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Abstract

The prevalence of intracranial aneurysm (IA) is increasing, and the
consequences of its rupture are severe. This study aimed to reveal
specific, sensitive, and non-invasive biomarkers for diagnosis and
classification of ruptured and unruptured IA, to benefit the develop-
ment of novel treatment strategies and therapeutics altering the
course of the disease. We first assembled an extensive candidate
biomarker bank of IA, comprising up to 717 proteins, based on altered
proteins discovered in the current tissue and serum proteomic analy-
sis, as well as from previous studies. Mass spectrometry assays for
hundreds of biomarkers were efficiently designed using our proposed
deep learning-based method, termed DeepPRM. A total of 113 poten-
tial markers were further quantitated in serum cohort I (n = 212) & II
(n = 32). Combined with a machine-learning-based pipeline, we built
two sets of biomarker combinations (P6 & P8) to accurately distin-
guish IA from healthy controls (accuracy: 87.50%) or classify IA
rupture patients (accuracy: 91.67%) upon evaluation in the external
validation set (n = 32). This extensive circulating biomarker develop-
ment study provides valuable knowledge about IA biomarkers.

Keywords biomarker discovery; intracranial aneurysm; mass spectrometry;

serum proteome profiling

Subject Categories Biomarkers; Neuroscience; Vascular Biology & Angiogen-

esis

DOI 10.15252/emmm.202114713 | Received 16 June 2021 | Revised 9 December

2021 | Accepted 13 December 2021 | Published online 3 January 2022

EMBO Mol Med (2022) 14: e14713

Introduction

Intracranial aneurysm (IA) is a complex, multifactorial cerebrovas-

cular disorder, commonly occurring in 2–3% of the general

population (Vlak et al, 2011). Approximately 1% of IAs rupture per

year (Rinkel et al, 1998), leading to aneurysmal subarachnoid hemor-

rhage (aSAH) (Macdonald & Schweizer, 2017), with one-third of

patients dying and another third remaining dependent for daily life

activities (Nieuwkamp et al, 2009; Bakker et al, 2020). Despite the

available neuroimaging modalities, most patients are not diagnosed

in time due to the asymptomatic nature of IA. Furthermore, the

patients at risk of IA rupture and those who subsequently develop

cerebral vasospasm cannot be predicted to date. Therefore, once the

disease is confirmed by CT or MRI, clinicians are confronted with the

dilemma of choosing preventive treatments, each with inherent risks

of complications, or conservative management, which leaves patients

at a small but definite risk of aneurysm rupture (Etminan & Rinkel,

2017). Factors such as hypertension, cigarette smoking, alcohol

consumption, female sex, and lipid accumulation have been reported

to be associated with an increased risk of harboring an IA (Chalouhi

et al, 2013; Hussain et al, 2015). However, to the best of our knowl-

edge, no biomarker has satisfactorily addressed these challenges. In

this regard, it is of immense value to develop biological signatures

that assist in the early diagnosis of IA and the prediction or classifi-

cation of IA rupture (Baker et al, 1995; Mack et al, 2002).

Changes in human plasma or serum proteins have long been

recognized as indicators of pathophysiological changes caused by

various diseases. There are more than 100 FDA-cleared or FDA-

approved clinical plasma or serum proteins categorized as abun-

dant, functional plasma/serum proteins (50%), followed by tissue

leakage markers without a dedicated function in the circulation

(25%), and signal molecules including receptor ligands,

immunoglobulins, and aberrant secretions (Anderson, 2010; Geyer

et al, 2017). Previous attempts to comparatively analyze specific

samples revealed that aberrant gene and protein expression may

drive structural alterations of vasculature found in IA, and hundreds

of proteins and genes were reported to be relevant to IA formation

(Peters et al, 2001; Shi et al, 2009; Pera et al, 2010). However, only
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few of them were further validated in serum for further clinical

trials. Therefore, we hypothesize that a system-wide analysis of IA,

linking changes in circulation levels and dysregulation in the

diseased organs, as well as the previously reported proteins, would

provide informative knowledge for deciphering the molecular mech-

anisms underlying these events and contribute to a comprehensive

serum biomarker survey for the classification of IA and IA rupture.

Mass spectrometry (MS)-based proteomics approaches have

made significant advances in biomedical and clinical research (Alte-

laar et al, 2013; Aebersold & Mann, 2016; Budayeva & Kirkpatrick,

2020; Wu et al, 2020) and offered a powerful pipeline for unbiased

biomarker discovery and targeted validation, avoiding the restrictions

of antibodies (Shen et al, 2020; Shu et al, 2020). For example, multi-

plex quantitative proteomics revealed characteristic protein changes

in the sera of severe COVID-19 patients, which might be used in the

selection of potential blood biomarkers for severity evaluation (Mess-

ner et al, 2020; Demichev et al, 2021; Geyer et al, 2021). For a cancer

biomarker study, reproducible quantification assays were developed

for 1000 cancer-related proteins using the targeted proteomic strategy

(H€uttenhain et al, 2012; Zhang et al, 2019).

In an attempt to develop circulation markers for IA and IA

rupture, we employed a MS-based proteomic approach to profile the

proteome of IA serum and tissue and build a comprehensive knowl-

edge bank of IA altered proteins by connecting the results of the

current and previous studies. MS assays were developed to exten-

sively validate the serum detectable proteins in cohort I (Dataset

EV1), containing 212 serum samples from healthy controls (normal

controls, NC), patients with unruptured IA (UR), and ruptured IA (R)

using a targeted proteomics strategy named DeepPRM. To identify

potential biomarkers for the accurate classification of different

samples, we developed a machine-learning-based pipeline, resulting

in a six-protein based biomarker combinations to accurately distin-

guish IA, as well as an eight-protein based panel to classify IA

rupture. Both proteomic models trained on the training set (75% of

cohort I) demonstrated a comparably high patient stratification

performance when applied to the internal validation set (25% of

cohort I) and the external validation cohort II (n = 32) (Dataset EV2).

Some identified biomarkers were further examined for their serum

levels via the enzyme-linked immunosorbent assay (ELISA), whose

findings were in accordance with the proteomic results. These strik-

ing discoveries provide valuable knowledge about serum biomarkers

associated with IA formation or rupture and might shed light on the

pathogenesis and diagnosis of IA to ultimately achieve an overall

improvement in patient survival rates.

Results

Proteomics analysis

The overall design of this study is shown in Fig 1. During the discov-

ery stage, samples weighing approximately 0.83–2 mg from five pairs

of IA tissues and matched superficial temporal artery (STA) tissues

from IA patients were analyzed by LC-MS/MS-based label-free quan-

titation (LFQ). The STA tissues obtained intraoperatively were set as

the control tissue samples (Fig 2A). A total of 5,915 proteins were

identified, with 5,677 proteins quantified at the protein FDR < 1%.

The reproducibility and correlation coefficient of the LFQ intensities

within and between the two groups are shown in Appendix Fig S1A

and B. In total, 724 differentially expressed proteins (DEPs) were

found in IA tissues compared to matched STA tissues, which

accounted for 12.2% of the total quantified proteome. Of these, 497

proteins (68.6%) were downregulated, and 227 proteins (31.4%)

were upregulated in IA samples (Fig 2B; Dataset EV3). Multivariate

principal component analysis (PCA) and unsupervised hierarchical

clustering analysis effectively distinguished the IA groups from STA

groups with high confidence (Appendix Fig S1C and D). Additionally,

functional pathway annotation and enrichment analysis by the Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis showed that

upregulated proteins were overrepresented in the complement and

coagulation cascades, cell adhesion molecules (CAMs), fluid shear

stress, and atherosclerosis, while the downregulated proteins were

enriched in the smooth muscle cells (SMCs) contraction pathway,

extracellular matrix (ECM)–receptor interaction pathway, tricarboxylic

acid (TCA) cycle pathway, and metabolism-associated pathways

(Fig 2C and D; Appendix Fig S1E). Of these, 14 proteins comprising

up to 11.7% of the proteins in the SMCs contraction pathway and 10

proteins accounting to 12.3% of the proteins in the ECM–receptor

interaction pathway were markedly lower expressed in IA tissues.

These results were consistent with the previous reports of the promi-

nent features of activated inflammation, and the inhibition of muscle

formation, development, and contraction-related functions in IA.

Besides, 11 of 30 proteins involved in the TCA cycle were downregu-

lated with an average of 74% reduction by detailed analysis of individ-

ual proteins. What’s more, an additional 29 significantly changed

proteins were largely involved in metabolism-associated pathways

including amino acid, carbon, and glycol metabolism pathways. These

data suggested fundamental differences between IA tissues and STA

tissues that possibly reflected differing energy interventions of IA.

Proteins crucial for organizing the cytoskeleton and its maintenance,

such as PDZ and LIM domain protein 1 (PDLIM1), were significantly

downregulated in the IA group. We further validated its expression in

IA tissue specimens by immunoblotting (Fig 2E).

Sixty serum samples applied for the proteome analysis were sepa-

rated to three groups (NC, UR, and R groups) with 20 age- and sex-

matched individuals in each group. High abundant protein depletion

and a tandem mass tag-labeled (TMT-labeled) proteomic strategy

(Fig 1) were used for the relatively quantitation of serum proteome.

Two pooled biological replicates of each group and three technical

replicates were performed, which resulted in a total of 1,557 proteins

identified with protein FDR < 1% (Fig 3A). The concentration of the

detected proteins spanned 11 orders of magnitude from the lowest of

4.3 pg/ml (MEGF8) to almost 50 mg/ml (HBB & ALB) according to

the plasma proteome database (Nanjappa et al, 2014) (Fig 3B). The

PCA using all the detected proteins clearly separated the NC, UR, and

R groups (Fig 3C). We then performed two comparisons between the

three groups: first, IA (R & UR) versus NC, aiming to find the altered

proteins in the serum samples of IA patients. A total of 103 DEPs were

found in IA group (Benjamini–Hochberg-adjusted P-value < 0.05) with

26 proteins having increased expression (> 1.50-fold) and 77 proteins

showing lower expression (< 0.667-fold); the second is R versus the

control group (UR & NC), to identify potential biomarkers for predict-

ing the rupture of IA which resulted in 53 DEPs, including 32 upregu-

lated and 21 downregulated proteins (Fig 3D, Dataset EV4).

Unsupervised heatmap clustering analysis of the dysregulated proteins

of IA showed not only the proteomic diversity between samples from
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NC and IA, but also the variations within the IA of UR and R group

(Fig 3E). The most enriched pathways of the dysregulated proteins in

IA are illustrated in Fig 3E. Notably, proteins positively related to

ruptured IA were significantly enriched in the innate immune system

and neutrophil degranulation, which indicated an extraordinary acti-

vation of the inflammation system (Fig 3E).

Construction of serum candidate circulating biomarker bank for IA

To take full advantage of data generated from preceding study of IA,

we assembled a protein candidate biomarker bank (PCBB) by pool-

ing the results from this study and the reported biomarkers of IA in

the literature together. The articles and reviews in English published

Figure 1. Framework for biomarker discovery in intracranial aneurysms disease.

For a comprehensive survey of potential protein biomarkers of IA, the altered proteins reported in previous studies were summarized, and the high-throughput
MS-based quantitative proteomics technology was applied to profile tissue and serum samples from a large clinical cohort of IA and healthy controls, resulting in 446
reported candidate biomarkers and 860 DEPs found in the current proteomic study ①. A comprehensive serum protein candidate biomarker bank (SPCBB) was built,
consisting of potential tissue-leaked DEPs, serum DEPs, and reported IA candidate signatures that may be detected in the serum, amounting to 717 proteins ②. An
instrument-specific deep learning-based DeepPRM strategy was proposed for the high-efficiency development of PRM assays of numerous candidate proteins in SPCBB
③. To further validate the proteins, the developed PRM assays were used to quantitate the observed peptides in a large cohort of serum samples under strict quality
control ④. The machine-learning approach was used to measure the predictive power of quantitated peptides in the serum of the normal controls (NC), unruptured IA
(UR), and ruptured IA (R) group ⑤.
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in public databases between 2000 and 2020 were summarized, and

a total of 446 genes or proteins have been addressed to be related

with IA from different biological specimens (Dataset EV5).

Combined with the 860 DEPs found in present study, 1241 proteins

were deposited in the PCBB with 65 proteins overlapped in current

and previous study (Appendix Fig S2A, Dataset EV6).

The PCBB was further prioritized by selecting detectable proteins

in the serum. Apart from serum-altered proteins, we investigated

A D

B

C
E

Figure 2. IA tissue proteome remodeling due to IA formation and rupture.

A Five pairs of IA and STA tissues surgically excised from intracranial aneurysm patients.
B Differentially expressed proteins between IA group and STA group, as determined by plotting Student’s t-test (P-value < 0.05, two-sided) P-values versus the log2 fold

change (IA/STA) are represented on volcano plots. Proteins with significant change in expression levels are indicated by pink (upregulated) and blue (downregulated)
dots. The dashed line (x = �1) represents the cutoff of the log2 fold change in protein levels, and dashed line (y = 2) represents the cutoff of the �log10 t-test P-value.

C Significantly altered top ranked pathways in IA tissues compared with STA tissues.
D Interaction network of tissue downregulated proteins in IA group compared to STA group.
E Western blot validation of selected protein (PDLIM1) differentially expressed between STA and IA. Downregulation of PDLIM1 in IA tissue as compared to STA tissue

was confirmed. Immunoblots showing expression differences of PDLIM1 in STA and IA specimens are shown in the left panel using b-tubulin as the loading control.
The semi-quantitative densitometric measurement of blot bands is summarized in the lower panel. Error bars indicate standard deviations (three biological replicates
for each group, two-tailed Student’s t-test, * P-value < 0.05).

Source data are available online for this figure.
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and found out that a total of 373 DEPs discovered in tissue and 239

reported proteins were predicted to be leaked or secreted into the

serum (Datasets EV3 and EV5) according to the cellular components

and signal peptide prediction information. As a result, the IA-related

Serum Protein Candidate Biomarker Bank (SPCBB) was built with

717 proteins (Fig 4A, Dataset EV7). These proteins were further

validated in serum-targeted proteomic analysis.

DeepPRM for SPCBB MS assay development

The development of targeted assays, such as parallel reaction moni-

toring (PRM) and selected reaction monitoring (SRM) assays, is

tedious and typically requires peptide selection, synthesis, and MS

analysis (Zauber et al, 2018). Further, without the prior knowledge

of the peptides’ detectability, scientists face difficulties regarding

A

D E

B C

Figure 3. Remodeled serum proteome due to IA formation and rupture.

A Venn diagram of common and “exclusive” proteins identified from serum proteins from triplicate TMT experiment.
B Concentration range of serum proteins identified in this study according to the plasma proteome database in May 2017 (http://www.plasmaproteomedatabase.org/).

Colored rectangles categorize the entire abundance range into three classes representing functional serum proteins (purple), tissue leakage proteins (orange), signal-
ing proteins (blue).

C PCA score plot of R, UR, and NC based on the triplicate serum TMT data.
D Volcano plots of the results of Student’s t-test comparing the (R & UR) versus NC group or R versus (NC & UR) group. Proteins with significant change in expression

levels are indicated by red (upregulated) and blue (downregulated) dots. The dashed line (x = �0.585) represents the cutoff of the log2 fold change in protein levels,
and dashed line (y = 1.301) represents the cutoff of the -log10 t-test P-value.

E Multigroup heatmap with dendrogram of differential expressed proteins levels incorporating UR, R, and NC groups. Enriched pathways based on differentially
expressed proteins between IA group (R & UR) versus NC group, or R group compared to control group (NC & UR).

Source data are available online for this figure.
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peptide selection or the decision to synthesize hundreds and thou-

sands of peptides, which is costly (Kusebauch et al, 2016). To vali-

date hundreds of candidate biomarkers in SPCBB, we developed the

DeepPRM algorithm to aid the large-scale assay development by

predicting the peptide detectability and retention time, which are

critical parameters for MS assay development. The DeepPRM is

A

C

F

D E

B

Figure 4. Targeted proteomics of IA candidate biomarker bank.

A Overlap of serum candidate proteins related to IA.
B Bar graph showing the number of proteins corresponding to suggested peptides by DeepPRM and Picky methods, and proteins corresponding to detected peptides

from DDA validation.
C, D Volcano analyses showing log2 fold change of (UR & R)/NC (C), R/ UR (D) of peptides according to the P-value. Proteins meeting the indicated statistical cutoff

criteria (Mann�Whitney U-test, P-value < 0.05) are colored in red.
E, F Ten peptide relative quantification (log2 L/H ratio) between (R & UR) (n = 72) and NC group (n = 80) (E), and six peptide relative quantification (log2 L/H ratio)

between R (n = 35) and UR group (n = 37) (F). For each protein, 1–2 proteotypic peptides were monitored. The light peptide (corresponding to the endogenous
peptide present in serum) and the heavy peptide (which corresponds to the synthetic peptide spiked-in serum) were monitored, and the light/heavy ratio for each
of the 12 peptides was obtained by Skyline. Box plots represent the median and interquartile range, whiskers represent the 1–99 percentile, and outliers are
represented by empty circles.

Source data are available online for this figure.
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based on an instrument-specific model constructed on a given LC-

MS/MS platform using the deep learning approach, as previously

described (Yang et al, 2020). To validate the performance of

DeepPRM, we first compared the DeepPRM with a well-known

online PRM and SRM method designer-Picky (Zauber et al, 2018),

which suggests targeted peptides and their predicted RT of given

protein datasets from serum and Hela cell digests. The detection of

the proposed peptides was further validated by MS acquisition.

Consequently, DeepPRM achieves more targeted peptides with

corresponding RT information, and the detection rate (detected

peptides/suggested peptides) of DeepPRM (85.23%) is far larger

than that obtained by Picky (30.70%) (Fig 4B, Appendix Fig S2B–D,

Datasets EV8-EV10). This indicates that our newly developed

DeepPRM provides an informative targeted peptide selection with

high efficiency, especially for large-scale candidate proteins, which

is in line with the objectives for the extensive protein biomarker

validation in this study.

We then employed the DeepPRM for MS assay development of

717 SPCBB proteins, and 1254 unique peptides were suggested with

good detectability (≥ 0.5). Among these, 367 peptides were further

observed in the serum digestion mixtures, with 113 peptides (corre-

sponding to 100 proteins) detected with high confidence by manu-

ally checking (Appendix Fig S3, Datasets EV11 and EV12). These

peptides were further quantified in cohort I serum samples

[n = 212, within R (n = 55), UR (n = 57), and NC (n = 100)]

(Dataset EV1) and cohort II serum samples [n = 32, within R

(n = 6), UR (n = 6) and NC (n = 20)] (Dataset EV2).

DeepPRM-based quantification of biomarker candidates in serum
of IA patients

Rigorous experimental controls were set to monitor the variation

introduced by batch effects for the large-scale sample analysis and

the subsequent statistical analysis by setting quality control samples

and spiking-in iRT peptides (Appendix Fig S4A and B). The raw data

were uploaded to Skyline to perform automatic PRM peak integra-

tion, detect interferences, and extract single transition intensities. A

two-step normalization of the quantification results of the peptides

among 212 samples was carried out before further statistical analy-

sis to account for the variability in instrument performance within

each batch and between batches (Appendix Fig S4C and D). The

orthogonal partial least-squares discrimination analysis (OPLS-DA),

based on the normalized peak area of the 113 peptides correspond-

ing to 100 protein candidates, identified a significant spatial separa-

tion of three groups NC, UR, and R (Appendix Fig S4E and F).

Further, the variable importance in projection (VIP) of each feature

was calculated (Dataset EV13).

To preselect potential proteomic signatures for IA and IA rupture,

the Mann–Whitney U-test was employed to analyze the variables

that revealed 42 significantly changed peptides (36 proteins) in IA

patients (UR & R), and 26 altered peptides (24 proteins) clearly

distinguished the R group from the UR group (P < 0.05) (Fig 4C and

D; Appendix Fig S4G and H).

Based on the PRM quantitation results of the first 60 serum

samples, 12 stable isotope-labeled peptides (of proteins whose

expression levels changed significantly) were spiked into the

remaining 152 serum samples as reference peptides. According to

the relatively quantified amounts of these peptides, 10 peptides

indicated marked change (P < 0.001) between the IA (UR & R)

groups and NC groups. The quantitation results (log2 (L/H ratio))

are listed in Fig 4E. Furthermore, six peptides corresponding to five

proteins (leucine-rich alpha-2-glycoprotein (LRG1), fibrinogen alpha

chain (FGA), fibrinogen beta chain (FGB), and fibrinogen gamma

chain (FGG)) showed significantly higher expression in the R group

than in UR group (P < 0.001), while the immunoglobulin kappa

variable 4-1(IGKV4-1) was found in lower abundance in the R group

(P < 0.001) (Fig 4F). The quality of PRM data of the above peptides

is illustrated in Appendix Fig S5.

Machine-learning-based selection of biomarker combinations for
classification of IA cases

We investigated the possibility of discriminating patients with

ruptured or unruptured IA from healthy controls based on the molec-

ular signatures of serum proteins. On the basis of the serum

proteomic data of PRM cohort I (n = 212), we developed a computa-

tional pipeline including differential feature reservation (DFR), candi-

date feature selection, and final model construction (CFS & FMC) for

identifying potential biomarker combinations to classify IA cases

(Fig 5A). In the DFR step, 32 peptides corresponding to 27 proteins

were identified as highly ranked DEPs (fold change (FC) > 1.2, P-

value < 0.05 and VIP > 1.0). For proteins associated with multiple

peptides, we selected the best peptide based on the area under the

curve (AUC) and PRM raw data, to ensure that each peptide corre-

sponded to a single protein (Kim et al, 2021) which resulted in

remaining 27 peptides (Appendix Fig S6A). Subsequently, the

combined dataset (cohort I) was randomly divided into a training and

an internal validation set with a ratio of three to one (Datasets EV14

and EV15). In the CFS & FMC step, logistic regression was used for

model building, and recursive feature elimination (RFE) with cross-

validation (10-fold CV, repeated 10 times) was performed to select

the optimal biomarker combination on the training set (75% of

cohort I), based on the highest average accuracy (Ac) (Fig 5A).

We sought to utilize the above machine-learning strategy to clas-

sify different clinical outcomes of IA (e.g., IA versus NC, or R versus

UR) based on the significant features with more economical combi-

nations of the molecules. For the classification of IA (R & UR)

patients and healthy controls, we identified a compact biomarker

combination containing six proteins (dubbed P6) (Fig 5B), including

CTSG, PDLIM1, myeloblastin (PRTN3), myeloperoxidase (MPO),

immunoglobulin heavy constant mu (IGHM), and immunoglobulin

kappa variable 3–20 (IGKV3-20). This model reached an AUC of

0.894 (95% CI = 0.836–0.937) based on the receiver operating char-

acteristic curve (ROC) analysis and an Ac of 83.65% in the training

set (Fig 5C; Table 1; Dataset EV16).

We then tested the P6 model on the internal validation set (25%

of cohort I), resulting in a promising AUC of 0.904 (95%

CI = 0.792–0.968) with high sensitivity and specificity for distin-

guishing different IA groups (R & UR) from healthy controls (Fig 5B;

Table 1). To evaluate the reliability of the machine-learning strat-

egy, confusion matrices were compiled, and the results demon-

strated that different samples could be correctly classified with a

high Ac of 86.79% (Appendix Fig S6B; Table 1).

To validate the Ac of the machine-learning-based classification of

IA cases, we further collected 32 serum samples of a new cohort (II)

as the external validation set. The AUC values were calculated as
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A

B C D

E F G

Figure 5. Identification of potential biomarker combinations for classification of IA different outcomes from healthy controls using machine-learning
method.

A Workflow of data processing and machine-learning model construction.
B–G Logistic regression (LR) model for the classification of IA and NC (B) or R and UR (E). Receiver operating characteristic (ROC) curve of the LR-based model in IA

versus NC (C) or R versus UR (F) in training, internal validation, and external validation set. Confusion matrix showing the model performance for classifying IA and
NC (D) or R and UR (G) in the external validation set.

Source data are available online for this figure.
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0.929 (95% CI = 0.780–0.990) for distinguishing IA cases from NC

(Fig 5C; Table 1). Accordingly, the corresponding confusion matrix

results also demonstrated that P6 exhibited a promising Ac of

87.50% on the independent cohort (Fig 5D; Table 1; Dataset EV16).

Finally, we plotted the learning curves of P6 model

(Appendix Fig S6C). The curves of the training and internal valida-

tion sets are getting flattened, and the accuracy becomes stable and

larger than 0.8, indicating a good fit of the model (Emmert-Streib &

Dehmer, 2019).

Biomarker combinations for classification of ruptured and
unruptured IA

The potential IA rupture is a complex and challenging condition that

confuses clinicians regarding the choice of treatments. To classify UR

and R outcomes, we identified an eight-protein combination (P8)

containing inter-alpha-trypsin inhibitor heavy-chain H4 (ITIH4),

apolipoprotein A-IV (APOA4), FGG, fibronectin (FN1), LRG1, carti-

lage oligomeric matrix protein (COMP), IGHM, and IGKV3D-20, with

an AUC of 0.913 (95% CI = 0.832–0.963) and an Ac of 87.06% in the

training set, and an AUC of 0.874 (95% CI = 0.689–0.969) and an Ac

of 85.19% in the internal validation set to distinguish ruptured from

unruptured IA patients (Fig 5E and F; Table 1; Appendix Fig S6D;

Dataset EV16). It also yielded an excellent classification Ac of 91.67%

and a high AUC value of 0.905 in the external validation set, which

further demonstrates the robustness of the model (Fig 5F and G;

Table 1). The learning curves of the P8 model also illustrated that the

model fits well (Appendix Fig S6E).

We further validated two low abundant proteins PRTN3 (tissue

original) and CTSG (serum original) using ELISA in an additional

cohort (III) that included 40 R and 40 UR patients plus 40 healthy

controls, showing high concordance with the PRM results

(Appendix Fig S7A–D; Dataset EV17).

In summary, these data strongly support the potential clinical

value of serum proteomics-derived panels for the identification of IA

and determination of its rupture.

Discussion

The disruption of internal elastic lamina and subsequent mechanical

overload and shift in tensile forces are critical for the formation,

progression, and rupture of IA. However, the molecular mecha-

nisms involved still remain poorly recognized, which hampers the

clinical management of IA. Currently, the golden standard diagnosis

of IA is digital subtraction angiography (DSA), with no molecular

diagnostic model existing in the clinic to date. There are few reports

of IA-related circulation signatures that could also discriminate

ruptured and unruptured IA. Herein, we performed a systematic

proteomic analysis of the diseased organs and serum samples,

developed a comprehensive biomarker discovery strategy, and iden-

tified six- and eight-protein-based biomarker combinations with

potential clinical utility for classifying IA and its rupture.

There are several notable findings. First, the proteome data of IA

tissue and serum reiterate that the main pathophysiological

processes involved in IA development, such as SMC contraction and

adhesion, are inhibited, and inflammatory reactions are activated,

as previously reported (Etminan & Rinkel, 2017). Proteins related to

these pathways dramatically alter their expression levels. In particu-

lar, serum samples collected from patients with ruptured IA demon-

strate a distinct enhancement of the immune system and related

pathways. Furthermore, the data highlight profound differences in

proteins involved in key energy metabolic pathways, such as the

TCA cycle, which are markedly downregulated, indicating different

energy mediation of IA patients.

For the biomarker discovery of IA, scientists investigated the

disease using various strategies and perspectives, thus generating

different results. To make full use of this precious data and

construct a comprehensive survey of the IA processes, we assem-

bled results from previous studies and the present study to form the

most extensive protein biomarker bank reported to date. We then

refined it by predicting the likelihood that identified proteins are

detected in serum samples for downstream clinical applications. A

total of 1,241 proteins were reviewed, with 717 proteins collected in

the SPCBB having various functions. The candidate biomarker bank

may provide an informative reference for further IA studies.

Considering the costs and workload of the unbiased validation of

717 proteins in the SPCBB, we proposed a highly efficient and time-

saving PRM assay approach (DeepPRM). Due to the different condi-

tions used in the pretreatment of samples, the types of instruments,

as well as variable instrumental settings in different laboratories,

the peptide detection, and RTs differ across studies. We therefore

built an instrument-specific model based on deep learning the spec-

tra generated in a given LC-MS platform and made a prediction of

the peptide detectability and RT. Based on the analysis of the HeLa

cell line and serum datasets, the DeepPRM strategy achieved better

performance than the Picky-derived results from the global model.

Furthermore, the algorithm used by DeepPRM was based on the

deep learning of peptide spectra, thus indicating the potential to be

widely used without the restriction of actual specimens from human

and mouse models. In this study, we used DeepPRM and our rapid

serum sample preparation (RSP) method (Shen et al, 2021), to

Table 1. Performance of circulating protein panel P6 in differential diagnosis of IA from healthy controls and P8 in classification of IA rupture.

Classification Dataset AUC (95% CI) Sn Sp Ac PPV NPV MCC

P6 (IA versus NC) Training 0.894 (0.836–0.937) 85.71% 81.33% 83.65% 83.72% 83.56% 0.672

Internal validation 0.904 (0.792–0.968) 85.71% 88.00% 86.79% 88.89% 84.62% 0.736

External validation 0.929 (0.780–0.990) 91.67% 85.00% 87.50% 78.57% 94.44% 0.748

P8 (R versus UR) Training 0.913 (0.832–0.963) 88.10% 86.05% 87.06% 86.05% 88.10% 0.741

Internal validation 0.874 (0.689–0.969) 84.62% 85.71% 85.19% 84.62% 85.71% 0.703

External validation 0.905 (0.616–0.996) 100.00% 83.33% 91.67% 85.71% 100.00% 0.845
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construct a highly efficient PRM assay developing strategy and vali-

date the candidate peptides in serum samples.

For further large-scale analysis of serum samples, we elaborated

the experimental conditions to eliminate differences caused by

instrument performance and set strict quality control criteria for the

data acquisition and analysis. Accordingly, two biomarker combina-

tions were identified as biomarkers using the LR machine-learning

strategy. These biomarkers could classify the different outcomes of

IA cases with high Ac, AUC, sensitivity, and specificity. Further, the

alternations of these proteins provide valuable insight into the

pathogenesis of IA. Moreover, the Ac of these biomarkers to distin-

guish IA formation and rupture were further validated via proteo-

mics and ELISA using the serum samples from 25% of cohort I and

two additional cohorts (II & III) of IA and NC, respectively. These

results confirm that the altered serum protein levels identified in this

study indeed reflect the pathophysiological changes in response to

IA. Therefore, these proteins show potential for further development

as clinical biomarkers. In this respect, the DeepPRM and our devel-

oped comprehensive serum biomarker screening strategy are

expected to benefit flexible biomarkers discovery studies.

Notably, some of these proteins were reported to be strongly

relevant to cardiovascular or cerebrovascular disease. For instance,

two of the biomarker candidates derived from immunoglobulins,

IGHM and IGKV3-20 are important mediators of the inflammatory

responses which are reported to be the shared pathological mecha-

nisms in a variety of vascular diseases, including atherosclerosis,

abdominal aortic aneurysm, and arteritis (Chyatte et al, 1999;

Chalouhi et al, 2012). The markedly increased levels of two acute-

phase proteins (APPs) including FGG and ITIH4 are usually reported

to occur in response to inflammation or tissue injury (Gabay & Kush-

ner, 1999). FN1 and COMP are mapped in the focal adhesion path-

way, which is known to maintain cerebrovascular integrity (Liu et al,

2012; Xu et al, 2019). The four regulators LRG1, MPO, CTSG, and

PRTN3 are all involved in the neutrophil degranulation pathway.

Notably, MPO, CTSG, and PRTN3 are all neutrophil-related proteins,

of which MPO has been revealed to be correlated with the severity

and outcome of vascular disease (Schindhelm et al, 2009; Gounis

et al, 2014). Further, CTSG has been reported to induce early

atherosclerotic lesion formation (Ortega-Gomez et al, 2016), while

PRTN3 is possibly involved in neuroinflammation caused by excess

neutrophils entering the brain (Kwon et al, 2013). Nevertheless, there

is little information available regarding the role of PDLIM1 in cardio-

vascular or cerebrovascular disease. A previous study reported that

PDLIM1 could interact with and stabilize the E-cadherin/b-catenin
complex in cancer (Chen et al, 2016). Interestingly, VE-cadherin, a

unique adhesion factor of endothelial cells, directly or indirectly

participates in intercellular signals to determine the stability of cell

connections (Giannotta et al, 2013). Therefore, we considered that

PDLIM1 might play a crucial role in regulating cell adhesion between

endothelial cells and maintaining the endothelial cell barrier.

Our study has several limitations. First, there are a limited

number of patients, especially for the discovery of tissue samples

due to special IA treatment strategies and technical complexity.

However, our goal in this step was to generate candidate biomarkers

and validate them in large cohort of serum samples; therefore, more

cases in the discovery stages would not have yielded a different

result. Another possible drawback of this work is that different ther-

apeutic strategies used during the treatment of different patients

might affect the results, although the protein-level changes uncov-

ered here are consistent within different cohorts. Finally, the

detailed roles of the biomarker proteins in the pathogenesis of IA

require further investigation on potential therapeutic targets, such

as PDLIM1 and CTSG, which must be further elucidated or experi-

mentally validated.

In summary, we outlined a comprehensive protein candidate

biomarker discovery pipeline for IA that takes full advantage of data

from the present and previous studies using our newly developed

DeepPRM method. Our study provides a highly valuable proteomics

resource for the research community to better understand IA-

associated response, sheds light on the pathogenesis of IA formation

and rupture, and identifies a serial of valuable biomarker candidates

that may assist in the clinical decision-making process, thus leading

to appropriate diagnosis and effective treatment of IA. We further

envisioned the widespread application of the extensive serum

biomarker strategy to other proteomic signature discovery studies.

Materials and Methods

Study approval

The study was conducted in accordance with the guidelines of the

Declaration of Helsinki and the Department of Health and Human

Services Belmont Report, with the approval of the Research Ethics

Committee from the Huashan Hospital, Fudan University. Written

informed consent was obtained from all patients or their legal repre-

sentatives prior to their participation in the study.

Patients and specimens

In total, 244 blood samples of IA patients and healthy controls were

collected between September 2017 and October 2019 which were cate-

gorized as follows: NC (n = 120), IA (n = 124), UR (n = 63), and R

(n = 61) (Datasets EV1 and EV2). Three-dimensional rotational DSA

images of all patients were observed by Sante DICOM Viewer Free

software (Philips Allua Xper, the Netherlands) and labeled with size,

width, and neck diameter of aneurysm. Blood samples were collected

after overnight fasting under routine clinical blood guidance using

Vacutainer tubes (Becton Dickinson, Franklin Lakes, NJ, USA) with

no anticoagulant. The blood samples were centrifuged at 1,500 g for

10 min at 4°C after clotting at room temperature. Serum samples were

immediately aliquoted in sterile centrifuge tubes and were stored at

�80°C for future analysis. Each aliquoted serum was only analyzed

once without any freeze–thaw cycles. The decision of clipping an IA

was made by two neurosurgeons and one neuro-intervention special-

ist. The control vessel specimen was taken from the STA. All tissues

samples were immediately transferred to liquid nitrogen and placed in

sterile centrifuge tubes and stored at �80°C for future analysis.

Sample pretreatment of quantitative proteomics analysis

Five pairs of IA tissues and matched STA tissues from patients with

IA were prepared using a commercial sample preparation kit (iST

kit, PreOmics GmbH), according to the manufacturer’s instructions.

The serum samples were subjected to immunoaffinity depletion for

removal of the top 12 high abundance proteins. Protein
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concentration was then determined by BCA assay. A total of 100 µg

of proteins from each group were then digested, followed by TMT

labeling according to the manufacturer’s instructors, and high pH

RPLC separation. Two biological replicates and three technical repli-

cates were performed.

Liquid chromatography tandem mass spectrometry (LC-MS/MS)
analysis

The protein samples from trace IA and STA tissue were analyzed on

an UltiMate 3000 nanosystem (Thermo Fisher Scientific, USA)

connected to an Orbitrap Exploris 480 MS in combination with Field

Asymmetric Waveform Ion Mobility Spectrometry (FAIMS). The

peptides were separated on a 75 lm × 25 cm long column (2 lm
id) at a flow rate of 300 nl/min for 150 min. The data of TMT-

labeled serum peptides were acquired on an easyNano system

(Thermo Fisher Scientific, USA) with a 75 lm × 25 cm long column

(2 lm id) connected to Orbitrap Fusion Tribrid Mass Spectrometer

(MS) (Thermo Fisher Scientific, USA) by a 120 min LC separation.

DeepPRM method

The list of 717 proteins in SPCBB was submitted to the previously

developed instrument-specific model for predicting unique peptides

and their detectability and iRT information (Yang et al, 2020).

Suggested peptides with the probability of detectability > 0.5 were

selected and further monitored in digested serum samples using an

Orbitrap ExplorisTM 480 MS (Thermo Fisher Scientific, MA, USA)

coupled to an EASY-NanoLC 1200 system (Thermo Fisher Scientific,

MA, USA) with a 75 lm × 50 cm long column (2 lm id) with 60-min

acquisition. Chromatographic conditions were as follows: 65-min

gradient at a flow rate of 200 nl/min starting with 94% A (0.1% FA),

followed by 35% B (80% ACN, 0.1%FA) at 45 min, followed by a

step increase to 50% B until 54 min, and climbing to 100% B at a

flow rate of 300 nl/min for the last 11 min. For all PRM runs, sched-

uled injections with a 3-min elution window were used. A blank was

set between samples to avoid carryover. Eighteen stable isotope-

labeled (SIL), targeted peptides [> 98% purity], and iRT standards

were spiked into the digested serum as quantity control.

The identified peptides meet the criterion of three aspects (pro-

teotypic peptides, charge state, and transition selection) were

checked manually and used for further PRM quantitation in large

cohort of serum samples (n = 244).

Peptide selection: For each protein, preferably two, at least

one proteotypic peptides (PTPs) were selected from DeepPRM

method based on the following criteria: (i) unique to a particular

protein; (ii) peptides of 7–25 amino acids in length; (iii) peptides

of mass ≤ 6,000 Da and detectability > 0.5; and (iv) without of

methionine, cysteine, or other post-translational modification

sites. For proteins without eligible peptides were removed for

further large-scale quantification. Charge state selection: the

peptide charge state picked up for PRM analysis was selected

based on the following criteria: (i) the m/z of targeted peptide

was selected within the optimal MS scan range of 350–1,250; (ii)

when two charge states of a peptide could be detected simultane-

ously, we selected the better one based on the manually checking

the mass spectrum signal response, such as the signal-to-noise

ratio, the transitions, the peak shape, and the peak area

(Appendix Fig S3). Transition selection: the transitions were

selected based on the rank of intensity identified in the spectral

libraries. For each peptide, at least top 3 fragment ions of the

spectral library were monitored excluding those short fragments

ions (y1, y2, y3 and b1, b2, b3).

Statistical analysis

The raw files were searched against the human Swiss-Prot database

(20,379 entries with 11 iRT peptides) by Proteome Discovery (PD,

Thermo Scientific, USA) using the MASCOT search engine. The false

discovery rate (FDR) of protein identification was set to < 1%. Data

statistical analysis was performed with MetaboAnalyst 4.0 (Chong

et al, 2018). After missing value imputations and data normalization,

significance was assessed using Student’s t-test to identify differen-

tially expressed proteins in the IA tissue proteome and the IA serum

proteome. For data visualization, volcano plots, heatmaps, and Venn

diagrams were constructed using an online platform (http://www.

bioinformatics.com.cn). The home-made MATLAB script was used for

GO annotation and pathway enrichment analyses. IPA (Ingenuity

Pathway Analysis, Ingenuity Systems) tools were used to analyze the

functions and interactions of the evaluable proteins obtained from the

tissue and serum samples. GO-CC term and signalP (Petersen et al,

2011) were used for predicting leaked or secreted proteins from tissue.

Acquired DeepPRM raw data were analyzed using the open-

source Skyline-daily software for transition identification and peak

area integration. The peak area of targeted peptides was exported

from Skyline into an Excel report spreadsheet and transformed to

log10 format, which was more closely conformed to normal distribu-

tion and better suitable for the statistical modeling assumptions for

downstream analysis. We modified the normalization step that was

established by Ruedi Aebersold (Huettenhain et al, 2019) in two

steps: the first normalization was a longitudinal correction, while the

second normalization step was transverse correction, all conducted to

remove systematic variations caused by the instrument performance

and batch effects. The precise relative quantification of each endoge-

nous peptide was calculated as follows: Cendogenous = CSIS × peak area

endogenous/peak area SIS. The Mann–Whitney U-test was used to obtain

variables with significant differences between the (R & UR) versus

NC groups, and the R versus UR groups (P-value < 0.001).

Machine-learning strategy

For the identification of different types of biomarker combinations,

we first classified the proteomic datasets of R, UR, and NC into dif-

ferent groups: (i) For the classification of IA and NC, the R and UR

groups were combined and set as the IA group. (ii) For the classifi-

cation of the R and UR groups.

In the DFR step, we compared the PRM quantitation results of

peptides in UR, R, and NC groups and reserved high potential DEPs

as a candidate reservoir (FC > 1.2, P < 0.05, and VIP > 1). To avoid

overfitting, the number of proteins in a combination must be signifi-

cantly smaller than the sample size (Shu et al, 2020). Thus, in the

CFS & FMC step, we used binary logistic regression to construct the

models, and RFE with CV (10-fold, repeated 10 times) was further

implemented to remove features of low importance and select the

best subsets of biomarker combinations based on the highest aver-

age Ac.
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The combined dataset (cohort I) was randomly divided into a

training set and internal validation set with a ratio of three (training

set) to one (the internal validation set). The newly enrolled cohort II

(n = 32) was set as external validation set. The internal and external

validation sets were only used to evaluate the performance, but not

for model training. To evaluate the accuracy of the LR model, true-

positive (TP), true-negative (TN), false-positive (FP), and false-

negative (FN) numbers were counted. Then, six measurements

including sensitivity (Sn), specificity (Sp), accuracy (Ac), positive

predictive value (PPV), negative predictive value (NPV), and

Mathew correlation coefficient (MCC) were calculated, as shown in

Table 1.

To evaluate whether the model was overfitting, we plotted a

learning curve of the P6/P8 model based on the accuracy of the

training and internal validation sets using R package (version 4.6-

14) (Appendix Fig S6C and E). The ROC curve was illustrated

using MedCalc (version 19.5.6) and GraphPad Prism (version

8.0.2).

Enzyme-linked immunosorbent assay (ELISA)

The serum levels of two candidate biomarkers were further deter-

mined in an additional cohort (III) that included 40 R and 40 UR

patients plus 40 healthy controls using the following ELISA kits:

polymorphonuclear leukocyte serine protease 3 (PRTN3) (#LS-

F57404, LifeSpan BioSciences, WA, USA) and Cathepsin G (CTSG)

(#E4639-100, Biovision, CA, USA).

Western blotting

The tissue level of PDLIM1 was further determined using Western

blotting analysis. IAs and matched STA tissues were extracted with

RIPA lysis buffer (Thermo Fisher Scientific, USA) and quantified

by the BCA Protein Assay (Thermo Fisher Scientific, USA). Briefly,

20–25 lg of purified protein was separated by SDS–PAGE and elec-

trotransferred onto a PVDF membrane. The membranes were

blocked for 1 h at room temperature in TBST (20 mM Tris–Cl,

140 mM NaCl, pH 7.5, 0.05% Tween-20) containing 5% nonfat dry

milk and then incubated with rabbit polyclonal anti-PDLIM1 anti-

body (Affinity Biosciences, OH, USA) and rabbit polyclonal anti-

tubulin beta antibody (Affinity Biosciences, OH, USA) overnight at

4°C. After washing three times in TBST, membranes were incu-

bated with secondary antibody (goat anti-rabbit IgG (H + L) HRP,

Affinity Biosciences, OH, USA) for 1 h at room temperature. Blots

were visualized using an ECL detection system and proteins were

quantified using a ImageQuant LAS 4000 mini (GE Healthcare,

Piscataway, NJ, USA). The expression of PDLIM1 was evaluated

by densitometric analysis. Ratios of densitometric measurements

of target proteins relative to b-tubulin were compared between the

IA and STA.

Data availability

The mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the iProX partner repository (Ma et al,

2019) with the dataset identifier PXD024615 (http://proteomecentral.

proteomexchange.org/cgi/GetDataset?ID=PXD024615).

The DeepPRM algorithm is available at https://deepdia.

omicsolution.com/ (Yang et al, 2020).

Expanded View for this article is available online.
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The paper explained

Problem
Intracranial aneurysm (IA) is a common cerebrovascular disorder with
steadily increasing prevalence, whose rupturing consequences are
severe. Patients are typically diagnosed when the aneurysm becomes
large or ruptures with an extremely severe headache. The develop-
ment of disease-modifying therapeutics is hampered by the lack of
specific tests for early detection of IA.

Results
We constructed a comprehensive mass spectrometry-based proteo-
mics strategy for serum protein biomarker discovery for intracranial
aneurysm (IA). An extensive serum candidate biomarker bank of IA
was constructed based on the altered protein expressions discovered
in current tissue and serum proteomic analysis and previous studies,
comprising up to 717 proteins. Mass spectrometry assays for hundreds
of biomarkers were efficiently designed using our proposed deep
learning-based method, termed DeepPRM. A total of 113 potential
markers were further quantitated in a large serum cohort (n = 212)
and an additional validation set (n = 32). Machine learning success-
fully classified IA from healthy controls based on a six-protein
biomarker combination with accuracy of 87.50%, while the classifi-
cation of ruptured and unruptured IA based on an eight-protein
model reached a remarkable accuracy of 91.67%.

Impact
These findings provide valuable knowledge on serum biomarkers asso-
ciated with IA formation or rupture, and shed light on the pathogene-
sis and diagnosis of IA. Furthermore, this study improves our
understanding of IA biology and identifies pathways to be further
investigated for the development of novel treatment strategies.
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