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Dichloromethylation of enones by carbon nitride
photocatalysis
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Small organic radicals are ubiquitous intermediates in photocatalysis and are used in organic

synthesis to install functional groups and to tune electronic properties and pharmacokinetic

parameters of the final molecule. Development of new methods to generate small

organic radicals with added functionality can further extend the utility of photocatalysis for

synthetic needs. Herein, we present a method to generate dichloromethyl radicals from

chloroform using a heterogeneous potassium poly(heptazine imide) (K-PHI) photocatalyst

under visible light irradiation for C1-extension of the enone backbone. The method is applied

on 15 enones, with γ,γ-dichloroketones yields of 18–89%. Due to negative zeta-potential

(−40mV) and small particle size (100 nm) K-PHI suspension is used in quasi-homogeneous

flow-photoreactor increasing the productivity by 19 times compared to the batch approach.

The resulting γ,γ-dichloroketones, are used as bifunctional building blocks to access value-

added organic compounds such as substituted furans and pyrroles.
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Carbon nitrides (CNs) are “all-in-one” photocatalysts that
mediate dozens of different photocatalytic reactions and
enable bifunctionalization of (hetero)arenes in one pot1.

The organic semiconductors have also been efficiently employed
in a continuous flow system for chemical synthesis eliminating
the last obstacle (poor light penetration in heterogeneous solid-
liquid mixture) on the way to widespread applications in organic
synthesis2. Because of their low cost, ease of synthesis and sta-
bility against reactive intermediates and photobleaching, CNs
already play an important role as heterogeneous photocatalysts
for organic transformations3–5. CNs are also very versatile, and
can be tailored depending on the application by bandgap engi-
neering at the atomic and molecular level6,7.

Most photocatalytic reactions are based on single electron
transfer between the reagents and the photocatalyst8. Therefore,
reactive open shell species are ubiquitous intermediates in pho-
tocatalytic processes9–11. Small organic radicals, such as CH3,
CF3, CHF21, and perfluoroalky12, CH3O13 etc. are used for the
functionalization of the organic molecules in order to tune steric
and electronic properties. Furthermore, the lipophilicity and
metabolic stability of pharmaceuticals may be adjusted in this
way14,15. Despite their importance for medicinal chemistry, CF3,
alkyl, and CH3O groups are chemically stable. Therefore, further
diversification of the molecule at these newly formed sites is
problematic. For example, cleavage of C–F bond in CF3-group is
extremely demanding16. The same applies to C–O bond in the
CH3O-group17,18.

Conversely CHCl2 radical from the pool of small organic
radicals is synthetically more useful. It enables the installation of
an electrophilic carbon, and the C–Cl bonds can be conveniently
cleaved using weak nucleophiles. In other words, the CHCl2
radical allows for C1-extension of the substrate framework, while
simultaneously adding a chemically active functionality19. From
this point of view, the CHCl2 radical can be regarded as a “small
functional radical”.

Despite the obvious synthetic utility of the dichloromethyl
radical, literature is still lacking reactions using dichloromethyl
moieties in conjugate additions—the kind of reaction resembling a
traditional polar Michael addition. The latter was well studied in
photoredox catalysis20–23. An example shown in Fig. 1a employs
methyl groups in tertiary amines and C=C double bond as cou-
pling partners. The chemistry of dichloromethyl radicals is
restricted to a few examples, while such radicals are generated
predominantly by catalyst containing rare precious metals or
dangerous chemicals (Fig. 1b, c). Our alternative approach uses
cheap heterogenous carbon nitride (CN) photocatalysts (1–10 Euro
per gram on a gram-scale synthesis)24 and have a low toxicity25.

We hypothesized that chloroform can be used as atom efficient
source of CHCl2 radicals. Although chloroform readily gives
dichlorocarbene in the presence of strong bases, we concede that
photocatalyst will alter the path of chloroform decomposition.
Formation of the dichloromethyl radical thereby may be achieved
by one-electron reduction of chloroform followed by elimination
of a chloride anion.

In order to trigger this process, we chose potassium poly
(heptazine imide) (K-PHI), a member of the CN family26. Upon
irradiation with visible light, metastable long-lived radicals are
generated that have been used as a pool of electrons to reduce
different substrates27. Earlier, we developed photocatalytic
methods to synthesize thioamides28, dibenzyl sulfanes29, 1,3,4-
oxadiazoles3, N-fused pyrroles30, cyclopentanes27, and haloge-
nated aromatic hydrocarbons using K-PHI31. In related works,
the long-lived carbon nitride radicals were applied in the delayed
evolution of hydrogen32,33.

Due to the advantages of flow reactors34,35, several types of
such photoreactors employing carbon nitrides have been reported

—packed bed photoreactor36, serial micro batch photoreactors2,
and triphasic flow photoreactor37. Due to relatively small particle
size (average diameter 100 nm) and highly negative zeta-potential
(−40 mV)38, K-PHI gives stable colloidal solution and has been
used in quasi-homogeneous catalysis39. Due to these features
colloidal solution of K-PHI can be used in simple plug-flow
photoreactors that are designed for homogeneous reaction
mixtures.

All in all, we present an unusual photocatalyzed radical addi-
tion of dichloromethyl radicals to enones to form a new C–C
bond (Fig. 1d). In this approach chloroform is used as a source of
dichloromethyl radicals. The reaction is catalyzed by K-PHI using
blue light irradiation. Using the discovered reaction, we show that
light scattering by semiconductor particulate strongly affects
their performance in batch reactors limiting the scalability of
such transformations. A nineteen times higher productivity is
achieved using a dedicated flow photoreactor employing quasi-
homogeneous K-PHI nanoparticles. Finally, dichloromethyl
adducts, i.e., γ,γ-dichloroketones, are used to access bifunctional
building blocks and several classes of heterocyclic compounds.

Results
Optimization of reaction conditions. Along these arguments, we
studied the designed reaction between chalcone 1a, chloroform,
tetrahydroisoquinoline (THIQ) as an electron donor and K-PHI
as the photocatalyst (see SI for preparation and characterization
of K-PHI, Supplementary Fig. 1). Dichloroketone 2a was syn-
thesized initially with 17% yield when 1 equivalent of THIQ was
used (Table 1, entry 1). By increasing the amount of THIQ gra-
dually to four equivalents, the yield of 2a was increased to 51%
(entry 3). However, even higher yield (62%) of 2a was achieved by
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Fig. 1 Previous works related to the designed reaction are presented.
a Conjugate addition to enones. b Cyclisation of trichloroacetamides.
c Synthesis of dichlorinated oxindoles. d Photocatalytic reaction developed
in this work.
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using 3 equivalents of triethanolamine (TEOA) as electron donor
(entry 4). The optimum conditions include ten equivalents of
TEOA, under which we achieved 97% yield (entry 5). The reac-
tion does not proceed without catalyst, light or a sacrificial elec-
tron donor (entry 6–8). CDCl3 is a suitable source of CDCl2
radicals offering a route for d-labeled dichloroketones 2a-d1 with
99% yield (entry 9). We also evaluated the robustness of the
reaction using different alcohols as hole scavengers, observing the
formation of the desired product in all cases, albeit in lower yield
(Table S1, entry 11–14). These results illustrate the better ability
of amines to donate electrons compared to alcohols, due to lower
oxidation potentials (e.g., +0.5 V for TEOA, +1.5 V for benzyl
alcohol and +1.9 V for MeOH, EtOH, iPrOH (Supplementary
Note 1). It is also supported by higher H2 production rate over
carbon nitride materials using TEOA as electron donor compared
to MeOH and EtOH40,41 and comparative tests of benzyl alcohol
oxidation versus benzylamine37,42. Moderate heating (50 °C)
facilitates the reaction, as the yield of 2a was 64% when reaction
was performed at 20 °C (Supplementary Table 1, entry 21). We
also compared the catalytic activity of other materials and pho-
toredox complexes. Na-PHI gave 2a with 49% yield (entry 10)43.
Similar behavior was already observed during the photocatalytic
synthesis of thioamides28. Mesoporous graphitic carbon nitride
(mpg-CN) gave 2a with comparable yield 85% (entry 11). The
inorganic semiconductors CdS and TiO2 gave 2a in 70 and 94%
yield, respectively (entries 12,13). Homogeneous Ir(ppy)3 gave 2a
with 97% yield (entry 14), while [Ru(bpy)3]Cl2 only resulted in
8% of 2a (entry 15). Furthermore, it was also shown that recycled
K-PHI remains photocatalytically active for at least two further
cycles (Supplementary Table 2).

Reaction scope. Using the optimized conditions fifteen dichlor-
oketones have been isolated with 18–89% yield (Figs. 2a–o). The

characterization of products was conducted by NMR analysis.
Dichloroketones 2 do not give stable molecular ions in the mass
spectra (electron ionization). For example, the expected m/z value
for 2a is 292. However, a signal with m/z 221 was detected
(Supplementary Fig. 2). The latter corresponds to 2,4-diphe-
nylfuran. In general 2,4-diarylsubstituted furans are products of
oxygen nucleophilic attack at CHCl2-group followed by elim-
ination of two molecules HCl under the conditions of GC-MS
data acquisition. Below we employ the reactivity of CHCl2 group
in synthesis of pyrroles and furans. Nonetheless, elemental ana-
lysis of 2a revealed chlorine content in excellent agreement with
the calculated content confirming the proposed structure. We
further proved the product structure, using deuterated chloro-
form as dichloromethyl source, observing the rise of the triplet in
the 13C NMR spectrum in the d-labeled compound (2a-d1).

Dichloromethylated chalcones bearing strong electron with-
drawing groups, i.e., CN–, MeO2C–, and pyridin-2-yl, 1p–r, gave
the corresponding products 2p-r in low yields as analyzed by 1H-
NMR spectrometry of the crude reaction mixture (Supplementary
Note 2). Nevertheless, we envision toolbox of synthetic organic
chemistry to be useful for further diversification of the products
structures employing, for example, methyl-group in 2b, F-atoms
in 2d,e,h and intrinsically reactive sites in 2i,j. Common reactive
Michael acceptors, such as methyl vinyl ketone and acrylonitrile,
gave only trace amounts of CHCl2 addition to the double bond as
evidenced by GC-MS (Supplementary Note 3). Even more
reactive Michael acceptors, i.e., methacrolein, methyl acrylate,
and 2-furanone, gave a complex mixture and the desired products
could not be identified (Supplementary Note 4).

Analysis of the substrates scope suggests that diarylsubstituted
enones in general are more suitable substrates for photocatalytic
dichloromethylation than terminal alkenes. Nevertheless, the
advantages of the developed method are a simpler protocol and
safer conditions. For example, the synthesis of 2a and 2l was

Table 1 Screening of reaction conditions.

O

Photocatalyst
amine

CHCl3 (2mL)

Blue light,
50 °C, 20 h

Argon atmosphere

O
ClCl

1a 2a 2a-d1

O
ClCl

D

Entry Amine Photocatalyst Yield (%)a

1 THIQ (1 eq, 0.05mmol) K-PHI (5mg) 17
2 THIQ (2 eq., 0.1 mmol) K-PHI (5mg) 33
3 THIQ (4 eq., 0.2 mmol) K-PHI (5mg) 51
4 TEOA (3 eq., 0.15 mmol) K-PHI (5mg) 62
5 TEOA (10 eq., 0.5 mmol) K-PHI (5mg) 97
6 TEOA (10 eq., 0.5 mmol) – –
7b TEOA (10 eq., 0.5 mmol) K-PHI (5mg) –
8 – K-PHI (5mg) –
9c TEOA (10 eq., 0.5 mmol) K-PHI (5mg) 99
10 TEOA (10 eq., 0.5 mmol) Na-PHI (5mg) 49
11 TEOA (10 eq., 0.5 mmol) mpg-CN (5mg) 85
12 TEOA (10 eq., 0.5 mmol) CdS (20% mol) 70
13d TEOA (10 eq., 0.5 mmol) TiO2 (20% mol) 94
14 TEOA (10 eq., 0.5 mmol) Ir(ppy)3 (2.5% mol) 97
15 TEOA (10 eq., 0.5 mmol) [Ru(bpy)3]Cl2 (2.5% mol) 8

Reaction conditions: 1 eq., 0.05mmol, 10.4 mg of 1a; under light irradiation (λ= 461 nm, 51 ± 0.03mW cm−2), blue LED.
aYields estimated by GC-MS.
bNo light.
cReaction performed in CDCl3.
dReaction performed under UV light (λ= 365 nm, 17.5 ± 0.03mW cm−2).
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described earlier using exotic reagents such as dichloromethyl-
lithium44. A comparison of K-PHI, mpg-CN, and Ir(ppy)3
photocatalysts using selected enones, 1i–l, n, p, revealed that K-
PHI in general gives the products in higher yields.

In the course of studying suitable reagents to install CxHalyHz-
groups in the enone 1a, we tested other halogenated reagents,
including dichloromethane, bromoform, iodoform, 1,1,2,2-tetra-
chloroethane and tetrachloromethane (Supplementary Table 1).
Careful analysis of the reaction mixture revealed that addition of
CHBr2-groups, CHI2-groups, and C2HCl4-groups to enone 1a
indeed took place. However, the products are not stable and
undergo further chemical transformations, such as HX elimination
and subsequent cyclizations to 2,4-diphenylfuran (in case of
bromoform and iodoform) or dichlorodihydropyranes (in case of
tetrachloroethane) (Supplementary Note 5). Compared to bromo-
form and iodoform, chloroform is beneficial due to higher
selectivity in the reaction of enones C1 backbone extension.

Scaling the dichloromethylation reaction of 1a in batch led to
gradual decrease of the dichloroketone yield, from 88% (on 0.05
mmol scale) to 23% (on 5mmol scale) (Supplementary Table 3).
After careful investigation, we concluded that the origin for such
drastic drop of the product 2a yield is poor light penetration in the
depth of the batch reactor due to light scattering by suspended
semiconductor particles (Supplementary Note 6)45.

Quasi-homogeneous flow photoreactor. In order to overcome
limitations of the batch approach, we performed the reaction in a
continuous flow reactor made out of thin (inner diameter 1.6
mm) fluorinated ethylene propylene (FEP) tubing (Fig. 3). The
use of carbon nitrides has been reported in serial micro-batch
reactors2, that use gas-liquid segments to avoid clogging. A
simplified system is applicable for K-PHI due to relatively small
particle diameter (100 nm) and negative zeta-potential (ζ)
(Fig. 3a). Electrostatic stabilization allows pumping colloidal
solution (Fig. 3b and Supplementary Note 7) without using a gas-
liquid system (Fig. 3c). Using flow approach, 2a was obtained
with 57% yield. Considering convenience of K-PHI suspension
pumping through thin FEP tubing along with easiness of the
photocatalyst recovery, the entire system enables quasi-
homogeneous photocatalysis in flow39.

As seen from the light intensity measurements (Fig. 3d–f),
the FEP tubing filled with the reaction mixture absorbs 74%
[(I0− IT2)/IT0] of light. These results suggest that by performing
the reaction in flow, more homogeneous irradiation of K-PHI
particulate is achieved compared to the reaction in batch
(Supplementary Note 6). Furthermore, we solved the proble-
m of poor light permeability through a semiconductor
suspension and increased the productivity of γ,γ-dichloroke-
tone 2a synthesis by a factor of 19.
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Application of γ,γ-dichloroketones in organic synthesis.
Finally, the γ,γ-dichloroketones obtained by the photocatalytic
generation and addition of dichloromethyl radicals to enones
were used to install other reactive functional groups. As a prac-
tical example, dichloroketone 2a was converted to β-formyl
ketone 3a by simple hydrolysis with 60% yield (Fig. 4). The
ketoaldehyde 3a was then transformed into multi-substituted

heterocycles (4a–6a) using microwave assisted condensations
with a series of nucleophiles. For instance, furan and pyrrole
scaffolds have been used in synthesis of bioactive substances46,47.

Mechanism. To support the role of chloroform as electron
acceptor, we developed a method for oxidative coupling of
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benzylamines (Fig. 5)48. As example, we synthesized four imines
with 83–100% yield. These results offer an alternative route
for such transformations using chloroform as a solvent and
electron acceptor (Supplementary Fig. 3 for detailed mechanism
of amines coupling).

The proposed mechanism of the reported photocatalytic
reaction is shown in Fig. 6. In the first step, K-PHI is excited by
blue photons giving excited state of the photocatalyst (K-PHI*).
Removal of an electron from TEOA by K-PHI* (reductive
quenching of the photocatalyst), leads to the formation of the
long-lived radical anion K-PHI•−, that has the typical deep
green color27,29. Chloroform is subsequently oxidized by a single
electron transfer event, forming the chloroform radical anion
that eliminates a chloride anion resulting in a dichloromethyl
radical. Addition of the dichloromethyl radical to the β-carbon
atom of the enone gives intermediate i−1. Abstraction of
hydrogen from TEOA leads to the desired product 2. While
TEOA acts as hole scavenger, chloroform simultaneously acts as
solvent and electron acceptor to complete the photocatalytic
cycle, as it was already proposed by Chen et al.49 It is also
possible to detect traces of different chlorinated compounds,
that result from side radical reactions of the dichloromethyl
radical, via GC-MS. By running experiments in the absence of
the enone, we observed the formation of halogenated
compounds including tetrachloroethane that is likely formed
via a homocoupling of dichloromethyl radicals (Supplementary
Table 4; Supplementary Figs. 4, 5, 6).

Discussion
In this work, we extended the library of small organic radicals
available for photocatalytic synthesis to dichloromethyl radicals
than can be conveniently generated from chloroform. The

method was validated in a 1,4 addition of dichloromethyl radicals
to enones. The process is photocatalyzed by the heterogeneous,
metal free carbon nitride photocatalyst K-PHI. Fifteen γ,γ-
dichloroketones were isolated in moderate to excellent yield. The
possibility to use other polyhalogenated compounds such as
bromoform, iodoform and 1,1,2,2-tetrachloroethane has been
demonstrated. Light scattering by carbon nitride particles has
been identified as limiting factor for scaling these transforma-
tions. The results suggest that, in a typical photocatalytic
experiment using 2.5 mgmL−1 of semiconductor particles, the
penetration depth of light is only 3 mm. In polar solvent, such as
DMSO, nanoparticles of K-PHI give stable suspension that was
pumped through a thin (1.6 mm internal diameter) tubing. γ,γ-
dichloroketone 2a has been also synthesized using quasi-
homogeneous photoreactor. The γ,γ-dichloroketones obtained
in this work were proved to be useful building blocks with
applications in the synthesis of bifunctional compounds that can
be used for the preparation of heterocyclic bioactive molecules.
The use of chloroform as solvent and electron acceptor was also
demonstrated in the oxidative coupling of benzylamines.

Methods
Microwave reactions. Experiments were carried out in a CEM Discover® SP
System microwave reactor.

Compounds characteriation. 1H and 13C NMR spectra were recorded on Agilent
400MHz (at 400MHz for Protons and 101MHz for Carbon-13). Chemical
shifts are reported in ppm versus solvent residual peak: chloroform-d 7.26 ppm
(1H NMR), 77.1 ppm (13C NMR); acetonitrile-d3 1.94 ppm (1H NMR), 118.3 ppm
(13C NMR).

Mass spectral data were obtained using Agilent GC 6890 gas chromatograph,
equipped with HP-5MS column (inner diameter= 0.25 mm, length= 30 m, and
film= 0.25 μm), coupled with Agilent MSD 5975 mass spectrometer (electron
ionization).

Electrochemistry. Cyclic voltammetry (CV) measurements were performed in a
glass single-compartment electrochemical cell. Glassy carbon (diameter 3 mm) was
used as a working electrode (WE), Ag wire in AgNO3 (0.01 M) with tetra-
butylammonium perchlorate (0.1 M) in MeCN as a reference electrode (RE), Pt
wire as a counter electrode. Each compound was studied in a 50 mM concentration
in a 0.1 M tetrabutylammonium perchlorate (TBAP)/chloroform electrolyte solu-
tion (10 mL). Before voltammograms were recorded, the solution was purged with
Ar, and an Ar flow was kept in the headspace volume of the electrochemical cell
during CV measurements. A potential scan rate of 0.050 V s−1 was chosen, and the
potential window ranging from +2.5 V to −2.5 V (and backwards) was investi-
gated. Cyclic voltammetry was performed under room-temperature conditions
(~20–22 °C).
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R X
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50 °C, 20 h
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1′e: R = OMe, X = CH
1′f: R = H, X = N

2′c: R = H, X = CH 100%
2′d: R = Me, X = CH 100%
2′e: R = OMe, X = CH 100%
2′f: R = H, X = N 83%

Fig. 5 Oxidative coupling of benzylamines. GC-MS yields are shown.
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Fig. 6 Proposed mechanism of the generation of dichloromethyl radicals and their addition to enones. Inset shows images of the reaction mixture before
and after light irradiation and structures of TEOA oxidation products.
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Photocatalysts characterization. Zeta-potentials were measured in aqueous col-
loidal solution of K-PHI using a Malvern Zetasizer instrument.

Hydrodynamic diameter of K-PHI particles in water was measured using
Malvern Zetasizer instrument.

General method for dichloro-ketone preparation (2a–l). A glass tube with
rubber-lined cap was evacuated and filled with argon three times. To this tube
triethanolamine (74.6 mg, 66 µL, 0.5 mmol), corresponding chalcone (50 µmol), K-
PHI (5 mg) and chloroform (2 mL) were added. Resulting mixture was stirred at
50 °C under irradiation of Blue LED (λ= 461 nm) for 20 h. Then reaction mixture
was cooled to room temperature and centrifuged, clear solution was separated and
solid residue was washed with chloroform (2 mL) and centrifuged again. Organic
solutions were combined and evaporated to dryness. Residue after evaporation was
purified by silica gel column chromatography using mixture of hexane/diethyl
ether (98:2) as an eluent.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. The source data underlying Fig. 2a and Supplementary
Fig. 1a–j are provided as a Source Data file.

Code availability
This study does not use custom computer code or algorithm to generate results that are
reported in the paper and central to its main claims.
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