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Lack of effect of Imrecoxib, an 
innovative and moderate COX-2 
inhibitor, on pharmacokinetics and 
pharmacodynamics of warfarin in 
healthy volunteers
Yani Liu1,2,3, Rui Zhang1,2,3, Zhongfang Li2, Jiali Zhou1,2, Tingyu Yang1,2, Chunxiao Yang1,2, 
Xixi Huang1,2, Yu Zhang1,2 & Shaojun Shi1,2*

Imrecoxib is a registered treatment for osteoarthritis pain symptoms in China. This study aims to 
assess the effect of imrecoxib on the pharmacodynamics and pharmacokinetics of warfarin. 12 
healthy male volunteers with CYP2C9*3 AA and VKORC1 AA genotypes took a 5 mg dose of warfarin 
both alone and concomitantly with steady-state imrecoxib. Both warfarin alone and concomitantly 
with imrecoxib have safey and good tolerance across the trial. Following warfarin and imrecoxib 
co-administration, neither Cmax, AUC0-t and t1/2 of warfarin enantiomers nor AUC of international 
normalized ratio (INR) were markedly different from those of warfarin alone. The geometric mean 
ratios (GMRs) (warfarin + imrecoxib: warfarin alone) of INR(AUC) was 1 (0.99, 1.01). The GMRs of warfarin 
AUC0-∞ (90% confidence interval, CIs) for warfarin + imrecoxib: warfarin alone were 1.12 (1.08, 1.16) 
for R-warfarin and 1.13 (1.07, 1.18) for S- warfarin. The 90% CIs of the GMRs of AUC0-∞, cmax and INR 
(AUC) were all within a 0.8–1.25 interval. The combination of warfarin and imrecoxib did not impact the 
pharmacodynamics and pharmacokinetics of single-dose warfarin; therefore, when treating a patient 
with imrecoxib and warfarin, it is not required to adjust the dosage of warfarin.

The incidence of Osteoarthritis (OA) is more than 50% in people over 60 years old in China1,2. OA has a serious 
impact on patients’ ability to function and leads to considerable societal costs3. The clinical characteristics of OA 
are related to the development of aches, discomfort, rigidity, cartilage degradation and bone remodeling1, OA’s 
treatment focuses on symptom control, and mainly aims to relieve joint swelling and ease pain. Selective cycloox-
ygenase (COX)-2 inhibitor are frequently prescribed to OA patients due to their inhibition of the inflammatory 
cascades and relief of the pain symptoms.

Imrecoxib, 4-(4-methylsulfonyl-phenyl)-1-propyl-3-(p-tolyl)-1H-pyrrol-2(5H)-one (Fig. 1), is a new and 
moderate selective COX-2 inhibitor4. It is currently registered in China for the symptomatic treatment of oste-
oarthritis and has been widely prescribed since its launch in 20115. It has been reported that the single-dose 
pharmacokinetics of imrecoxib were linear over the 30 to 200 mg dose range. The t1/2 of imrecoxib is 20 hours, tmax 
occurred at 2 hours following oral consumption. No accumulated effects were observed in plasma after admin-
istration of 200 mg imrecoxib, bid, for 11 consecutive days6. Imrecoxib is metabolized by hepatic isoenzyme 
CYP2C9, 2D6 and 3A4 enzymes, with rates of 62.5%, 21.1% and 16.4%, respectively. Following oral ingestion, 
the 4′-methyl group of imrecoxib is hydroxylized to the 4′-hydroxymethyl metabolite by CYP2C9, and further 
oxidized to 4′-carboxylic acid metabolite7. The main metabolites in urine are the hydroxymethyl and carboxy 
metabolites produced by the oxidation of phenylcyclomethyl, while the carboxylic acid metabolite is primarily 
excreted from feces8.
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Warfarin is effective for preventing intravenous thromboembolism, cardiovascular and cerebrovascular 
infarction, and other thromboembolic disorders. It is a racemic mixture of two isomers, CYP2C9 enzyme metab-
olizes S-warfarin, and CYP1A2 and CYP3A4 are responsible for metabolism of R-warfarin9, which make it sus-
ceptible to interaction with numerous inhibitors and inducers of CYPs. This interaction might lead to either an 
inability to achieve the expected anticoagulant effects or an enhanced bleeding risk induced by excessive antico-
agulation10. In a US retrospective prescription analysis, nonsteroidal anti-inflammatory drugs (NSAIDs) with 
warfarin was the most frequently occurring medication pair in drug-drug interactions (DDI) reports8, and 24% 
of warfarin recipients would be given NSAIDs treatment within two years8,11. NSAIDs impair the gastrointes-
tinal mucosa and aggregation of platelets by inhibiting the COX-1 isozyme12,13, which significantly enhances 
the risks of hemorrhage in patients taking warfarin14–17. Specific inhibitors of COX-2 have been approved for 
OA therapy. COX-2 specific inhibitors do not cause severe bleeding and are thus considered potentially safe for 
warfarin-treated patients18. However, increasing evidences of myocardial infarction, as well as cardiovascular 
secondary action relate to COX-2 specific inhibitors, such as rofecoxib and valdecoxib, lead to their retreat from 
the market19,20. Therefore, a moderate COX-2 selective inhibitor with decreased bleeding risk than NSAIDs and 
reduced cardiovascular secondary action compared with COX-2 specific inhibitors, would be appropriate for 
management of OA.

Clinical trials have demonstrated that imrecoxib shows 50% inhibitory concentration (IC50) of COX-1 and 
COX-2 isozymes by 115 ± 28 nmol/L and 18 ± 4 nmol/L, respectively5. The selective index (IC50, COX-1/COX2) was 
6.39, which was between that of meloxicam and celecoxib21. From a clinical perspective, whilst the lack of phar-
macokinetic and pharmacodynamics effects on warfarin are important in terms of dose adjustment etc, the risk 
of bleeding due to GI irritation is still significant with NSAIDs (including a drug of relative COX-2 specificity) 
plus warfarin, particularly in the elderly. In addition, both S-warfarin, the more potent enantiomer of warfarin, 
and imrecoxib are metabolised by the CYP2C9 enzyme8,22. However, whether co-administration of imrecoxib 
and warfarin would result in DDI was not investigated. In this study, we evaluated the potential DDI of imrecoxib 
and warfarin by comparing the pharmacodynamic and pharmacokinetic parameters of warfarin with and with-
out co-administration of imreocxib in healthy male volunteers. We also tested the safety and tolerability of study 
drugs across the trial23.

Methods
Ethics. Current study was conducted in conformity to the Declaration of Helsinki (as revised in Brazil, 
2013)24, Good Clinical Practice (GCP) guidelines of China Food and Drug Administration (CFDA)25 and the 
technical guidelines for clinical pharmacokinetic study of chemical drugs26. CFDA (no. 2011S00434) and the 
independent ethics committee (Tongji Medical College, Huazhong University of Science and Technology, no. 
(2014)185] reviewed and approved this study protocol. Written informed consent was required for every volun-
teer before any study procedures27.

Subjects. Twelve subjects were enrolled in this study. The inclusion requirements were (i) male; (ii) BMI 
ranged from 19 to 24 kg ⁄m2,26; (iii) aged between 18 to 40; (iv) qualified for complete health examination, includ-
ing vital signs, electrocardiograms, routine blood test, urinalysis, biochemistry laboratory parameters, chest 
X-ray, liver and renal function tests are normal or not clinical significantly abnormal. (v) a condition of normal 
coagulation function (prothrombin time - PT, INR and fibrinogen) and negative serological test (HBsAg, HCV 
and HIV antibodies); (vi) voluntary signing of informed consent forms27.

As we previous reported27, subject would be excluded if he met these criterions: (i) hypersensitivity or allergy 
to the study drugs; (ii) any diseases or unstable medical history that may disturb the safety or the in vivo process 
of the study drugs, including cardiovascular, hepatic, renal, gastrointestinal, endocrine or immune system. (iii) 
a history of any bleeding disorders. (iv) diseases of nervous system or muscle diseases, that might affect subjects 

Figure 1. Chemical structure of Imrecoxib (4-(4-methylsulfonyl-phenyl)-1-propyl-3-(p-tolyl)-1H-
pyrrol-2(5 H)-one).
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compliance; (v) alcohol or coffee addiction; (vi) participated in another clinical trial or blood donation in previ-
ous 2 months; (vii) took any drug treatment within 2 weeks.

Study design. Current study is phase I clinical trial, which was designed as open-labeled and fixed-sequence, 
and all the information/data were collected from a single center. This study contained two phases (Fig. 2). In 
phase one, the volunteers received a 5 mg dose of warfarin alone at 8:00 a.m. on day 1. In the other phase, they 
orally took imrecoxib to steady-state (200 mg imrecoxib at 8:00 a.m. on day 8, and a 100 mg dose q.12 hours from 
day 8 to 10, 6 times in total), followed by a 5 mg dosage of warfarin co-administered at 8:00 a.m. on day 10. The 
volunteers were hospitalized on day-1 (the day before the study), 10 hours of fasting was required before admin-
istration27. Subjects should avoid any activities involved in risks of haemorrhage9. Blood samples (4 mL each) for 
analysis of pharmacokinetic parameters were obtained 60 minutes before dose of warfarin and 0.5, 1, 2, 3, 4, 5, 
6, 8, 12, 24, 36, 48, 72, 96, 120 and 144 hours after dosing. The pharmacodynamics properties of warfarin were 
expressed by INR and detected by PT before and after 6, 12, 24, 36, 48, 72, 96, 120, 144 hours of warfarin dose27,28.

Analytic methods. A stable LC-MS/MS method was established for detecting S- and R-warfarin plasma 
concentrations. The chromatographic separation was carried out on an LC system (Shimadzu LC-20AD, Tokyo, 
Japan) using water and acetonitrile, and AB QTRAP 4000 system (AB Sciex, Foster City, CA, USA) in posi-
tive electrospray ion mode was hired for quantification29–31. Warfarin-d5 was used as the internal standard. 
Liquid-liquid extraction with 3 mL dichloromethane: diethyl ether: (2:3, v/v) was employed for 200 μL human 
plasma. Good linearity was obtained between 5.00–1000 ng/ml for each enantiomer32. The inter- and intra- pre-
cision (CVs% for 10, 100 and 800 ng/ml) were ≤5.2% for R-warfarin and ≤5.0% for S-warfarin, respectively. 
Inaccuracy for R-warfarin was between −6.4% to +4.2%, and ranged from −5.9% to +5.1% for S-warfarin. The 
mean absolute recovery was ≥87.3% (CVs <6.0%)27,33.

Pharmacokinetics and pharmacodynamics analysis. As our previous studies reported27, pharma-
cokinetic analysis was performed base on plasma concentrations of warfarin enantiomers at each time-point by 
hiring Drug and Statistics Software version 3.1.5. The measurement outcomes contained area under the profile 
(AUC0-t), the terminal half-life (t1/2), maximum plasma concentration observed (Cmax), time of maximum con-
centration (Tmax). AUC from 0 to infinity (AUC0-∞). Parameters of pharmacodynamic were estimated from the 
INR data on each period. PT (INR) was measured with the use of prothrombin complex assay (STA-R, SPA 50 
Reagent, Diagnostica stago)34. Maximum INR (INRmax) and baseline INR (INRbaseline) were determined by PTtest 
divide PTnormal. The linear/logarithmic trapezoidal method was used for calculation of area under INR-time pro-
file (AUC0–144h, INR)28.

Safety evaluations. The safety assessments were conducted on account of clinical examinations, such as 
evaluation of general subject appearance, vital signs and routine hematology and biochemistry assays35, together 
with adverse events evaluation (AEs), conducted at screening, pretreatment, post-treatment (day 7) and end of 
trial (day 16). Signs and symptoms relate to study drugs, such as nausea, diarrhea, vomiting, headache and dizzi-
ness, were observed and documented by the study physicians36. AEs were defined as mild, moderate or severe37. 
Determination of causal relationship between AEs and study drugs followed the criterions announced by the 
World Health Organization27.

Statistical methods. EpiData 3.0 software was used for data entry and management, statistical analysis 
was conducted on SAS 9.3 software programming (SAS Institute Inc., Cary, NC). The statistical significance was 
accepted with two-sided p < 0.0538. Pharmacokinetic and pharmacodynamic analyses were based on the sub-
jects who finished trial without great program violation which have a major impact on pharmacokinetic and 
pharmacodynamic parameters. Descriptive statistics such as mean, median, range, and standard deviation were 
calculated for observed variables.

Log-transformation of pharmacodynamic parameters INRmax and INR(AUC) were applied. Comparing the dif-
ference between warfarin treatment and combination treatment for Tmax, logINRmax and logINR (AUC) used the 
F test in ANOVA analysis. The GMR and 90%CIs were calculated by back-transforming for AUC0-∞, AUC0–144h, 
Cmax, INRmax, Tmax and INR(AUC). The 90% CIs felled within the acceptance range of 0.80–1.25 suggest a lack of 
drugs interaction28.

Figure 2. Study design s.d. = single dose.
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Results
Study population. 12 healthy volunteers with CYP2C9*3 AA and VKORC1 homozygous AA genotypes 
were enrolled. Table 1 shows the demographic characteristics, PT and INR value of the volunteers. No striking 
differences (p > 0.05) in age, height, weight, PT or INR were observed. Both prothrombin time and INR levels 
were within normal limits. Since the polymorphisms of CYP2C9 and VKORC1 account for 35–40% anticoagulant 
efficiency of warfarin, we tested these genotypes of the volunteers. There is no volunteer dropped out from the 
trial. No volunteers dropped out from the trial.

Safety and tolerability. Both warfarin alone and concomitantly with imrecoxib have safey and good tol-
erance in healthy volunteers across the trial. Neither severe AEs nor accidental bleeding events occurred during 
the trial. All the data or information of physical examination, vital signs, laboratory test results or 12-lead ECG 
were not meaningful altered compare to before administration. In period 1, one subject had transient elevated 
direct bilirubin (9.6 μmol/L, upper limit of normal = 6.8 μmol/L) on day 7, which met the definition of grade 1 
AEs (>ULN — 1.5 × ULN in direct bilirubin). However, the subject did not have any associated signs or symp-
toms and the level of direct bilirubin stayed normal on day 16 (period 2). Therefore, the investigator considered 
it to be unrelated to study drugs. In period 2, one subject was observed to be experiencing mild abdominal/upper 
abdominal discomfort on Day 8 after the first dose of imrecoxib, which continued for about 1.5 hours and disap-
peared without medical treatment. This event was regarded as possibly related to the drugs. No volunteer dropped 
out from the trial due to adverse experiences.

Pharmacokinetics. The pharmacokinetic parameters and pharmacokinetic curves of warfarin enanti-
omer both warfarin alone and concomitantly with imrecoxib are listed below (Table 2, Fig. 3). Concomitant 
administration of imrecoxib and warfarin did not change the median Tmax value of R- and S-warfarin 0.8 
(0.5~2.0) hours compared to 1.0 (0.5~3.0) hours with administration of warfarin alone (P > 0.300). The t1⁄2 of 
R–warfarin for recipients of warfarin alone and recipients of co-administration of imrecoxib and warfarin were 
64.08 ± 15.97 hours and 59.02 ± 9.39 hours, respectively (P > 0.1). In the absence and presence of imrecoxib, the 
t1⁄2 for S-warfarin were 57.00 ± 15.27 hours and 51.63 ± 7.59 hours respectively (P > 0.1). Receiving imrecoxib did 
not change Vz/F of R-warfarin, however, a decrease of 16% was observed for Vz/F of S-warfarin, the mean Vz/F 
slightly decreased from 12.65 ± 2.55 to 10.61 ± 1.89 (P = 0.01 for co-administration of imrecoxib versus warfa-
rin alone treatment). As summarized in Table 3, compare imrecoxib and warfarin in combination to warfarin 
alone, the GMR of R-warfarin AUC0–144h and Cmax were 1.14 and 1.06, respectively, and the 90% CIs ranged from 
0.93–1.13 and 0.98–1.15, both of which were within 0.8–1.25. For the S-warfarin enantiomer, the GMR of Cmax 
and AUC0-t were 1.03 and 1.14, and the corresponding 90% CI were 0.93–1.13 and 1.09–1.20. All 90% CIs were 
in the range of 0.80–1.25. These results suggest that the pharmacokinetic profiles of S- and R-warfarin were not 
significantly impacted by co-administration of imrecoxib.

Pharmacodynamics. The mean INR-time profiles of warfarin alone or concomitant with imrecoxib 
are shown in Fig. 4. The median Tmax (time to maximum observed effect) value for warfarin alone and 
co-administration of warfarin with imrecoxib were 15.10 hours and 14.45 hours, respectively. Although 
co-administration of warfarin and imrecoxib caused a small, transient decrease in INR value at 12 hours, mean 
INR values over time were similar between these two groups. The geometric mean ratio of pharmacodynamic 
parameters (INRmax, Tmax, INR (AUC), 90% CI, imrecoxib plus warfarin versus warfarin alone) were 0.94 (0.90–
0.98), 0.96 (0.92–0.99) and 1.00 (0.99–1.01), respectively. The corresponding 90% CIs for each of these values 
were entirely within 0.8–1.25 (Table 4). A log transformation was applied for INRmax and INR(AUC). There was 

Characteristics Mean (SD) (n = 12)

Age, years 24.3 (2.2)

Gender, male 12

Ethnicity, Han/minority 11/1

Height, m 1.74 (0.04)

Weight, kg 64.3 (4.7)

BMI, kg/m2 21.1 (1.3)

Prothrombin time, s 12.9 (0.6)

INR 1.0 (0.06)

CYP2C9 *3 genotype, n

AA 12

AC 0

CC 0

VKORC1 genotype, n

AA 12

AG 0

GG 0

Table 1. Demographic characteristics.
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no significant difference for log INRmax, logINR(AUC) and Tmax during concurrent imrecoxib treatment com-
pared with warfarin alone treatment (Table 5).

Discussion
This study revealed the pharmacodynamics and pharmacokinetics of warfarin would not be altered by concom-
itant administration of imrecoxib with the clinically recommended dosage. As an innovative and mild selec-
tive COX-2 inhibitor, imrecoxib can probably be prescribed to patients with cardiovascular disease and stable 
long-term warfarin therapy4. Several studies indicated an increasing INR value of healthy volunteers and acciden-
tal bleeding in patients stable on warfarin therapy after dosing celecoxib, which with similar therapeutic efficacy 
and side effects to imrecoxib39–43. Monitoring the INR of long-term warfarin recipients is required to optimize 
effective dosage because of a large inter-individual variation and narrow therapeutic window44. S-warfarin is 

Parameter Warfarin + Imrecoxib Warfarin alone GMR

R-warfarin

AUC0-t (μg·hr/ml) 16722.49 (3146.74) 14604.16 (2606.56) 1.14

AUC0-∞ (μg·hr/ml) 20587.34 (4630.96) 18489.12 (4701.71) 1.12

MRT0-∞ (hr) 83.44 (13.39) 88.41 (19.96) 0.96

λz (1/hr) 0.012 (0.002) 0.012 (0.004) 1.09

t1/2z (hr) 59.02 (9.39) 64.08 (15.97) 0.94

Tmax (hr) 0.8 (0.5–2.0) 1.0 (0.5–3.0) 0.89

Vz/F (L) 10.61 (1.89) 12.65 (2.55) 0.84

CL/F (L/hr) 0.128 (0.030) 0.143 (0.035) 0.89

Cmax (μg/L) 300.75 (36.61) 285.25 (39.66) 1.06

S-warfarin

AUC0-t (μg·hr/ml) 9869.17 (3214.71) 8529.08 (2124.37) 1.14

AUC0-∞ (μg·hr/ml) 11365.73 (4363.24) 9939.63 (3063.76) 1.13

MRT0-∞ (hr) 63.35 (12.78) 66.44 (15.76) 0.96

λz (1/hr) 0.014 (0.002) 0.013 (0.004) 1.08

t1/2z (hr) 51.63 (7.59) 57 (15.27) 0.93

Tmax (hr) 0.8 (0.5–2.0) 1.0 (0.5–3.0) 0.88

Vz/F (L) 17.63 (4.43) 21.76 (7.61) 0.83

CL/F (L/hr) 0.241 (0.060) 0.269 (0.062) 0.89

Cmax (μg/L) 300.42 (34.01) 294.92 (50.35) 1.03

Table 2. Summary of main pharmacokinetic parameters of warfarin enantiomers.

Figure 3. Plasma concentration–time curves of warfarin enantiomers (n = 12).

parameters

R-warfarin S-warfarin

GMR 90% CIs GMR 90% CIs

AUC0-∞ 1.12 1.08–1.16 1.13 1.07–1.18

AUC0-t 1.14 1.11–1.17 1.14 1.09–1.20

Cmax 1.06 0.98–1.15 1.03 0.93–1.13

Table 3. Statistical analysis results (GMRs and 90% CIs) of warfarin enantiomers.

https://doi.org/10.1038/s41598-019-51755-z


6Scientific RepoRtS |         (2019) 9:15774  | https://doi.org/10.1038/s41598-019-51755-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

metabolized by CYP2C9 enzyme8,22,45, as well as imrecoxib. S-warfarin directly inhibits vitamin K-dependent 
coagulation factors46, and accounts for 85% anticoagulant activity of warfarin22. Competition of the CYP2C9 met-
abolic enzyme may occur when patients receive warfarin and imrecoxib, which prevents S-warfarin from being 
metabolized to S-7-hydroxywarfarin, resulting in an increase of plasma concentration and anticoagulant effects 
of S-warfarin. Both warfarin (99%) and imrecoxib (96%) are highly protein bound in plasma. Imrecoxib may 
competitively displace warfarin from the protein-binding sites, enhancing blood concentration of free warfarin 
and increasing bleeding risks. Thus, we speculated that imrecoxib and warfarin may interact.

Inconsistent with our speculation, the results indicated the pharmacokinetic profiles of warfarin enantiom-
ers were not significantly changed by co-administration of imrecoxib. Comparing co-administered warfarin 
and imrecoxib with warfarin alone, for S-warfarin, the outer bound of 90% CIs of AUC0–144h increased to 20% 
(Table 3), but AUC0–144h and AUC0-∞ were not significantly changed (Table 2), and the GMRs for and 90% CIs 
for AUC0-∞, AUC0–144h and Cmax were all within 0.80–1.25 (Table 3). PT were expressed by an INR value in this 
study. Monitoring of PT is required for individualized dosage adjustments in clinical warfarin use. There were 
no meaningful disparities in Tmax, logINR (AUC) and logINRmax observed between two treatments. Although the 
mean INR at 12 hour, near the Tmax, was significantly reduced when dosed with imrecoxib, the GMR and 90% 
CI of INR AUC0–144 h for warfarin + imrecoxib: warfarin only were near identical, 1 (0.99, 1.01) (Table 4), and no 
significant difference in logINRmax was observed (Table 5). These results suggested imrecoxib would not alter the 
pharmacokinetics parameters and anticoagulation activity of warfarin, but greater caution should be taken in the 
wider applicability of the results.

Figure 4. INR -time profiles (n = 12).

parameter

Geometric Mean Ratios (warfarin + imrecoxib: warfarin alone)

Warfarin alone Warfarin + imrecoxib GMR
90% CI inner 
bound

90% CI outer 
bound

INRmax 1.21 1.14 0.94 0.90 0.98

Tmax 15.07 14.40 0.96 0.92 0.99

INR (AUC) 143.47 142.86 1.00 0.99 1.01

Table 4. Pharmacodynamic Derived Parameters of Warfarin.

parameter Warfarin alone Warfarin + Imrecoxib P value

logINRmax n 12 12 F = 2.9841, p = 0.0981

Mean (SD) 0.191 (0.0988) 0.130 (0.0711)

Median 0.195 0.135

Min, Max 0.04, 0.38 −0.03, 0.22

Tmax n 12 12 F = 2.9147, p = 0.1019

Mean (SD) 15.11 (1.161) 14.42 (0.788)

Median 15.10 14.45

Min, Max 13.4, 17.4 12.7, 15.5

logINR n 12 12 F = 0.0241, p = 0.8781

(AUC) Mean (SD) 4.966 (0.0630) 4.962 (0.0718)

Median 4.953 4.952

Min, Max 4.88, 5.08 4.85, 5.06

Table 5. Statistical analysis results of PT and INR.
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It has been widely agreed that the anticoagulant efficiency of warfarin is highly related to genetic polymor-
phisms. Among these genes, CYP2C9 and VKORC1 are responsible for 30% to 40% of the warfarin efficiency 
differentiation47–51. People with these polymorphisms show a significant difference in warfarin pharmacodynamic 
and pharmacokinetic profiles compared to wildtype subjects. For a better evaluation, all volunteers enrolled in 
this study were CYP2C9*3 AA genotype and VKORC1 (G-1639A) with homozygous AA genotype. Several 
studies have reported the frequency of CYP2C9 *3 AA and AC genotypes were 95% and 5%, respectively, and 
mutation frequency of VKORC1–1639 AG and AA were 7.4% and 92.6% in the Han-Chinese population52–57. 
Warfarin-induced hemorrhage associated with age58. Significant reduction in clearance of warfarin with age was 
also reported59. Healthy volunteers aged from 18 to 45 years old are recommended by guideline26. However, in 
a large Japanese reports analysis, the reporting odds ratio of hemorrhagic events associated warfarin in patients 
age 40–49 significantly lower than those aged ≤40 or those aged ≥5060. In addition, many studies focusing on age 
and warfarin’s efficiency divided the volunteers’ age into young and elderly groups. The age range of these groups 
was 18–40 and 65–90 respectively. Therefore, we enrolled the volunteers between 18 and 40 years old to rule out 
the influence of age on warfarin.

A loading dose of 200 mg imrecoxib was chosen, then subsequently taking 5 continuous 100 mg doses of 
imrecoxib in order, to guarantee imrecoxib reaches its steady-state concentration prior to warfarin dose in this 
study. Clinically recommended dosage is 5 mg for warfarin and 100 mg for imrecoxib. The dosage of warfarin 
used in some studies was 25 mg61–63. We used 5 mg warfarin in both periods, to ensure adequate plasma drug 
levels close to common clinic levels while avoiding exposing participants to unnecessary bleeding risks caused 
by excessive use of warfarin. Consistent with our study, the existence of an interaction between warfarin (5 mg/d) 
and celecoxib was evaluated in a study with 24 healthy volunteers64–66, and 7.5 mg warfarin was used to examine 
potential drug interactions with celecoxib in healthy volunteer studies28,67.

In conclusion, this study revealed that co-administration of imrecoxib did not affect the pharmacokinetic 
parameters or anticoagulant properties of warfarin. Thus, we concluded that adjusting dosage is not necessary 
when administering imrecoxib concomitantly with warfarin. However, we only conducted a single dose study of 
warfarin, so the possibility that a higher dosage or multiple doses of warfarin would alter its pharmacokinetic or 
pharmacodynamic profiles during co-administration with imrecoxib could not be excluded, though the clinical 
relevance would be doubtful.
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