo Alto, CA, USA) to ensure adequate yield. The quantity
and quality of the final libraries were measured using the KAPA
quantitative PCR library quantification kit (KAPA Biosystems, Woburn,
MA, USA) using the ViiA 7 Real-Time PCR System (Thermo Fisher Scientific).

Next generation sequencing

All samples were sequenced on the lllumina MiSeq Personal Genome
Sequencer (lllumina) using the MiSeq Reagent Kit v3 in accordance with
manufacturer’s instructions. Indexed samples were pooled in equimolar
ratios of 500 ng. Once combined, 16 pM of denatured pooled library was
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loaded on to a standard flow-cell on the lllumina MiSeq Personal
Sequencer using 2X 150 bp paired-end chemistry. Viral PhiX DNA was
added as a positive control to ensure sequencer performance. Sequencing
quality control was assessed using multiple parameters in lllumina MiSeq
Reporter and visualised either in lllumina BaseSpace or locally using
lllumina Sequencing Analysis Viewer.

Variant calling

After demultiplexing and adapter trimming, FASTQ files were aligned to
the consensus human genome sequence build GRCh37/hg19 using a
customised workflow within CLC Bio Genomics Workbench v6.5 (CLC Bio,
Aarhus, Denmark) as previously described.*? Similarly, variant annotation
was performed using ANNOVAR as previously described®? with additional
databases such as CADD>*3, HGMD (release 2015.1.), ClinVar**, EXAC?® and
our own in-house databases.

APOE genotyping

Furthermore, using ONDRISeq, in addition to screening all samples for
variants within APOE, we genotyped all individuals for the APOE risk alleles
rs429358(CT) and rs7412(CT). The combination of both individual alleles
determines the APOE genotype and is known to be one of the major
genetic risk factors for late onset AD.'® If there are no deletions at these
loci, six potential APOE allele combinations are possible (2 allelesx3
possible genotypes): (1) E2/E2; (2) E3/E2; (3) E4/E2; (4) E3/E3; (5) E4/E3; and
(6) E4/E4, the latter of which is associated with up to an 11x increased risk
in developing AD."®3¢

Variant classification and prioritisation

In general, we followed the guidelines for the interpretation of sequence
variants proposed by the American College of Medical Genetics and
Genomics and the Association for Molecular Pathology®”. We screened for
rare variants, which in our study were considered to be variants with
MAF < 1% based on 1000 Genomes, NHLBI Exome Sequencing Project,
and the ExAC databases. Among rare variants, we investigated whether
there were any non-synonymous changes (nucleotide substitutions,
insertions or deletions) that resulted in missense, nonsense, splicing or
frameshift variation. Variants were also assessed in silico using a
compilation of prediction programs: PolyPhen-2, SIFT and CADD. HGMD
and ClinVar were also integrated to determine the novelty or recurrence of
any genetic variation with a specific disease state. More specifically, we
were interested in determining how many variants were previously
deposited into disease databases. In our study, variants were marked as
clinically relevant if they were rare, resulted in non-synonymous changes,
were previously observed in individuals with the same disease state, and
had values consistent with ‘disease-causing’ based on prediction outcomes
of PolyPhen-2, SIFT and CADD, as recommended by ACMG Standards and
Guidelines. Importantly, we grouped the variants according to the
categories set forth by the ACMG Standards and Guidelines. Alternatively,
variants classified here as variants with uncertain clinical significance, were
variants that were not reported in disease databases and were observed in
genes that are not typically causative of the disease in which the individual
is diagnosed with, as represented on Table 6. For example, a variant in a
gene that is associated with ALS in a patient diagnosed with VCI. Finally, all
ONDRI samples were compared with each other to resolve whether any
variants were observed in multiple individuals with the same disease
diagnosis. We used this approach to also determine whether the same
variant(s) was present in a large subset of ONDRI samples and therefore,
was more likely to be an artifact of sequencing or alignment.

Variant validation

To validate variants detected by ONDRISeq, we used three independent
genotyping techniques, namely (1) NeuroX, which is an array of
specific genotypes that confer risk to several neurodegenerative disease
phenotypes;22 (2) TagMan allelic discrimination; and (3) Sanger
sequencing. We processed 115 samples on the NeuroX and the TagMan
allelic discrimination assay and determined the concordance rate between
each assay and ONDRISeq. We also randomly selected ~ 10% of variants to
genotype using Sanger sequencing to determine the occurrence if any,
of false positives. To test for true negatives, we used DNA from four
individuals who were diagnosed with ALS. These individuals were
previously tested for genetic variation within SODT with no variants
identified. Similarly, we did not identify any variants in SODT using
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ONDRISeq. The NeuroX genotyping, TagMan allelic discrimination assay,
and the prior SODT testing of ALS samples was performed independently
without knowledge of the variants generated using ONDRISeq.
Furthermore, different lab personnel completed each validation step to
ensure objectivity when evaluating concordance of results.

Variant validation 1: NeuroX

DNA samples were genotyped on NeuroX exome array (lllumina) according
to manufacturer’s instructions. NeuroX data were loaded to GenomeStudio
(llumina) and all markers were clustered using the default Gen Call
threshold (0.15); duplicate samples (N = 2) revealed identical genotypes for
all markers with available genotypes (N=268,399).>> Genotypes were
converted to PLINK input files, and allele frequencies were calculated. In
total, the 115 samples revealed 71,714 polymorphic autosomal markers
including 43,129 exonic and 216 splicing variants; among them 39,390
polymorphisms were non-synonymous, as well as 423 stop-gain and
32 stop-loss variants, according to ANNOVAR analyses.”? Average sample
call rate was 99.6%, indicating high genotype quality.

Next, 1,047 polymorphic markers, which included 252 exonic variants
(229 nonsynonymous and 1 splicing) within the 80 genes of the ONDRISeq
targeted sequencing panel, were further processed by removing all
noncoding, synonymous and common variants with MAF>1% in any
database of 1000Genomes (1000g2014oct_all), Exome Variant Server
(esp6500si_all) and ExAC. Variants overlapping segmental duplications
were also excluded to avoid possible genotyping error. The remaining
variants were filtered to those predicted to have a potential damaging
effect on protein function, according to either PolyPhen-2 or SIFT analyses
implemented in ANNOVAR.

Variant validation 2: TagMan allelic discrimination

APOE SNP genotyping was performed using the TagMan allelic discrimina-
tion assay for 115 samples on the 7900HT Fast Real-Time PCR System
(Life Technologies, Foster City, CA, USA), and genotypes were identified
using automated software (SDS 2.3; Life Technologies). Two TagMan assays
were used to determine the APOE genotype, namely (1) C_3084793_20
(rs429358: APOE codon 112) and (2) C_904973_10 (rs7412; APOE codon
158).

Variant validation 3: Sanger sequencing

Briefly, genomic DNA from the samples was first amplified via PCR, cleaned
and purified, and sequenced at the London Regional Genomics Centre.
Electropherograms produced were analysed using Applied Biosystems
(ABI) SeqScape Software version 2.6 (Thermo Fischer Scientific, Waltham,
MA, USA) with the reference sequence of each gene obtained from NCBI
GenBank database.

Variant validation 4: SOD1 testing

Screening for genetic variants in the SOD1 gene was performed by PCR
followed by standard Sanger sequencing methods, on DNA from four
individuals diagnosed with ALS. These steps were performed in other
research laboratories prior to this study. Using ONDRISeq, we sequenced
DNA from these four individuals to determine whether there were any
SOD1 genetic variants. This step allows us to evaluate any true-/false-
negative discoveries.

C9orf72 genotyping

All participants were genotyped for the G,C,-expansion in C90rf72 using a
two-step method: (1) amplicon length analysis and (2) repeat-primed PCR.
Experimental procedures are described elsewhere.?®

Statistical analysis

The Student’s t-test was used to determine the significance of the
difference among patient characteristics within the different neuro-
degenerative disease cohorts, where appropriate.
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