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Adipose depots are heterogeneous tissues that store and sense fuel levels. Through the

secretion of lipids, cytokines, and protein hormones (adipokines), they communicate with

other organ systems, informing them of the organism’s nutritional status. The adipose

tissues include diverse types of adipocytes (white, beige, and brown) distinguished

by the number/size of lipid droplets, mitochondrial density, and thermogenic capacity.

Moreover, they include a spectrum of immune cells that modulate metabolic activity

and tissue remodeling. The unique characteristics and interplay of these cells control

the production of ceramides, a class of nutrient signals derived from fat and protein

metabolism that modulate adipocyte function to regulate glucose and lipid metabolism.

The excessive accumulation of ceramides contributes to the adipose tissue inflammation

and dysfunction that underlies cardiometabolic disease. Herein we review findings on this

important class of lipid species and discuss their role at the convergence point that links

overnutrition/inflammation to key features of the metabolic syndrome.
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INTRODUCTION

Obesity increases one’s risk for metabolic diseases such as diabetes, coronary artery disease,
non-alcoholic steatohepatitis, and heart failure. The condition promotes (a) the accumulation
of deleterious lipid metabolites in non-adipose tissues (i.e., lipotoxicity) and (b) chronic low-
grade inflammation, which in turn produces the tissue dysfunction that fuels these disorders.
The lipotoxicity is secondary to adipose dysfunction, such that excessive lipids are delivered to
peripheral tissues rather than being safely stored as triglycerides within the healthy adipocyte
(1–5). The inflammation results from the increased recruitment of pro-inflammatory macrophages
into the expanded adipose depots, leading to increased secretion of inflammatory cytokines such
as tumor necrosis factor-α (TNF-α), interleukins (IL), and chemokines (6–8). Together, these
lipotoxic and inflammatory pathways account for virtually all of the features of the metabolic
syndrome including insulin resistance, dyslipidemia, and hypertension.

Lipids, in addition to being major fuel reservoirs (e.g., triglycerides), have important roles in the
regulation of nutrient storage. In particular, sphingolipids such as ceramides are metabolic signals
that accumulate in obesity and trigger evolutionarily conserved cellular responses to lipid overload
(9). Such mechanisms include inhibiting the uptake of glucose and amino acids, leading to the
preferential utilization of free fatty acids (FFAs) for energy; slowing rates of triglyceride lipolysis;
and impairing mitochondrial respiration (9). At higher concentrations, ceramides induce apoptosis
(9). These sphingolipid actions contribute to the tissue dysfunction that underlies non-alcoholic
steatohepatitis, diabetes, and heart disease. Inflammatory cytokines, including TNF-α and IL-1,
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reinforce this signal by accelerating ceramide production (10).
Ceramides thus function at the nexus of lipid metabolism
and inflammation.

Studies in mice reveal that inhibition of ceramide synthesis
resolves hepatic steatosis and improves insulin-stimulated
glucose disposal to slow the progression of cardiometabolic
diseases (11). These ceramide-lowering interventions also alter
adipose tissue metabolism and morphology, enhancing glucose
utilization, and energy expenditure. These manipulations also
decrease adipose tissue inflammation and alter macrophage
polarization, converting them from pro-inflammatory M1-
macrophages into anti-inflammatory M2-macrophages (12).
Herein we will review the synergy between the free fatty
acids (FFAs) and ceramides that accumulate in obesity and
inflammation that accompanies adipose tissue expansion for
the development of cardiometabolic diseases. In addition, we
will discuss the potential therapeutic approaches for targeting
ceramides to reduce inflammation and improve adipose health.

EXCESS FREE FATTY ACIDS INDUCE
METABOLIC DISORDERS

Elevations in circulating FFA resulting from increased nutrient
consumption or unchecked lipolysis have been implicated in
metabolic disorders including insulin resistance, type 2 diabetes,
and cardiovascular disease (13). Emerging studies suggest that
these fatty acids fuel production of deleterious lipid metabolites
such as ceramides while inducing chronic inflammation (3, 6, 14,
15). To this end, FFA, particularly saturated fatty acids such as
palmitate which is a key substrate for ceramide production while
also modulating innate immune cells to elicit a proinflammatory
response, have important roles at the origin of metabolic disease
(16, 17).

PATHWAYS CONTROLLING CERAMIDE
SYNTHESIS AND METABOLISM

Ceramides are precursors of complex sphingolipids (e.g.,
sphingomyelin) that are integral components of cell membranes.
The sphingolipid content of the adipose depots is influenced
by nutrient availability (e.g., increased levels of sphingolipid
precursors such as serine and palmitate), inflammatory signals,
adiponectin, and other factors that control global stress
responses. Ceramides can thus serve as metabolic messengers
that integrate input from a variety of factors associated
with obesity and metabolic disease. Their cellular levels are
determined by three enzymatic pathways: de novo synthesis,
sphingomyelin hydrolysis, and the salvage pathway (Figure 1)
(18, 19).

The de novo synthesis pathway comprises four sequential
enzymatic steps (20). Serine palmitoyltransferase (SPT) catalyzes
the first reaction, condensing palmitoyl-CoA (CoA) and serine to
produce 3-ketosphinganine. This transient intermediate doesn’t
accumulate in cells, as it is rapidly converted to sphinganine
by 3-ketosphinganine reductase (3Ksn). Ceramide synthases
(CERS1-6) then add a fatty acid, ranging in chain length

FIGURE 1 | Schematic depicting the enzymatic pathways involved in cellular

ceramide synthesis. CERS, Ceramide synthase; DES, Dihydroceramide

desaturase; KDSR, 3-ketodihydrosphinganine reductase; SMS, Sphingomyelin

synthase; SMase, Sphingomyelinase.

from 14-carbon to 34-carbon atoms, to sphinganine to produce
dihydroceramides. The CERS enzymes have variable substrate
specificity and unique tissue distributions and account for much
of the diversity in sphingolipids (21). In the fourth and final step,
dihydroceramide desaturase (Degs1 and 2) introduces a critical
double-bond into dihydroceramide, generating ceramides (22).

The second pathway involves the hydrolysis of sphingomyelin
by neutral or acid sphingomyelinase to produce phosphocholine
and re-form ceramide (23).

The third pathway, termed the salvage pathway,
allows for the reformation of ceramides from
sphingolipids after they are degraded in late endosomes
or lysosomes (24). The liberated sphingoid base can
be re-acylated by the aforementioned CERS enzymes,
re-synthesizing ceramides.

PLASMA AND ADIPOSE CERAMIDES
CORRELATE WITH FREE FATTY ACIDS,
MARKERS OF INFLAMMATION, AND THE
SEVERITY OF CARDIOMETABOLIC
DISEASES

Within the last decade, advances in mass-spectrometry
have allowed researchers to confidently assess whether
plasma and tissue ceramide levels correlate with indices
of metabolic diseases. Numerous groups have found that
circulating ceramides and FFAs are elevated in subjects
with insulin resistance, type 2-diabetes, non-alcoholic fatty
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liver diseases, chronic kidney diseases and major adverse
cardiovascular events including mortality (25–35). In parallel,
researchers have shown that circulating inflammatory cytokines
also positively associate with these metabolic outcomes
(36, 37). Interestingly, circulating FFAs, ceramides and
inflammatory cytokines also correlate with one another in
human subjects with coronary artery disease, hepatic steatosis,
or insulin resistance (10, 33, 38–40). These studies suggest
that they may have interrelated roles in the etiology of
metabolic disorders.

Adipose tissue ceramide content and inflammation
have also been evaluated in subjects with obesity, insulin
resistance and/or diabetes. One such study, by the Yki-
Jävinen group, demonstrated that ceramide levels are
elevated in the adipose tissues of individuals with insulin
resistance, independent of obesity (41). In this study, the
tissue also showed increases in inflammatory markers.
The Brüning laboratory also found that ceramides,
particularly C16-ceramides, were elevated in individuals
with obesity (42). They also observed dramatically
increased expression of ceramide synthase 6 (CERS6), the
enzyme that is responsible for generating C16-ceramides.
Additionally, CERS6 expression positively correlated with
insulin resistance.

CERAMIDES ARE MODULATED BY
SEVERAL INFLAMMATORY AND
ANTI-INFLAMMATORY SIGNALING
MOLECULES

The oversupply of precursors such as palmitate and serine
undoubtedly account for much of the ceramide accumulation
that occurs in obesity. Indeed, a small number of dietary
studies have shown that dietary fat intake influences
ceramide synthesis and accumulation (43, 44). As outlined
below, inflammatory modulators also influence the rate of
ceramide production.

Tumor Necrosis Factor-Alpha (TNF-α)
Produces Ceramides to Contribute to
Insulin Resistance
In obesity, the recruitment of macrophages to the expanding
adipose depots can induce an inflammatory state characterized
by increased expression and secretion of inflammatory cytokines
such as TNF-α, IL-6, and IL-1β (6, 15, 45–50). Some of these
cytokines have been shown to produce ceramides (51–53).
In particular, serum and adipose TNF-α are often elevated in
individuals with obesity and/or type 2 diabetes and correlate
with the severity of insulin resistance (54–56) and with levels
of ceramides (33). In cultured cells, the cytokine stimulates
ceramide accumulation by inducing expression of ceramide
synthesis genes [e.g., serine palmitoyltransferase (SPT)]
and increasing expression and activity of sphingomyelin
hydrolyzing enzymes (e.g., sphingomyelinase) (51, 57–62).
Similar effects on ceramide synthesis have been demonstrated
with certain cytokines such as the TNF-α in vivo (63),

which antagonize insulin-stimulated glucose disposal in
rats and humans (64, 65). In cultured adipocytes and
myeloid cells, researchers confirmed that it inhibits insulin
signaling and action via receptor-mediated activation of
sphingomyelinase (66).

In mice, genetic manipulations to ablate TNF-α or its
receptors ameliorate obesity-induced insulin resistance (46, 67).
However, clinical trials targeting TNF-α have generally shown
little or no beneficial effect on systemic insulin sensitivity (68, 69),
indicating that TNF-α lowering is insufficient to combat insulin
resistance in humans.

Toll-Like Receptors Induce Ceramide
Biosynthesis to Contribute to Insulin
Resistance
The lipotoxic environment in obesity increases the supply of
saturated fatty acids that either directly or indirectly activate
toll-like receptor (TLR)-4 (70–74). These pattern recognition
receptors, which are typically involved in innate immune
responses, have been implicated in inflammation and insulin
resistance that accompanies obesity and underlies metabolic
disease. For example, Flier et al. found that mice lacking TLR-
4 were protected from lipid or high fat diet-induced insulin
resistance (17, 75). They also found that long-chain fatty
acids signal via TLR-4 to induce transcription of inflammatory
cytokines (e.g., TNF-α and IL-6), thus reinforcing and enhancing
the inflammatory state. Using similar approaches with various
loss-of-function TLR-4 mouse models, four other laboratories
described essential roles for TLR-4 in obesity and/or insulin
resistance (76–79). Curiously, Shulman et al. found the opposite
result, concluding that TLR-4 was not required for lipid-induced
insulin resistance (80).

Activation of toll-like receptor (TLR)-4, via
lipopolysaccharides (LPS) or a more specific ligand Kdo(2)-lipid
A, induces ceramide accumulation by increasing the expression
of several ceramide synthesis enzymes (77, 81–84). In cultured
myotubes, nuclear factor kappa B (NFκB) was found to be
an obligate intermediate in these TLR-4 mediated effects on
ceramide production (77). In contrast, ablation of TLR-4 in
mice reduces ceramides, and even prevents their synthesis in
models of lipid oversupply (i.e., mice fed a high fat diet or
infused with lipid cocktails) (77). These findings indicate that
TLR-4 enhances ceramide production and reveal the interplay
between TLR-4 and ceramides in the metabolic dysfunction that
accompanies obesity.

The mechanisms controlling TLR-4 activation in obesity have
been controversial. Though saturated fatty acids were initially
speculated to be TLR-4 ligands (70–73), some have argued that
fatty acids signal through indirect signaling mechanisms (74).
Others have argued that this observation is an artifact, likely
due to contamination of the saturated fatty acid preparations
with lipopolysaccharide (85). In an elegant study, Lancaster et al.
found that saturated fatty acids do not bind directly to the TLR-
4 receptors, but rather prime TLR-4 to induce lipid-mediated
inflammatory signaling (74). These authors found that activating
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TLR-4 led to a marked upregulation of ceramides and ceramide-
synthesizing genes (74).

Ceramides Activate the NLRP3
Inflammasome to Increase Cytokine
Secretion
Inflammasomes are large, multiprotein complexes that form
in response to endogenous stress signals, initiating a wide
range of cellular activities that include production of the pro-
inflammatory cytokines (e.g., IL-1β). The best characterized
inflammasome is termed NLRP3 because of the presence of
NOD-, LRR-, and pyrin domain-containing protein 3 within
the complex. Other components include the adapter ASC
and pro-caspase-1. Saturated FFAs were recently found to
induce inflammasome activation in macrophages, prompting
speculation that lipotoxic intermediates such as ceramides might
drive inflammasome activation (49). In both macrophages
and adipocytes, ceramides activate the NLRP3 inflammasome,
promoting cleavage of caspase-1 and subsequent stimulation
of cytokine secretion (86). Subsequent studies found roles for
inflammasomes as a downstream ceramide effector in other
cell types (87–89), Within adipocytes, this ceramide interaction
with the NLRP3 inflammasome may contribute to the adipose
inflammation that contributes to insulin resistance. Interestingly,
inhibiting de novo ceramide biosynthesis in macrophages did
not influence the inflammasome (90), nor did it impact glucose
tolerance (11, 12, 90). Moreover, palmitate has been shown to
elicit activation of inflammasome by modulating the AMPK-
ROS-autophagy pathway, suggesting alternativemechanisms link
FFAs to this immune complex (49).

Plasminogen Activator Inhibitor-1 Has a
Bidirectional Relationship With Ceramides
Plasminogen activator inhibitor-1 (PAI-1) is a glycoprotein that
is synthesized in endothelial cells, liver, adipose tissue, and
other tissue types. It inhibits the serine proteases that covert
plasminogen into the active fibrinolytic enzyme plasmin (91,
92). Plasma PAI-1 concentrations are elevated in obesity and
diabetes and correlate with the severity of insulin resistance (93–
95). Pharmacological inhibition or genetic ablation of PAI-1 in
mice protects them from both obesity and insulin resistance
while improving adipocyte health and decreasing adipose
inflammation (96–99). PAI-1 ablation ensures this protection,
at least in part, by reducing accumulation of ceramides in
adipocytes, which it accomplishes by decreasing expression
of ceramide synthesis genes (96). Conversely, ceramides were
reported to induce PAI-1 expression in adipocytes (100),
revealing bidirectional interplay between PAI-1 and ceramides
that modulates adipose tissue inflammation and function.

Adiponectin Receptors Are Ligand
Activated Ceramidases
The adipokine adiponectin attenuates many features of diabetes
and heart disease, including insulin resistance, dyslipidemia,
inflammation and cardiomyocyte, endothelial cell and beta-cell
apoptosis (101–106). Holland, Scherer et al. were intrigued by

the fact that adiponectin and ceramides have such oppositional
roles in biology. Moreover, they observed a sequence similarity
between adiponectin receptors (AdipoRs) and a family of
ceramidases. They thus tested the provocative idea that
adiponectin elicited its broad spectrum of actions by reducing
(via diacylation) ceramides. They confirmed that the receptor
had ceramidase activity that is activated by ligand binding
(105). In mice, the cardioprotective and anti-diabetic actions
of adiponectin were accompanied by reductions in ceramides
(105). Moreover, they identified key residues in AdipoRs that
were required for ceramidase activity and for all of adiponectin’s
downstream actions (105). These findings were then validated
by Vasiliauskaite-Brooks et al. who crystalized the AdipoRs in
presence of short-chain ceramide analogs, discovering it bound
to the liberated sphingoid base (107, 108). They also confirmed
that the purified receptors possess ceramidase activity (107, 108).
These studies suggest yet another key regulatory mechanism that
controls cellular ceramides in order to modulate inflammation
and other features of the metabolic syndrome.

CONVERGENCE OF ADIPOSE CERAMIDES
AND INFLAMMATION TO CONTROL
INSULIN RESISTANCE

Insulin resistance is a defining attribute of the metabolic
syndrome that increases one’s risk for diabetes and heart disease.
As noted above, numerous studies have described correlational
relationships between insulin resistance, circulating cytokines,
and ceramides in clinical populations (9, 21, 22). Studies in
rodents further indicate that ceramides play causative roles in
insulin resistance, often linking inflammatory agonists to their
deleterious effects on glucose uptake and utilization.

The earliest studies evaluating the role of ceramides in
insulin resistance analyzed their effects in 3T3-L1 adipocytes,
a murine cell line that shows many of the hallmark metabolic
attributes of human adipose tissue. Those studies revealed that
ceramides inhibit glucose uptake by inhibiting activation of
Akt/PKB (109), a serine/threonine kinase that is an obligate
intermediate in insulin-stimulated glucose transporter GLUT4
translocation, as well as glycogen and protein synthesis and
protection from apoptosis. Curiously, ceramides did not inhibit
the signaling events that precede Akt/PKB activation, such as
the activation of PI3-kinase or generation of its product, 3’-
polyphosphoinositides (110). Moreover, they blocked activation
of the enzyme by numerous other stimuli, including those that
don’t utilize the signaling scaffold insulin receptor substrate-
1 (110), which had recently been identified as a putative site
of insulin resistance (111). This observation prompted a flurry
of studies seeking to elucidate the signaling mechanisms that
linked elevations in ceramides to the inhibition of this important
enzyme. These studies revealed that ceramides inhibit Akt/PKB
by two known mechanisms, which impact different portions of
the enzyme (112). Ceramides dephosphorylate key activating
residues through protein phosphatase 2A(PP2A) (112), which
is an established ceramide effector (113). Through an alternate
mechanism, ceramide blocks the translocation of Akt/PKB to
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FIGURE 2 | Schematic depicting interactions between ceramides and inflammatory agonists in adipose tissue. Ceramide accumulation elicits deleterious effects on

adipose tissue function by activating Nlrp3 inflammasome that induces inflammation, inhibition of Akt via PKCζ to abrogate insulin signaling, and promoting excessive

lipid storage by inhibiting HSL. The immunomodulatory adiponectin exhibits some of its beneficial effects by stimulating ceramidase activity that converts ceramides to

sphingosine. Akt, Protein Kinase B; CD-36, cluster of differentiation 36; AdipoR, Adiponectin receptor; CDase, Ceramidase; IKK, Ikappa kinase; IL, interleukin; IR,

insulin receptor; LPS, lipopolysaccharide; NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells; Nlrp3, NLR family, pyrin domain containing 3; PAI-1,

Plasminogen activator inhibitor 1; PKC, protein kinase C; PP2A, Protein phosphatase 2A; sFFA, Saturated fatty acids; TLR4, Toll like receptor-4; TNF-α, Tumor

necrosis factor alpha; TNFR, Tumor necrosis factor alpha receptor; uPAR, Urokinase-type plasminogen activator receptor.

the plasma membrane (112). Studies by the Hundal laboratory
subsequently revealed that the translocation effect was due to
ceramide actions on atypical protein kinase C (PKCζ), which
phosphorylates a key residue in the pleckstrin homology domain
of Akt/PKB to block its recruitment to the plasma membrane
(114–117). These disparate ceramide mechanisms are clearly
separable, as they impact different protein domains and are
responsive to distinct inhibitors (112). They also vary by cell type,
seeming to be contingent on the relative quantity of caveolar
membranes. Adipocytes that have a high abundance of caveolae
favor the PKCζ-Akt/PKB axis rather than the PP2A-Akt/PKB axis
(118) (Figure 2).

These studies suggested that ceramides, induced by either the
oversupply of fatty acid substrates or the inflammation-induced
upregulation or activation of ceramide-producing enzymes,
might drive insulin resistance in vivo. Data in rodents support
this hypothesis. For example, a pharmacological inhibitor of SPT
(i.e., myriocin) prevents and/or reverses insulin resistance in
high fat diet fed mice (12, 77, 119–121), lipid-infused rats (121),
fructose-fed hamsters (122), and leptin-deficient mice and rats
(i.e., Zucker fa/fa rats and ob/ob mice) (121). It also resolves
steatosis, decreases adipocyte size, and enhances recruitment of
M2 macrophages into subcutaneous adipose tissue (12). Similar
findings were obtained with pharmacological (i.e., fenretinide) or
genetic (i.e., gene knockout) inhibition of DES1 (11, 123, 124).
Many of these actions could be explained by ceramide actions
within the adipocyte. Adipocyte-specific depletion of SPTLC2,
a critical subunit within the SPT complex, or DES1 improved
insulin sensitivity, resolved hepatic steatosis, and decreased

inflammation of the adipose beds (12). A comparable spectrum
of effects was obtained using adipose-specific over-expression of
acid ceramidase (125).

While the mechanisms that allow ceramide to modulate lipid
and inflammation-induced insulin resistance are fairly clear, the
means by which adipocyte ceramides induce the recruitment of
macrophages are not. Of note, most of the protective actions of
ceramide depletion are unlikely to be driven by ceramides within
the macrophage, as depleting SPTLC2 or DES1 from myeloid
cells did not influence glucose homeostasis (11, 12, 90).

CONVERGENCE OF ADIPOSE TISSUE
CERAMIDES AND INFLAMMATION TO
CONTROL ENERGY EXPENDITURE

In mice, myriocin also increases energy expenditure via a
mechanism that involves changes to the adipose depot. The
SPT inhibitor increased the allotment of adipocytes that express
uncoupling protein 1 (UCP1) (12), a mitochondrial protein that
dissipates the proton gradient generated by the electron transport
chain. This uncoupling reduces mitochondrial membrane
potential and leads to high rates of substrate oxidation, heat
production and energy expenditure (126). Similar observations
were obtained following the adipocyte-specific depletion of the
SPTLC2 subunit (12).

Myriocin also caused a shift in macrophage polarization from
M1 to M2, which has been shown to induce adipose “browning”
characterized by the upregulation of UCP1. Given these data,
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we profiled macrophage content in adipose tissue following
a myriocin intervention. This revealed a recruitment of M2-
macrophages in the adipose tissue that was associated with
a reduction in expression of key pro-inflammatory cytokines
(e.g., IL-6, MCP-1, and TNF-α) and an induction of a crucial
anti-inflammatory cytokine IL-10 (11). To resolve whether
these improvements were due to cell-autonomous ceramide
actions within the adipocytes or macrophages, we depleted the
Sptlc2 gene from both adipocytes and macrophages. Adipocyte-
specific depletion recapitulated the effects of myriocin and
increased the recruitment of M2-macrophages and expression of
thermogenic genes (e.g., Ucp1, Pgc1a, and Prdm16). These data
indicated that adipocyte sphingolipids likely drove the cellular
responses that increased energy expenditure. By comparison,
depleting Sptlc2 from macrophages failed to impact energy
expenditure. Moreover, ectopic ceramides were also shown
to inhibit mitochondrial respiration and block activation of
hormone-sensitive lipase by β-adrenergic agonists. The effects on
lipolysis were mediated by the aforementioned ceramide effector
PP2A (Figure 2).

Beyond the effects on UCP1 and HSL, ceramides seem to
slow energy expenditure by inhibiting mitochondrial respiration.
Indeed, addition of ceramides to cells is sufficient to inhibit
mitochondrial activity (12). Hammerschmidt et al. (127)
elucidated one mechanism that underlies this effect, determining
that ceramides bind to mitochondrial fission factor (MFF) to
alter mitochondrial morphology and reduce respiratory capacity
(127). This effect is specific for the C16-ceramides produced by
CERS6 (127).

Two other studies have evaluated the effects of reducing
ceramides in white adipocytes. Curiously, while these studies
did find that depleting ceramides from adipose tissue influenced
glucose and lipid homeostasis, neither intervention induced
adipose browning. One was the aforementioned study evaluating
the consequence of acid ceramidase expression, while the other
was our study involving DES1 depletion (11). While these
interventions affected mitochondrial respiration, they did not
induce UCP1 expression. We thus conclude that the effect on
UCP1 is not due to direct ceramide actions, but rather to another
intermediate in the pathway. One attractive hypothesis is that the
browning effects are mediated by the CERS enzymes (128, 129),
which have been shown to be transcriptional repressors that
move to the nucleus and regulate lipase expression following
encounters with fatty acids. By comparison, we conclude that
the effects on mitochondrial fission and lipolysis (i.e., HSL)
are due to direct actions of the sphingolipid analogs on

MFF and PP2A, respectively. The effects on mitochondrial
morphology/respiration and HSL were observed in all of the
interventional studies described.

CONCLUSION

Inflammation has long been known to be a hallmark of
obesity, owing to the recruitment of macrophages to adipose
depots and the enhancement of TLR-4 signaling by saturated
fatty acids. Herein we discussed how the impact of chronic
inflammation on host metabolism are linked to ceramide-driven
lipotoxicity. Ceramides, which are universally upregulated
by inflammatory stimuli, inhibit insulin-stimulated glucose
disposal and mitochondrial respiration. They thus provide
a convergence point that links overnutrition/dyslipidemia
and inflammation to drive many of the key features of the
metabolic syndrome. Curiously, manipulating ceramides
in adipose tissue also influences the inflammatory state of
the organ, suggesting the existence of feedback mechanisms
that involve ceramide-dependent, adipocyte autonomous
signals that control the immune cell population (e.g., via the
NLRP3 inflammasome). Additional research on ceramides
and their inflammatory regulators thus holds great promise
as a means to combat metabolic disease and improve adipose
tissue health.
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