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The coronavirus disease 2019 (COVID-19) pandemic caused by a novel coronavirus, SARS-

CoV-2, has infected more than 22 million individuals and resulted in over 780,000 deaths

globally. The rapid spread of the virus and the precipitously increasing numbers of cases

necessitate the urgent development of accurate diagnostic methods, effective treatments,

and vaccines. Here, we review the progress of developing diagnostic methods, therapies,

and vaccines for SARS-CoV-2 with a focus on current clinical trials and their challenges. For

diagnosis, nucleic acid amplification tests remain the mainstay diagnostics for laboratory

confirmation of SARS-CoV-2 infection, while serological antibody tests are used to aid

contact tracing, epidemiological, and vaccine evaluation studies. Viral isolation is not

recommended for routine diagnostic procedures due to safety concerns. Currently, no

single effective drug or specific vaccine is available against SARS-CoV-2. Some candidate

drugs targeting different levels and stages of human responses against COVID-19 such as

cell membrane fusion, RNA-dependent RNA polymerase, viral protease inhibitor, inter-

leukin 6 blocker, and convalescent plasma may improve the clinical outcomes of critical

COVID-19 patients. Other supportive care measures for critical patients are still necessary.

Advances in genetic sequencing and other technological developments have sped up the

establishment of a variety of vaccine platforms. Accordingly, numerous vaccines are under

development. Vaccine candidates against SARS-CoV-2 are mainly based upon the viral

spike protein due to its vital role in viral infectivity, and most of these candidates have

recently moved into clinical trials. Before the efficacy of such vaccines in humans is
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demonstrated, strong international coordination and collaboration among studies, phar-

maceutical companies, regulators, and governments are needed to limit further damage

due the emerging SARS-CoV-2 virus.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2), which emerged in Wuhan, China in late 2019, has rapidly

spread throughout China and globally. Although belonging to

the same family, SARS-CoV-2 has different clinical and

epidemiological characteristics from SARS-CoV and Middle

East respiratory syndrome coronavirus (MERS-CoV). Its high

transmissibility resembles that observed for pandemic influ-

enza viruses; however, tools for diagnosis, treatment, and

vaccines still need tremendous work to achieve the levels

needed to respond to a pandemic flu.

Although other measures designed to respond to and

control a pandemic such as surveillance, quarantine, and so-

cial distancing work efficiently to flatten the curve at a major

cost to the economy, the development and deployment of

effective tests, drugs, and vaccines to protect lives and limit

disease spread are still urgent. Emergency Use Authorizations

(EUA) expedite the availability of drugs to prevent serious or

life-threatening diseases or conditions when there are no

adequate, approved, and available alternatives. For many

drugs that are alreadymarketed for other conditions, off-label

use can increase access for patients who need them.

Currently, thousands of clinical trials are ongoing to test

clinical outcomes. Adequate clinical trials will soon confirmor

refute the usefulness of several candidate drugs and vaccines

in treating and preventing COVID-19. Here, we review the

state of diagnostic tests, initial clinical experience on acces-

sible drugs and convalescent plasma administered to patients

with COVID-19, and updated information on vaccine devel-

opment against COVID-19.
Diagnosis

For COVID-19 patients, fever and cough are the two most

common symptoms, and some patients might also suffer

from sputum production, sore throat, headache, myalgia/

arthralgia, rhinorrhea, and diarrhea [1]. Shortness of breath

and dyspnea occur in cases that have progressed to pneu-

monia. Of note, a substantial proportion of patients reported

olfactory and gustatory disorders, and thus sudden anosmia

or ageusia may represent a clinical screening tool to identify

COVID-19 patients [2]. Most patients had normal or decreased

leukocyte count, lymphopenia, and elevated C-reactive pro-

tein, and some also had thrombocytopenia and elevated D-

dimer, lactate dehydrogenase, and alanine aminotransferase

[1]. In patients with pneumonia, ground-glass opacity is the

typical radiological finding on chest computed tomography

(CT) scan, and it may be obscure on chest X-ray; in patients

with severe pneumonia, local or bilateral patchy consolida-

tion has also been seen on CT images [1]. However, these

clinical, laboratory, and imaging findings are nonspecific and

cannot differentiate COVID-19 from other viral respiratory
infections; viral diagnostic methods specific for SARS-CoV-2

should be applied for disease confirmation.

Nucleic-acid-based molecular methods

The current standard diagnostics for COVID-19 are based on

detection of the SARS-CoV-2 RNA by nucleic acid amplifica-

tion tests (NAATs), usually through real-time reverse tran-

scription polymerase chain reaction (RT-PCR) with

conformation by sequence analysis when necessary [3].

Reverse transcription loop-mediated isothermal amplification

(LAMP) assays also appear to be a simple and sensitive diag-

nostic tool without a requirement high-level facilities and

instruments [4]. Samples recommended for testing are those

from the lower respiratory tract, including sputum, bron-

choalveolar lavage (BAL), and endotracheal aspirates when

possible [5]. Sputum, nasopharyngeal swab (NP), and

oropharyngeal swabs (OP) are themost common sample types

taken from patients with mild to moderate illness. If both NP

and OP are collected, they can be placed in the same tube and

tested simultaneously to save reagents [5,6]. In general, BAL

showed the highest positive rates, followed by sputum, NP,

and OP in order of decreasing sensitivity [7e9]. Throat gargling

samples are an alternative specimen, although they are less

sensitive than sputum [9].

The laboratory confirmation of cases in regions without

COVID-19 virus circulation requires detection of two different

genetic targets of the COVID-19 viral genome, while in regions

with established COVID-19 virus circulation, confirmation

through detection of a single genetic target is considered

sufficient [3,5]. Many national laboratories have established

and published their diagnostic protocols, which are summa-

rized on the World Health Organization (WHO) website [10].

For example, the Charit�e protocol from Germany recom-

mended detecting the E (envelope) gene for screening, fol-

lowed by confirmation of E gene-positive samples through

detection of the RNA-dependent RNA polymerase (RdRp) gene,

where the E assay is specific for all SARS-CoV related viruses

(i.e., SARS-CoV, SARS-CoV-2, and bat-derived SARS-related

CoV) and the RdRP assay using the P2 probe only detects SARS-

CoV-2 [5].

Pharyngeal virus shedding is very high during the first

week of symptoms, and viral RNA shedding from sputum

persists even after resolution of symptoms and seroconver-

sion [9,11]. In a study with most samples (>90%) taken from

the lower respiratory tract, the median duration of RNA

detection was 17 days (interquartile range, 13e22 days) after

illness onset, and independent risk factors for prolonged

SARS-CoV-2 RNA shedding (>15 days) included male sex,

delayed hospital admission, and invasive mechanical venti-

lation [12]. However, viral RNA does not equate to a live virus,

and more data are needed to realize whether viral RNA load

correlates with infectivity [6].
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It has also been noted that a negative NAAT result does not

mean that COVID-19 is absent, since several factors can lead

to false-negative results. These factors include inappropriate

sample collection or transportation, sample collection at time

when the patient was not shedding sufficient virus, and

technical reasons [3,5]. Periodically sequencing the evolving

viruses is also suggested to monitor any mutations in the re-

gions targeted by the assays that might affect test perfor-

mance [3,6]. Moreover, the presence of a non-SARS-CoV-2

pathogen does not preclude the possibility of COVID-19;

approximately one-fifth of specimens positive for SARS-CoV-

2 were positive for one or more additional common respira-

tory viruses [13].

Virus isolation

Virus isolation is essential to obtain isolates for character-

ization and to support the development of antivirals and

vaccines. However, although SARS-CoV-2 can be cultured in

selected cell lines, such as Vero cells and LLC-MK2 cells, in

a biosafety level-3 laboratory (BSL-3), viral isolation is not

recommended as a routine diagnostic procedure due to

biosafety concerns and time constraints [3,9,11]. Studies

have indicated that infectious virus can be readily isolated

during the first week of symptoms, with sputum having a

higher culture yield than NP or OP; however, infectious

virus could not be isolated from samples taken 8 days after

onset despite ongoing high viral load detected by RT-PCR

[11]. It appears that virus isolation success depends on

viral load, as culture failed to yield virus when samples

contained <106 copies per mL or per sample [11]. Further

studies elucidating the duration of culture-positivity would

provide a rationale for proposing strategies of isolation of

infected patients.

Serological antibody tests

Serological antibody detection is the other broad category of

tests to diagnose COVID-19, and this method detects IgM, IgG,

or total antibodies (typically in the blood) against SARS-CoV-2.

Techniques used for antibody detection include virus

neutralization assay, enzyme-linked immunosorbent assay

(ELISA), immunochromatographic assay, chemiluminescent

immunoassay, etc. [11,14e17]. Most tests are designed to

capture antibodies, which recognize the nucleocapsid (N)

protein and the S1 subunit and receptor biding domain (RBD)

of Spike (S) proteins, as N and S proteins are the two major

coronavirus immunogens [15,16]. RBD-specific monoclonal

antibodies derived from two B cell clones of one COVID-19

patient have demonstrated impressive binding and neutral-

izing activity against live SARS-CoV-2 [18]. Of importance,

these serologic tests should not cross-react with other sea-

sonal coronaviruses.

Nevertheless, the use of antibody tests is limited to settings

of acute illness because it takes time for hosts to mount an

adequate immune response [3]. Studies indicate that the

majority of patients have seroconversion 2 weeks after

symptom onset [11,16,19]. Less than 40% of patients had

detectable antibodies within 1 week of onset, but this per-

centage rapidly increased to 94.3% (IgM) and 79.8% (IgG) 15
days after onset, with the median seroconversion time of 12

and 14 days, respectively [16]. IgM began to decline 4 weeks

after symptom onset, while IgG remained at high levels after 7

weeks [17,19]. Based on the time course of seroconversion,

serological tests could be used as complementary tools to

identify patients presenting late in their illness [16]. As

mentioned earlier, seroconversion has not usually been fol-

lowed by a rapid decline in viral RNA load [11].

Serological tests may also aid in (i) contact tracing, (ii)

assessment of prior infection and immunity to SARSeCoV-2

(if there is protective immunity), (iii) determining the extent

of the pandemic with seroprevalence data, and (iv) vaccine

evaluation studies [3,6]. To date, it is not known whether

antibodies elicited by SARSeCoV-2 provide protective im-

munity against reinfection and how long the protective

immunity lasts. A rhesus macaque study does suggest pro-

tective immunity after recovery from primary infection,

since reinfection did not occur in convalescent monkeys

rechallenged with the same dose of SARS-CoV-2 strains [20].

Further studies are necessary to elucidate the situation in

humans.

Rapid antigen-detection methods using immunoassays

targeted at N or S proteins are under development, although

with the same challenge of low sensitivity observed in influ-

enza virus antigen tests. To date, a number of laboratory-

developed assays and commercially available kits (mostly

NAATs and serological antibody tests) have been granted an

EUA by the US Food and Drug Administration (FDA), which

greatly strengthens the diagnostic capability of frontline

clinical laboratories [21].
Therapies

Currently, there are no drugs or other therapies approved by

the US FDA to treat COVID-19. The major clinical treatment

and management approaches emphasize the importance of

life supportive care and relief of complications. Oxygen-based

therapy has been applied when patients experience dyspnea,

and advanced sepsis management has been warranted for

patients who progressed to severe sepsis and acute respira-

tory distress syndrome.

No existing antiviral drugs have sufficient evidence that

they efficaciously treat COVID-19 pneumonia. Some drugs

have been selected to treat COVID-19 pneumonia patients

[Table 1]; most of these drugs were designed for other pur-

pose such as Ebola, influenza, parasites, human immuno-

deficiency virus (HIV) infections, and immune therapy for

some autoimmune and inflammatory diseases. Clinical trials

have been conducted in which potential antiviral therapy

targets were tested, such as blocking viral entry to human

cells, inhibiting viral enzymes that were responsible for

genome replication. Others focus on the human immune

system to boost the innate response and inhibit the inflam-

matory process to relieve rapid progressed acute lung in-

juries. Global, large-scale, randomized clinical trials are still

ongoing to test the safety and clinical outcomes of these

drugs. Here, we summarize the mechanisms of potential

therapeutic options that may combat the emerging SARS-

CoV-2 [Fig. 1].
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Table 1 Drugs to be potentially used for SARS-CoV-2.

Mechanism Dose Adverse Effects/Drug to Drug
Interactions (DDI)

Blocking ViruseCell Membrane Fusion

Chloroquine/hydroxychloroquine Block viral entry into cells by

inhibiting glycosylation of host

receptors, proteolytic processing,

and endosomal acidification

Adult:

1. 400 mg Q12H*2 doses,

followed by 200 mg Q12H*5

days

2. 200 mg Q8H

Children:

6.5 mg/kg Q12H on day 1

(maximum initial dose:

400 mg Q12H), followed by

3.25 mg/kg Q12H on days 2

e5 (maximum dose: 200 mg

every 12 h).

1. Prolongs PR, QRS, and QTc

intervals, especially in patients

with underlying risk factors or use

in combination with other QT-

prolonging drugs

2. Substrate of CYP2C8 and

CYP3A4; co-administration with

moderate and strong CYP2C8 and

CYP3A4 inhibitors may result in

increased plasma concentrations

of hydroxychloroquine

Camostat mesylate Inhibitor of the cellular serine

protease TMPRSS2, human cell

surface serine protease, resulting

in membrane fusion

400 mg tid; no pediatric

usage is suggested currently

Mild adverse effects

Umifenovir Targeting the S protein/ACE2

interaction and inhibiting

membrane fusion of the viral

envelope

200 mg orally every 8 h Mild adverse effects

RNA-dependent RNA polymerase inhibitor

Remdesivir A nucleotide analogue prodrug that

inhibits viral RNA-dependent RNA

polymerase (RdRp), results in

premature termination of the viral

RNA chain, and consequently halts

the replication of the viral genome

Adult: 200 mg intravenously

on day 1, followed by 100mg

daily for the remaining 9

days

The most common adverse events

were increased hepatic enzymes,

diarrhea, rash, renal impairment

Favipiravir Competes with purine nucleosides

and interferes with viral

replication by incorporation into

the virus RNA and thus potentially

inhibits the RNA dependent RNA

polymerase (RdRp)

Adult

3200 mg (1600 mg twice

daily) loading dose on day-1

followed by 1200 mg

maintenance dose (600 mg

twice daily) on day-2 to day-

14

1. Few adverse effects were

reported during treatment

2. Undergoes metabolism in the

liver by aldehyde oxidase (AO) and

xanthine oxidase (XO), producing

an inactive oxidative metabolite

and is excreted by the kidney

3. No hepatic or kidney

adjustments, but initiation is not

recommended in patients with an

estimated glomerular filtration rate

less than 30 mL/min

Viral Protease Inhibitor

Ivermectin Inhibiting viral RNA activity by

binding to IMP a/b1 mediated

transport of proteins and RNA

during infection

Single dose 3 mg (200 mg/kg)

for people more than 15 kg

Extensively metabolized by human

liver microsomes by cytochrome

P450 3A4; Monitor liver function

Lopinavir/Ritonavir Inhibiting protease inhibitor LopinavireRitonavir (400/

100) mg bid for 14 days

CYP3A inhibitors, significant drug-

drug interactions were reported

Acting on the Immune System

IL6 blocker

Tocilizumab A recombinant humanized

monoclonal anti-IL-6 receptor,

antibody, reduce the effects of

cytokine release syndrome (CRS)

4 to 8 mg/kg (usual dose:

400 mg/dose; maximum:

800 mg/dose) intravenous

use as a single dose; may

consider repeat dose in

�12 h

Interferes with serum

concentration of CYP3A4

substrates; adverse hepatic effects

were reported

SARS-CoV-2-Specific

Neutralizing Antibodies

Direct spike-binding antibodies

targeting virus S1, RBD, and S2

regions

2 doses of 200 mL of

convalescent plasma (CP)

derived from recently

recovered donors with

neutralizing antibody titers

above 1:640

Transfusion-associated circulatory

overload (TACO) and transfusion-

associated acute lung injury

(TRALI)

Dexamethasone Mitigate inflammatory organ injury

in viral pneumonia

6 mg per day for up to 10

days

Interfere CYP3A4 metabolic

pathway, be aware with drug-drug

interactions

b i om e d i c a l j o u r n a l 4 3 ( 2 0 2 0 ) 3 4 1e3 5 4344

https://doi.org/10.1016/j.bj.2020.05.021
https://doi.org/10.1016/j.bj.2020.05.021


Fig. 1 The mechanisms of potential therapeutic options that may combat the emerging SARS-CoV-2.
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Blocking virusecell membrane fusion

Chloroquine/hydroxychloroquine
Chloroquine and hydroxychloroquine have a long-standing

history in the prevention and treatment of malaria and the

treatment of chronic inflammatory diseases such as systemic

lupus erythematosus and rheumatoid arthritis. Chloroquine

and hydroxychloroquine block viral entry into cells by inhib-

iting the glycosylation of host receptors, proteolytic process-

ing, and endosomal acidification. Immunomodulatory effects

through attenuation of cytokine production and inhibition of

autophagy and lysosomal activity in host cells have also been

reported [22,23]. The experiences of the US, China, and Europe

have indicated clinical effects of chloroquine and hydroxy-

chloroquine in the early phase but limited effects in the late

phase [24]. An earlier study demonstrated that hydroxy-

chloroquine was significantly associated with viral load

reduction/disappearance in COVID-19 patients and its effect

was strengthened by azithromycin [25]. Nevertheless, a recent

meta-analysis indicated hydroxychloroquine alone, or in

combination with azithromycin had no significant benefits in

positive-to-negative conversion of SARS-CoV-2 and reduction

of progression rate [26]. US study which evaluated hospital-

ized patients with COVID-19 in metropolitan New York

showed no significant difference in in-hospital mortality

among patients treated with hydroxychloroquine, azi-

thromycin, both, and neither of them [27]. Safety data and
data from larger, randomized, placebo-controlled high-quality

trials with longer follow-up are urgently needed. Hydroxy-

chloroquine can prolong the PR, QRS and QTc intervals,

especially in patients with underlying risk factors or use in

combination with other QT-prolonging drugs; cautious

monitoring of ECG changes during treatment is important.

Chloroquine and hydroxychloroquine are substrates of

CYP2C8 and CYP3A4; therefore, co-administration with mod-

erate and strong CYP2C8 and CYP3A4 inhibitors may result in

increased plasma concentrations of hydroxychloroquine. Ex-

periences and Interim Guidelines for Clinical Management of

SARS-CoV-2 Infection in Taiwan advised that early adminis-

tration of hydroxychloroquine may be considered to be given

for 7 days after thoroughly evaluating potential risks/benefits

and ethical issues [28].

Viral protease inhibitor

Lopinavir/ritonavir
Lopinavir, an HIV type 1 aspartate protease inhibitor, has

in vitro inhibitory activity against SARS-CoV [29]. Ritonavir is

combined with lopinavir to increase its plasma half-life

through the inhibition of cytochrome P450. An open-label

study published in 2004 suggested, by comparison with a

control group that received only ribavirin, that the addition of

lopinavireritonavir (400 mg and 100 mg, respectively) to

ribavirin reduced the risk of adverse clinical outcomes (acute

https://doi.org/10.1016/j.bj.2020.05.021
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respiratory distress syndrome or death) and viral load among

patients with SARS [29]. Lopinavir also has activity, both

in vitro [30] and in an animal model [31], against MERS-CoV,

and case reports have suggested that the combination of

lopinavireritonavir with ribavirin and interferon alfa resulted

in virologic clearance and survival [32]. A randomized

controlled trial enrolled COVID-19 patient with dyspnea and

desaturation in China and suggested that treatment with

lopinavireritonavir was similar to standard care in the time to

clinical improvement. Gastrointestinal adverse events were

more common in the lopinavireritonavir group, but serious

adverse events were more common in the standard-care

group. Lopinavireritonavir treatment was stopped early

because of adverse events such as nausea, diarrhea and

hepatotoxicity [33]. The latest update of NIH COVID-19 treat-

ment guidelines published on July 17, 2020 did not recom-

mend Lopinavireritonavir or other HIV protease inhibitors as

the treatment of COVID-19, except in a clinical trial [34].

Additionally, as a CYP3A inhibitor, significant drugedrug in-

teractions have been reported before.

Ivermectin
Ivermectin is an FDA-approved broad spectrum anti-parasitic

agent. It was identified as an inhibitor in vitro and has been

demonstrated to limit infection by a broad spectrum of RNA

viruses such as Dengue virus (DENV), West Nile Virus, Ven-

ezuelan equine encephalitis virus, and influenza by binding to

inhibitors of importin a/b-mediated transports of proteins and

RNA during infection. In the Phase III clinical trial in Thailand

in 2014e2017 against DENV infection with a single daily oral

dose, ivermectin was observed to be safe and resulted in a

significant reduction in serum levels of viral NS1 protein, but

no change in viremia or clinical benefit was observed [35].

Ivermectin has been shown to reduce viral RNA up to 5000-

fold after 48 h of infection with SARS-CoV-2 [36]. This drug is

extensively metabolized in human liver microsomes by

CYP3A4. For patients with liver function abnormality, drug

effects and interactions should be closely monitored during

treatment.

RNA-dependent RNA polymerase inhibitor

Remdesivir
Remdesivir, a nucleotide analogue prodrug that inhibits RdRp,

results in premature termination of the viral RNA chain and

consequently halts replication of the viral genome. It has

shown broad spectrum activity against members of several

virus families, including filoviruses (e.g., Ebola) and coronavi-

ruses (e.g., SARS-CoV and MERS-CoV), and has shown prophy-

lactic and therapeutic efficacy in nonclinical models of these

coronaviruses [37e39]. Remdesivir in vitro testing has also

shown that remdesivir has activity against SARS-CoV-2 [37].

The latest study suggested remdesivir could reduce the time to

clinical recovery in patients with severe COVID-19. The benefit

of remdesivir was most apparent in hospitalized patients who

only required supplemental oxygen. No observed benefit of

remdesivir in those who were on high-flow oxygen, noninva-

sive ventilation, mechanical ventilation, or ECMO have been

reported in some studies, but the present study was not pow-

ered to detect differences within subgroups [34]. The most
common adverse events were increased hepatic enzymes,

diarrhea, rash, renal impairment, and hypotension, and some

of thepatients discontinued remdesivir treatmentprematurely.

Favipiravir
Favipiravir is a pyrazine carboxamide derivative (6-fluoro-3-

hydroxy-2-pyrazinecarboxamide) and a broad-spectrum

antiviral drug approved in Japan for the treatment of influ-

enza. Favipiravir competes with purine nucleosides and in-

terferes with viral replication by incorporation into viral RNA

and potential inhibition of RdRp. During the 2014e2015 Ebola

virus outbreak, which initiated in West Africa, a proof-of-

concept trial with favipiravir was carried out in Guinea, and

patients treated with favipiravir showed a trend towards

improved survival. A clinical trial conducted in China

demonstrated significantly shorter viral clearance time (me-

dian 4 days vs. 11 days) and higher improvement rate in chest

imaging in the favipiravir arm (91.43% versus 62%) [40].

Another multicentered randomized clinical study also sug-

gested that the 7 day clinical recovery rate increased in the

favipiravir treatment group, along with shorter deferves-

cence time and cough in patients with hypertension and/or

diabetes [41]. Although few adverse effects were reported

during treatment, potential drug and drug interactions

should be kept in mind because favipiravir undergoes meta-

bolism in the liver by aldehyde oxidase and xanthine oxidase

to produce an inactive oxidative metabolite and is excreted

by the kidney [42]. No hepatic or kidney adjustments are

recommended at this time, but initiation is not recom-

mended in patients with an estimated glomerular filtration

rate less than 30 mL/min.

SARS-CoV-2-specific neutralizing antibodies

The humoral immune response mediated by antibodies is

crucial for preventing viral infections. Therefore, the devel-

opment of specific surface epitope-targeting neutralizing an-

tibodies is a more long-term, albeit more specific, approach to

target COVID-19 [43]. SARS-CoV-2-specific neutralizing anti-

bodies (NAb) have been detected in patients from day 10e15

after the onset of the disease and remained thereafter. The

titers of NAb among these patients correlated with the spike-

binding antibodies targeting the S1, RBD, and S2 regions.

Studies in China indicated that one or two doses of 200 mL of

convalescent plasma derived from recently recovered donors

with neutralizing antibody titers above 1:640 were well toler-

ated and could significantly increase or maintain the

neutralizing antibodies at a high level; this outcome leads to

disappearance of viremia, improvement of clinical symptoms,

and absorption of lung lesions in radiological examination

when administered, in addition to supportive care and anti-

viral agents such as lopinavir/ritonavir and favipiravir. The

donors must be symptom-free for at least 14 days, have a

negative SARS-CoV-2 PCR test after recovery to provide ABO-

compatible and test negative plasma for major blood-borne

diseases at the time of blood donation. Known general re-

actions such as transfusion-associated circulatory overload

and transfusion-associated acute lung injury in patients with

already severe lung damage still exist and need to be closely

monitored [44e47].
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https://doi.org/10.1016/j.bj.2020.05.021


b i om e d i c a l j o u r n a l 4 3 ( 2 0 2 0 ) 3 4 1e3 5 4 347
Blocking the interleukin (IL)-6 pathway

Evidence suggests that cytokine release syndrome (CRS)might

play a major role in severe COVID-19 [23,48]. Inflammatory

cytokines and chemokines, including IL-6, IL-1b, induced

protein 10 and monocyte chemoattractant protein-1, are

significantly elevated in COVID-19 patients, especially in se-

vere patients with life-threatening multiple organ dysfunc-

tion. In COVID-19 patients with elevated inflammatory

cytokines, postmortempathology has revealed tissue necrosis

and interstitial macrophage and monocyte infiltrations in the

lung, heart, and gastrointestinal mucosa [49,50]. Moreover,

severe lymphopenia with hyperactivated proinflammatory T

cells [49] and decreased regulatory T cells [50] is commonly

seen in critically ill patients, suggesting dysregulated immune

responses. Tocilizumab is a recombinant humanized mono-

clonal anti-IL-6 receptor antibody. It binds both soluble and

membrane-bound IL-6R to inhibit IL-6-mediated cis- and trans-

signaling [51]. Given the efficacy of tocilizumab in CRS and the

pivotal role of IL-6 in COVID-19, clinical use should consider

evaluation of patients with the following criteria: (i) H score, a

diagnostic score for hemophagocytic lymphohistiocytosis

(HLH), to discriminate patients with CRS; (ii) Chinese guide-

lines for COVID-19 grade patients into mild, moderate, severe,

and critical by vital signs, radiographic findings, and compli-

cations; (iii) IL-6 measurement, as IL-6 levels are significantly

elevated in COVID-19 patients, especially in ICU patients [52].

CRP, an acute-phase inflammatory protein synthesized by IL-

6-dependent hepatic biosynthesis, is a reliable marker of IL-6

bioactivity and is used to predict CRS severity andmonitor IL-6

blockade efficacy [53]. Most studies suggested that elevated

CRP levels are associatedwith severe COVID-19 [52]. Clinicians

should add antivirals and cautiously evaluate the possibility

of secondary infection thereafter [54]. Adverse hepatic effects

have been reported previously, and clinicians should consider

discontinuation of drug in cases of marked elevation of liver

enzymes and hyperbilirubinemia. Other drugedrug in-

teractions should be monitored because tocilizumab in-

terferes with the serum concentration of CYP3A4 substrates.

Other possibly effective drugs in clinical trials

Arbidol hydrochloride (umifenovir)
Umifenovir targets the S protein/ACE2 interaction and inhibits

membrane fusion of the viral envelope [55]. The agent is

currently approved in Russia and China for the treatment and

prophylaxis of influenza and is being tested in some clinical

trials treating COVID-19 based on in vitro data suggesting

activity against SARS [56].

The current dose of 200 mg orally every 8 h for influenza is

being studied for COVID-19 treatment (NCT04260594).

Limited clinical experience with umifenovir for COVID-19 in

China in a nonrandomized study of 67 patients with COVID-

19 showed that treatment with umifenovir for a median

duration of 9 days was associated with lower mortality rates

(0% [0/36] vs 16% [5/31]) and higher discharge rates compared

with patients who did not receive the agent [57]. Another

randomized Chinese study compared umifenovir (Arbidol)

(200 mg*3/day) and favipiravir (1600 mg*2/first day followed

by 600 mg*2/day) and indicated that favipiravir, compared to
umifenovir, did not significantly improve the clinically re-

covery rate at Day 7 [40].

Camostat mesylate
Camostat mesylate is an inhibitor of the cellular serine pro-

tease TMPRSS2 [58], which is used by SARS-CoV-2 for S protein

priming [59]. It was developed to treat chronic pancreatitis

(600 mg daily in three divided doses) and reflux esophagitis

(300 mg daily in three divided doses after each meal). SARS-

CoV-2 is surrounded by an envelope composed of a lipid

bilayer and envelope proteins. SARS-CoV-2 initiates human

cell entry after the S protein present on the envelope binds to a

cell membrane receptor called ACE2. The S protein is cleaved

into two subunits, S1 and S2, by a human cell-derived prote-

ase, which is thought to be furin. S1 then binds to its receptor,

ACE2. The other fragment, S2, is cleaved by TMPRSS2, a

human cell surface serine protease, resulting in membrane

fusion. Both ACE2 and TMPRSS2 are therefore thought to be

essential in airway cells for SARS-CoV-2 infection. An in vitro

study found that nafamostat and camostat suppressed SARS-

CoV-2 S protein-initiated fusion in 293FT cells (derived from

the human fetal kidney) ectopically expressing ACE2 and

TMPRSS2 [59]. Nafamostat, a new developed IV formdrug, was

found to inhibit SARS-CoV-2 S protein-initiated fusion at a

concentration less than one-tenth of that needed by camostat.

Adverse effects included mild gastrointestinal upset, dizzi-

ness, skin rash, thrombocytopenia, and elevated liver en-

zymes [60].

Dexamethasone
Inflammatory organ injury may occur in severe Covid-19, but

the value of glucocorticoids has been widely debated. The

Randomised Evaluation of COVID-19 Therapy (RECOVERY)

trial, the Panel recommends using dexamethasone 6 mg per

day for up to 10 days for the treatment of COVID-19 in patients

who are mechanically ventilated. In patients who do not

require supplemental oxygen, dexamethasone for the treat-

ment of COVID-19 might be not substantial [61].
Vaccines

Vaccination probably offers the best option for blocking in-

fectious disease circulation. Vaccine-induced humoral im-

mune responses, especially involving the production of

neutralizing antibodies, are crucial to limiting infection and

preventing reinfection. No coronavirus vaccines to prevent

respiratory infections in humans have been licensed. Only a

few promising vaccines for SARS-CoV made it to Phase I

clinical trials, and vaccine development was shelved because

of the cessation of the SARS epidemic. SARS-CoV and SARS-

CoV-2 bind the same host cell receptor (ACE2) and may

share similar disease pathogeneses and limited cross-

neutralizing antibodies [23]. Current approaches for the

development of SARS-CoV-2 vaccines are mostly based on

methods used for the development of SARS-CoV vaccines.

Knowledge from these vaccines has enabled great progress for

SARS-CoV-2 vaccines within a few weeks of the outbreak

onset.
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Table 2 Overview of ongoing clinical trials of vaccines for COVID-19 (assess at ClinicalTrials.gov as of Aug. 12, 2020).

Platform Vaccine candidate Study identifier/Phase Immunogen Sponsor Subject

mRNA-based mRNA1273 NCT04470427

Phase III

S protein ModernaTX, Inc. �18 years

BNT162b1/2 NCT04368728

Phase II/III

receptor-binding domain

antigen/ S protein

BioNTech SE/ Pfizer 18e85 Years

DNA-based INO-4800 NCT04336410

Phase II

S protein Inovio Pharmaceuticals 18e50 years

Inactivated

whole-virus

vaccine

inactivated SARS-CoV-2 vaccine

(CoronaVac)

NCT04456595

Phase III

Whole virus Butantan Institute/ Sinovac �18 years

Adenovirus viral

vector

Ad5-nCoV NCT04341389

Phase II

S protein Insitute of Biotechnology/ Academy of Military

Medical Sciences/ PLA of China

18e60 years

ChAdOx1 nCoV-19 NCT04400838

Phase II/III

S protein University of Oxford/AstraZeneca �5 years

Lentivirus vector Covid-19/aAPC (modified aAPCs) NCT04299724

Phase I

Structural proteins and a

polyprotein protease

Shenzhen Geno-Immune Medical Institute 6 monthse80 years

LV-SMENP-DC (modified DCs) NCT04276896

Phase I/II

Structural proteins and a

polyprotein protease

Shenzhen Geno-Immune Medical Institute 6 monthse80 years

Bifidobacterium

vector

bacTRL-Spike NCT04334980

Phase I

S protein Symvivo Corporation 19 to 45 years

Live attenuated

vaccines

BCG NCT04328441

Phase III

? UMC Utrecht Healthcare workers

(�18 years)

NCT04327206

Phase III

Danish strain 1331 Murdoch Children’s Research Institute Healthcare workers

(�18 years)

NCT04350931

Phase III

Danish Strain 1331 Ain Shams University Healthcare workers

(�18 years)

NCT04348370

Phase IV

Tice strain Texas A&M University Healthcare workers

(18e74 years)
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With the genome sequence of SARS-CoV-2 published on

January 11, 2020, multiple vaccine candidates have been pro-

posed or are in various stages of development. The most

advanced candidates have recently moved into clinical trials.

Numerous other vaccines still remain in the pre-clinical stage.

Themajority of candidate vaccines aim to induce neutralizing

antibodies against the viral S protein or RBD, preventing up-

take via the human ACE2 receptor. Multiple platforms are

under development. Here, we summarized the vaccine can-

didates that are progressing into clinical trials [Table 2]; they

are further discussed in the following section.
Platform

mRNA-based vaccines comprisemRNA that encodes a protein

antigen. Conventional mRNA-based vaccines encode the an-

tigen of interest and contain 50 and 30 untranslated regions,

whereas the virally derived, self-amplifying RNAs encode not

only the antigen but also the viral replication machinery that

enables intracellular RNA amplification and abundant protein

expression [62]. Recent mRNA vaccine designs have improved

the stability and protein translation efficiency for enhanced

innate and adaptive immunogenicity [62]. Delivery of the

mRNA vaccine has been optimized by use of lipid nano-

particles for intramuscular or intradermal administration [63].

Additionally, unlike conventional vaccines, which are made

from either inactivated pathogens or the small subunit of live

pathogens, no infectious virus needs to be handled for mRNA

vaccines. Therefore, testing is relatively safe, efficient, cost

effective, and rapid. Three mRNA vaccine candidates for

COVID-19, mRNA-1273, BNT162b1 and BNT162b2, are

currently being evaluated in ongoing Phase II/III clinical

trials, which are recruiting volunteers aged 18 years and older

to assess the efficacy, safety, reactogenicity, and

immunogenicity.

DNA vaccines, another type of nucleic acid-based vaccines,

consist of plasmid-DNA encoding one or several antigens that

will be expressed in host cells. DNA vaccines can be produced

rapidly and at low cost. However, the need for specific delivery

systems to achieve good immunogenicity and possible

genomic integration and persistence in host cells is a

remaining concern [63]. DNA vaccines encoding the S protein

of the SARS-CoV and MERS-CoV have been shown to elicit T

cell and neutralizing antibody responses, as well as protective

immunity in mouse model and human studies [64,65]. INO-

4800 is a DNA vaccine candidate targeting the S protein of

SARS-CoV-2. A Phase I open-label clinical trial is underway,

and the estimated completion date is November 2020.

Generation of an inactivated whole-virus (IWV) vaccine is

the quickest approach for vaccine production following a new

outbreak. Such vaccines have successfully been developed for

influenza virus and enterovirus 71 [66,67]. IWV vaccines are

usually made by exposure of a virulent virus to chemical or

physical agents, e.g., formaldehyde or gamma irradiation, to

destroy infectivity while retaining immunogenicity. The need

to use large amounts of antigen to elicit an adequate antibody

response and the possibility of causing Th2-bias hypersensi-

tivity are major concerns for IWV vaccines [68]. One inacti-

vated vaccine candidate that displayed good cross-
neutralization to different COVID-19 strains has received

approval for testing in human trials [69].

Viral vector vaccines are also potential tools for vaccine

development. These vaccines can specifically deliver genes to

target cells, enhance immunogenicity without an adjuvant,

and induce a robust cytotoxic T cell response to eliminate

virus-infected cells. Although the results of viral vector-based

vaccines have been encouraging in animal models, some ob-

stacles need to be overcome before use in humans. These

obstacles include genetic stability, ability to evade pre-

existing immunity, and genotoxicity. Adenovirus serotype 5

(Ad5) is themostwidely used vector because this vector can be

easily produced and has high levels of transgene expression

and a broad range of viral tropism [70]. The ability to enhance

mucosal immunity through targeting epithelial cells of the

upper respiratory tract and gut, two main sites that express

high levels of the ACE2 receptor for SARS-CoV-2, makes Ad5

an advantageous viral vector against COVID-19. Recombinant

Ad5 vector-based vaccines have been examined in clinical

trials against infectious diseases [71,72]. The work for COVID-

19 has been accelerated based on the experiences of previous

trials. A candidate vaccine known as Ad5-nCoV, which en-

codes a full-length S protein of SARS-CoV-2, is the first

demonstrated to be safe for humans and to proceed to a Phase

II clinical trial in China. Another viral vector vaccine, ChA-

dOx1 nCoV-19, is composed of a nonreplicating chimpanzee

adenovirus vector and genetic sequence of S protein. The

vector represents an attractive alternative to the human

adenoviral vector due to its good safety profile and lack of pre-

existing immunity in human population [73]. The vaccine

candidate has entered a Phase II/III clinical trial.

Lentivirus vector (LV) systems represent an attractive

technology for vaccine development. In addition to their

ability to effectively deliver genes or antigens of interest into

cells and to generate humoral and cellular mediated immune

response against the encoded transgenes [74], LVs can trans-

duce antigen presenting cells (APCs), the main cell types

mediating the immune response, at high efficiencies with

little to no cytotoxicity [75]. Through up or downregulation of

immune modulatory genes in APCs by LVs, the genetically

modified APCs may potentially activate a strong protective

immunity against infections [75]. Two vaccine candidates,

Covid-19/aAPC vaccine and LV-SMENP-DC vaccine, which

were made by modifying artificial APCs and dendritic cells

with LVs expressing multiple viral genes and immune

modulatory genes, act as ‘Trojan horses’ against SARS-CoV-2

virus. Clinical trials are currently underway to evaluate their

safety and immune reactivity.

Bifidobacterium is one of the domestic, nonpathogenic

anaerobic bacteria found in the intestine of humans. These

organisms are believed to have health-promoting properties

for their host, including increasing the immune response and

protecting the host against viral infection [76]. As vaccine

vectors, they offer several advantages including low cost, low

resistance to antibiotics, noninvasive administration, and

high safety levels. The most attractive feature is that bifido-

bacterium tends to elicit high levels of mucosal antibodies

against the expressed foreign antigen following uptake via the

mucosal immune system [77]. Some strains of bifidobacterium

have been used as a delivery vector for the development of

https://doi.org/10.1016/j.bj.2020.05.021
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vaccines against Hepatitis C virus and enterovirus 71 [78,79].

The bacTRL-Spike vaccine candidate contains live Bifidobacte-

rium longum, which contains synthetic plasmid DNA encoding

the S protein of SARS-CoV-2. The ongoing trial is designed to

evaluate the safety and tolerability of orally delivered bacTRL-

Spike vaccine in healthy adults.

Antibody-dependent enhancement

Antibody-dependent enhancement (ADE) is a condition in

which subneutralizing or nonneutralizing antibodies are

produced following primary infection or vaccination, and they

enhance the infectivity of subsequent infections [80]. ADE

modulates the immune response and elicits sustained

inflammation, lymphopenia, and/or cytokine storm [81]. ADE

has been observed for a variety of viruses, most notably fla-

viviruses (e.g., DNEV) [82]. ADE also occurs in SARS-CoV

infection [83,84]. Diluted anti-sera against SARS-CoV pro-

motes SARS-CoV infection, and this enhancement is signifi-

cantlymediated by anti-S protein antibodies [83,84]. Similarly,

vaccination with recombinant S protein of SARS-CoV elicits

both neutralizing and ADE-inducing IgG antibodies [85]. As

described above, many potential vaccine candidates against

SARS-CoV-2 have focused on the full-length S protein.

Attributed to the taxonomic and structural similarities be-

tween SARS-CoV and SARS-CoV-2, ADE is a critical issue that

should be considered seriously during the practical applica-

tion of SARS-CoV-2 vaccines.

Three approaches have been suggested to mitigate the

adverse effects of ADE. The first one is shielding the non-

neutralizing epitopes of the S proteins by glycosylation. The

second approach is immunofocusing, which aims to direct the

adaptive immune responses to target only the critical

neutralizing epitope to elicit a more robust protective immu-

nity. Supporting evidence for the latter is that a vaccine

candidate based on the shorter RBD induced higher neutral-

izing activity than based the full-length S protein [10,86]. The

third approach is eliminating epitope sequences that mediate

enhancement of infection. Protein sequences responsible for

ADE have been identified at S597�603 of the SARS-CoV S protein

[85], a region that is also conserved in SARS-CoV-2 [40]. Thus,

vaccines against COVID-19 could be engineered to minimize

ADE via elimination of the epitope.

BCG vaccination

Bacillus Calmette-Gu�erin (BCG), the most commonly admin-

istered vaccine worldwide, contains a live attenuated strain of

Mycobacterium bovis to protect against tuberculosis (TB). Uni-

versal vaccination at birth with a single dose of BCG is rec-

ommended in many countries where TB is highly endemic or

where there is high risk of exposure to TB, such as Japan,

China, and Taiwan. Other countries, such as Spain, France,

and Switzerland, have discontinued their universal vaccine

policies because of the declining incidence of TB infection and

the proven variable effectiveness in preventing adult TB.

Countries such as the United States, Italy, and the

Netherlands have yet to adopt universal vaccine policies [87].

Although developed to prevent severe forms of tubercu-

losis in children, BCG vaccination has been shown to induce
heterologous or nonspecific immune effects against non-

mycobacterial pathogens, a phenomenon termed ‘trained

immunity’. Trained immunity refers to the ability of innate

immune memory to mount an enhanced subsequent

response to diverse microbes [88]. Favorable effects of BCG

have been observed in mouse and human studies for distinct

viral pathogens [89,90]. Epidemiological studies have also

linked BCG vaccination to the reduction in all-cause mortality

in neonates and respiratory infections in elderly [91,92].

NOD2-and mTOR-mediated changes in the epigenetic land-

scape of immune cells is proposed to underly such protection

to increase the secretion of pro-inflammatory cytokines,

particularly IL-1b, and enhance anti-viral immunity [88,93].

Recent preprint studies suggested significant associations

of BCG vaccination with prevalence, progression of disease,

and mortality due to COVID-19 [94,95]. The authors indicated

that countries without universal policies for BCG vaccination

have been more severely affected compared to countries with

routine use of the vaccine in neonates. The National Immu-

nization Program in Taiwan has included neonatal BCG

vaccination since 1965, and the coverage rate has remained at

97% since 2001 [96]. As of May 20, 2020, a cumulative total of

440 COVID-19 cases were confirmed in Taiwan with a case

fatality rate was of 1.6%. The lowmorbidity andmortality rate

are attributed to the government's quick response, border

control, case identification, containment, and resource allo-

cation to protect public health [97]. It is not known whether

BCG vaccination plays a protective role against COVID-19

infection in Taiwan.

In addition to BCG, live attenuated influenza vaccine has

been shown to promote NK cell-mediated heterologous im-

munity [98]. Previous studies also suggest that the heterolo-

gous beneficial effects of BCG vaccination may vary by BCG

formulation, age, and route of administration [91,99].

Although these vaccines may bridge the gap until a vaccine

specifically for SARS-CoV-2 is available, their protective ef-

fects and clinical relevance need to be further characterized.

Clinical trials have been initiated to study the effects of BCG

vaccination given to healthcare workers who are at the

frontline of the COVID-19 pandemic [Table 2]. Before the evi-

dence is available, the WHO is not likely to recommend BCG

vaccination for the prevention of COVID-19 [100].
Conclusions

In the face of a pandemic, the rapid development, production,

and deployment of diagnostic tools, drugs and vaccines are

critical. Scientific advancements since the SARS and MERS

pandemics have accelerated our understanding of the epide-

miology, pathogenesis, and diagnosis of SARS-CoV-2, as well

as the development of therapies to treat viral infection.

Rigorous and adequate clinical trials for drug safety and

effectiveness in randomized, controlled trials remain funda-

mental measures to protect the public from drugs that are

ineffective, unsafe, or both. Some available candidate drugs

targeting different levels of human responses to COVID-19,

such as cell membrane fusion, RNA-dependent RNA poly-

merase, viral protease inhibitor, IL-6 blocker and convalescent
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plasma, may improve the clinical outcomes of critical COVID-

19 patients.

As no effective treatment against SARS-CoV-2 is currently

available, the best action is to develop vaccines to prevent the

infection. Some potential vaccine candidates have progressed

to Phase I and II clinical trials, but a year and a half are likely to

pass before an effective vaccine is vetted through trials and is

ready for marketing for humans. Therefore, considerable ef-

forts should begiven to limit orhinder the spread of thevirus. In

addition, pandemics will generate simultaneous demand for

drugs and vaccines around the world. The elderly and those

with underlyingdiseases or chronic comorbidities are at greater

risk of severe disease ormortality. Clinical and serologic studies

will be needed to confirm which populations remain at the

highest risk once effective treatments or vaccines are available.

Strong international coordination and collaboration among

studies, pharmaceutical companies, regulators, and govern-

ments are needed to ensure that promising therapies or vac-

cines can be manufactured and supplied successfully.

The first wave of this pandemic has created devastating

social, economic, and political threats. It is time for us to work

together, share experiences, and move forward to fight

COVID-19. Although this virus persists, there is light at the end

of the tunnel.
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