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Mesenchymal stem cells and
exosomes improve cognitive
function in the aging brain by
promoting neurogenesis
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Biologically speaking, normal aging is a spontaneous and inevitable process of

organisms over time. It is a complex natural phenomenon that manifests itself

in the form of degenerative changes in structures and the decline of functions,

with diminished adaptability and resistance. Brain aging is one of the most

critical biological processes that affect the physiological balance between

health and disease. Age-related brain dysfunction is a severe health problem

that contributes to the current aging society, and so far, there is no good

way to slow down aging. Mesenchymal stem cells (MSCs) have inflammation-

inhibiting and proliferation-promoting functions. At the same time, their

secreted exosomes inherit the regulatory and therapeutic procedures of

MSCs with small diameters, allowing high-dose injections and improved

therapeutic efficiency. This manuscript describes how MSCs and their derived

exosomes promote brain neurogenesis and thereby delay aging by improving

brain inflammation.
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Introduction

Aging is a topic that has fascinated scientists and philosophers throughout history
(da Costa et al., 2016). As the global population is aging, the prevention of brain aging is
a common problem. Aging is associated with a progressive decrease in the effectiveness
of mechanisms that maintain homeostasis of the body and its organs and tissues, which
leads to an increased risk of various pathologies and death (Isaev et al., 2019). At present,
China has entered an aging society, and it is expected that in 2050, 30% of the total
population will be over 60 years old, The problem of aging is becoming increasingly
severe. It is common in science to think of human aging as a set of characteristics that
change over time and to refer to someone as “older” or “younger” (Ferrucci et al., 2018).
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Brain aging is a significant cause of most neurodegenerative
diseases and is often irreversible and lacks an effective treatment,
leading to a dramatic decline in quality of life (Poulose
et al., 2017). As with other organ systems, brain function
gradually declines during the aging, mainly in learning and
memory functions (Mattson and Arumugam, 2018). Cognitive
dysfunction can be described as an imbalance in the structural
and functional organization of the brain at all three levels: the
molecular/cellular level, the local circuit level, and the large-
scale network level. Each of these levels interacts dynamically
with the others and exhibits the characteristics of an open
complex system (Birle et al., 2021). Cognitive function is
complex and may also be affected by diet, and adequate nutrition
is effective in preventing cognitive decline (Martínez García
et al., 2018). Therefore, since the development of medicine,
scientists have been working to explain the phenomenon of
cognitive decline in the elderly.

Some studies point out that age-related cognitive decline
is characterized by a considerable reduction or even death of
neurons in the brain (Foster, 2006; Wang et al., 2021). In the
hippocampus (and perhaps in other brain areas), neuronal death
can partially compensated by neuronal generation. However,
neuronal production is significantly impaired with age (Isaev
et al., 2019). In the adult mammalian hippocampus, new
neurons are derived from the stem and progenitor cell divisions,
a process known as adult neurogenesis (Cope and Gould,
2019). Neurogenesis occurs throughout life in the ventricular-
subventricular zone (V-SVZ) of the lateral ventricles and the
subgranular zone (SGZ) of the hippocampal dentate gyrus
(DG) (Apple et al., 2017). Neurogenesis plays a critical role
in neuroplasticity, brain homeostasis, and central nervous
system (CNS) maintenance. It is essential to maintaining
cognitive function and repairing damaged brain cells affected
by aging and brain disease (Poulose et al., 2017). Adult
hippocampal neurogenesis directly impacts cognitive function
since hippocampal formation is closely linked to the storage
and processing of memory (Bekinschtein et al., 2010; Araki
et al., 2021). In recent years, evidence has accumulated that
neurogenesis can restore a more youthful state during aging.
In addition, increased adult neurogenesis contributes to a
variety of human diseases, including cognitive impairment
and neurodegenerative diseases (Niklison-Chirou et al., 2020).
The appearance of neurodegenerative diseases (including
Alzheimer’s and Parkinson’s) increases exponentially with age
(Grimm and Eckert, 2017), so aging is considered to be the
most critical risk factor for almost all neurodegenerative diseases
(Saha and Sen, 2019).

Neurogenic inflammation is triggered by neural activation,
resulting in neuropeptide release, rapid plasma extravasation
and edema, leading to conditions such as headaches.
Neuroinflammation is a local inflammation of the peripheral
nervous system (PNS) and CNS (Matsuda et al., 2019).
Neuroinflammation has been shown to alter neurogenesis in

adults. Various inflammatory components, such as immune
cells, cytokines, or chemokines, regulate neural stem cells’
survival, proliferation, and maturation (Sung et al., 2020).
During normal brain aging, increased inflammatory activity is
caused by the activation of glial cells (Jin et al., 2021). It has
been shown that mesenchymal stem cells (MSCs) can stimulate
neurogenesis and angiogenesis and delay neuronal cell death
(Dabrowska et al., 2019). At the same time, their secreted
exosomes are smaller in size and cause less immune response in
the body, which is a hot topic of current research (Figure 1).

Mechanisms and manifestations of
brain aging

Cellular senescence is an important factor in tissue
deterioration and the accumulation of senescent cells is
considered a hallmark of and a pathological cause of aging
(Tominaga and Suzuki, 2019). Among the organelles most
closely related to senescence is the nucleus (Niedernhofer et al.,
2018), mitochondria (Campisi et al., 2019), and lysosomes
(Levine and Kroemer, 2019; Wong et al., 2020). The core is
mainly involved in the cell cycle, telomere, and epigenomic
changes (Pal and Tyler, 2016). A new study finds that age-related
epigenetic changes can be reversed by interventions (Kane and
Sinclair, 2019); Mitochondria are mainly involved in oxidative
stress due to the increase of reactive oxygen species (ROS)
and mutations in mitochondrial DNA (mtDNA), inflammation,
and apoptosis (Jang et al., 2018), which are important factors
that induce the onset of aging; In lysosomes, it was found that
lysosomes and lysosome-related organelles play an important
role in the regulation of aging and longevity (Soukas et al., 2019),
which is mainly associated with autophagy (Wong et al., 2020);
in the cytoplasmic matrix and extracellular, etc., are primarily
involved in signaling pathways related to inflammation and
fibrosis (Jiang et al., 2017), such as Meschiari et al. (2017) who
stated that cardiac fibrosis is usually one of the hallmarks of
cardiac aging. These signaling pathways release inflammatory
factors and chemokines that contribute to the deterioration of
the senescent cells’ microenvironment, which transmits aging
signals and affects the transformation of surrounding healthy
cells into senescent cells.

The brain is the most complex and vital human organ
(Derbyshire, 2018; Hussain et al., 2019; Benito-Kwiecinski and
Lancaster, 2020), consuming more energy than any other tissue
in proportion to its size. Microstructural degeneration of the
gray and white matter in the human brain during aging leads to
tissue softening and tissue atrophy (Blinkouskaya et al., 2021).
The rate of brain atrophy during aging can predict whether
someone will develop cognitive impairment and dementia,
and analysis of cross-sectional histological sections suggests
that atrophy is the combined result of dendritic regression
and neuronal death (Mattson and Arumugam, 2018). Some
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FIGURE 1

In the aging brain, the number of neuronal cells is significantly reduced, the levels of inflammatory factors IL-1β, IL-6, and TNF-α are increased
leading to neuroinflammation, and the levels of reactive oxygen species (ROS) are increased causing oxidative stress in the brain. After treatment
with exosomes secreted by mesenchymal stem cell-extracellular vesicle (MSC-EV), the number of neuronal cells increased, the levels of
inflammatory factors IL-1β, IL-6, and TNF-α decreased, and the levels of ROS decreased thereby reducing oxidative stress in the brain.

scholars have used magnetic resonance imaging (MRI) to find
that the frontal, parietal, and temporal lobes decrease with age
(Deelchand et al., 2020) while the frontal, parietal, and temporal
lobes control language, memory, auditory (Sur and Golob,
2020), motor (Singhal et al., 2020), and attention functions of the
human brain. Initially, these aging mechanisms occur mainly at
the cellular level due to slowed metabolic activity and ischemia,
such as inflammation, mitochondrial dysfunction (Stefanatos
and Sanz, 2018), oxidative stress (Lushchak, 2021), and calcium
dysregulation (Chandran et al., 2019), but then gradually
manifest themselves in tissue and eventually organ-level changes
in brain shape (Blinkouskaya et al., 2021). In addition, some
environmental factors can affect the rate of structural changes in
the brain during aging. For example, adequate aerobic exercise
increases hippocampal volume, effectively improving memory
function (Erickson et al., 2011); overweight and obesity can lead
to hippocampal atrophy and affect brain health (Cherbuin et al.,
2015).

Mesenchymal stem cell and
exosome properties

Mesenchymal stem cells, officially named 29 years ago,
represent a class of cells in the human and mammalian

bone marrow (BM) and periosteum that can be isolated and
expanded in culture while maintaining their ability to be
induced to form a variety of different cells in vitro (Caplan,
2017). MSCs have a solid proliferative capacity (Naji et al., 2019)
and can self-renew and differentiate into tissue-specific cells
(e.g., osteoblasts, chondrocytes, and adipocytes), and therefore
have great potential in regenerative medicine (Samsonraj et al.,
2017; Fu et al., 2019). In addition to its pluripotency, MSC has
immunomodulatory properties and has been investigated as a
potential treatment for various immune diseases (Li and Hua,
2017). MSCs influence most immune effector cells through
direct contact with immune cells and local micro-environmental
factors. According to studies, the immunomodulatory effects of
MSC are mainly delivered through cytokines secreted by MSC.
However, apoptotic and metabolically inactivated MSCs have
recently shown immunomodulatory potential, with regulatory
T cells and monocytes playing a pivotal role (Song et al.,
2020). Secondly, since MSCs do not express significant
histocompatibility complexes and immunostimulatory
molecules, they are not detected by immune surveillance
and do not cause graft rejection after transplantation, which is a
significant breakthrough point for regenerative medicine (Han
et al., 2019). Various animal models (myocardial infarction
mice, burned mice, and diabetic mice) and clinical trials have
shown that MSCs show good results in repairing damaged
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TABLE 1 Application of mesenchymal stem cell (MSC) and exosome in brain aging.

Type Mechanism of action References

hBM-MSCs Improve brain aging by repairing nerve cells in the hippocampus (Budni et al., 2015)

MSCs Improve brain aging by promoting angiogenesis (Gervois et al., 2016)

MSCs Maintain the resting phenotype of microglia or 220 control microglia activation by producing multiple factors (Marschallinger et al., 2020)

MSC-Exo Regulates the brain infiltration of leukocytes and thus protects the nerves (Pardo et al., 2017)

MSC-Exo Inhibit microglia activation to shift them back to function (Wang et al., 2022)

MSC-Exo Neuroprotective against oxidative stress and also expands neuronal nerve density (Zhang et al., 2017)

MSC-Exo Overexpressed miR-26a in exosomes could activate the mTOR pathway to enhance axonal growth and renewal in the
nervous system, thus promoting neurogenesis

(Reza-Zaldivar et al., 2019)

tissues (Oh et al., 2018; Selvasandran et al., 2018; Xu et al.,
2018). MSCs have the homing ability, which means they can
migrate to the site of injury and secrete some growth factors,
cytokines, and chemokines that are beneficial for tissue repair
(Zhang S. J. et al., 2016; Ullah et al., 2019). Many experimental
studies in ischemic stroke have shown that MSCs are able to
modulate immune responses and play a neuroprotective role by
stimulating neurogenesis, oligodendrogenesis, astrogliogenesis,
and angiogenesis. MSCs may also have the ability to replace
damaged cells, but paracrine factors released directly into the
environment or via extracellular vesicles (EVs) appear to play
the most significant role (Dabrowska et al., 2019).

Exosomes are nanoscale vesicles (30–150 nm in diameter)
secreted by most cells (Xunian and Kalluri, 2020). They are
surrounded by a lipid bilayer and carry a variety of biomolecules,
including proteins, lipids, metabolites, RNA, and DNA. When
exosomes are taken up by other cells, these exosomes are
transferred and affect the phenotype of the recipient cells.
Exosomes play a crucial role in bioactive molecule transport,
immune response, antigen presentation, protein regulation,
cellular homeostasis, and extracellular matrix remodeling (Mori
et al., 2019). Thus, exosomes are considered to be an essential
mediator of intercellular communication (Wortzel et al., 2019).
MSC-derived exosomes contain cytokines, growth factors,
lipids, and messenger RNA (mRNA) and regulate microRNAs
(miRNAs) function (Phinney and Pittenger, 2017). Exosomes
mainly act on the organism in a paracrine manner (Mori et al.,
2019), and it has been established that the mode of action of the
therapeutic effect of stem cells is mainly paracrine mediated by
stem cell secretory factors (Ha et al., 2020), so it is presumed that
exosomes primarily act during stem cell therapy. Exosomes have
a relative therapeutic effect on a variety of diseases. In a mouse
model of acute kidney injury (AKI), MSC-derived exosomes
(MSC-Exo) accumulated mainly in inflamed kidneys, whereas
in a brain hemorrhage model, MSC-Exo was detected in the
injured brain (Harrell et al., 2019). Two proteins commonly
found in exosomes, CD81 and tumor susceptibility gene 101
(TSG101), have been confirmed by Western blot (Riazifar
et al., 2019; Vakhshiteh et al., 2019). Exosome therapy has

shown similar therapeutic effects to direct MSC transplantation
without causing multiple adverse outcomes. The complexity of
the integrated function of its contents improves the therapeutic
effect of MSC-Exo (Zhang B. et al., 2016). Multiple studies
have found that after intravenous administration of exosomes,
they are predominantly distributed in vascular-rich organs and
organs associated with the reticuloendothelial system, such
as the liver, lungs, spleen and kidneys (Aimaletdinov and
Gomzikova, 2022). In addition, Xu et al. (2020) found that DIR
(lipophilic, near-infrared fluorescent anthocyanine dye)-labeled
exosomes could be detected in mouse brain after intravenous
injection of exosomes by near-infrared fluorescence (NIRF).

Therapeutic effects of
mesenchymal stem cells and
exosomes on brain aging

Mesenchymal stem cells repair
neuronal cells in the hippocampus to
slow brain aging

Aging is a natural process; the most obvious outward
manifestation accompanying brain aging is a decline in
cognitive function. The structure to consider for cognitive
decline in the brain is necessarily the hippocampus-a brain
region known to play an essential role in learning and memory
consolidation as well as in affective behavior and emotion
regulation and whose functional and structural plasticity [e.g.,
neurogenesis (Boldrini et al., 2018)] occurs in adulthood.
Neurobiological changes seen in the aging hippocampus,
including increased oxidative stress and neuroinflammation,
altered intracellular signaling and gene expression, and reduced
neurogenesis and synaptic plasticity, are thought to be
associated with age-related declines in cognitive function
(Bettio et al., 2017). In animal experiments, the Morris water
maze is usually used to test the learning memory ability
of mice. In contrast, after intracerebroventricular injection
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of MSC of human BM origin, the aged MSC-treated group
showed significant improvements in spatial memory accuracy
and prolonged persistence in single- and three-hole target
areas as demonstrated in the Morris water maze compared
with the aged control group. MSC treatment increased the
number of neuroblasts in the hippocampal DG, decreased
the number of reactive microglia, and restored presynaptic
protein levels compared to older controls. And after MSC
transplantation, MSCs mainly migrated to the DG, CA1,
and CA3 regions of the hippocampus. Cognitive deficits are
associated with altered levels of several neurological factors,
such as brain-derived neurotrophic factor (BDNF), nerve
growth factor (NGF), and glial cell-derived neurotrophic
factor (GDNF) (Budni et al., 2015). In contrast, human
MSCs express a variety of neuromodulators that promote
neuronal survival and neurogenesis (Crigler et al., 2006). We
can see this result in the hematoxylin–eosin (HE) pathology
and Nissl staining of the MSC-treated and senescent control
groups. This experiment concluded that intracerebroventricular
injection of human bone marrow-derived mesenchymal stem
cells (hBM-MSCs) was effective in improving spatial memory
in aged rats and that the treatment improved some of
the functional and morphological brain characteristics that
are typically altered in aging rats (Zappa Villar et al.,
2019).

Mesenchymal stem cells slow brain
aging by promoting angiogenesis

Gervois et al. (2016) discussed that the neuroprotective
effect was mainly attributed to soluble factors secreted by stem
cells. Furthermore, it has been shown that stem cells can form
vascular structures and secrete pro-angiogenic factors in vitro,
positively influencing the growth of blood vessels in vitro and
in vivo (Gervois et al., 2016). For example, cerebral ischemia is
the most common disease in the elderly (Lappin et al., 2017).
Age is the main unmodifiable risk factor for cerebral ischemia.
When located in the inflammatory microenvironment in vivo,
MSC can release a variety of angiogenic and neurotrophic
factors as well as anti-inflammatory molecules; in addition,
MSC appears to have an excellent homing ability when
administered by systemic routes. Several studies have shown
that bone marrow-derived stem cell transplantation in the
peripheral circulation improves neurological function and
reduces infarct volume. Cellular therapies using MSCs can
enhance endogenous repair mechanisms in the damaged brain
by supporting the processes of neoangiogenesis, neurogenesis,
and neural reorganization. The mechanism by which MSCs
improve infarcted brain tissue appears to be more related to the
ability of MSCs to release neuroprotective factors (a paracrine
mechanism) than to their ability to replace (Sandu et al.,
2017).

Mesenchymal stem cells and its
secreted exosomes slow brain aging by
suppressing the expression of
pro-inflammatory factors

Aging is characterized by developing a persistent pro-
inflammatory response (Franceschi et al., 2007), and the aging
brain is also susceptible to inflammation (Jauhari et al., 2020).
Yet, inhibiting of pro-inflammatory factor expression alleviates
cognitive impairment in the brain (Yan et al., 2022). Microglia
are resident immune cells of the CNS and play a key role in
maintaining brain homeostasis (Aguzzi et al., 2013). In the aging
brain and neurodegeneration, microglia lose their homeostatic
molecular signature and can promote increased production
of pro-inflammatory cytokines (Marschallinger et al., 2020).
Studies have demonstrated that reactive microglia infiltrate
the hippocampus in aging rats and cause it to exhibit an
inflammatory state (Pardo et al., 2017). MSC can maintain the
resting phenotype of microglia or control microglia activation
by producing multiple factors (Yan et al., 2013), thereby
controlling the inflammatory response and delaying brain aging.
Studies have shown that exosomes obtained from MSC secretion
also have anti-inflammatory effects. It regulates the brain
infiltration of leukocytes and thus protects the nerves (Wang
et al., 2022). Inflammatory responses have long been associated
with neurodegenerative processes. And TNF-α, IL-1β, and
IL-6, cytokines that support inflammation, are significantly
increased in the aging brain. Cui et al. (2019) found that
the pro-inflammatory regulators TNF-α, IL-1β, and IL-6 were
significantly reduced in the brains of aging mice after MSC-
Exo treatment. In the Morris water maze test, the MSC-Exo-
treated group significantly reduced escape latency from 3 days
after acquisition training, and learning and memory abilities
were significantly improved in mice treated with MSC-Exo.
Thus, MSC-derived exosomes can rescue memory deficits by
modulating the inflammatory response (Cui et al., 2019). Data
suggest that MSC-derived exosomes can enter microglia and
inhibit their activation to shift them back to function, thereby
suppressing inflammation and promoting recovery of brain
function (Chen et al., 2020).

Mesenchymal stem cells and its
secreted exosomes slow brain aging by
promoting neurogenesis

Recent studies have shown the neurogenesis in the adult
brain (de Godoy et al., 2018). In addition, the treatment
of MSCs has been shown to stimulate neurogenesis in
the rat brain and is proposed to be implemented in a
number of neurodegenerative diseases (Gobshtis et al., 2017;
Kho et al., 2018). Some scientists have also used exosomes
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secreted by MSCs for treatment and found that exosomes
promote neurogenesis in the subventricular zone (SVZ) and
DG of the hippocampus and reduce cognitive impairment
associated with Parkinson’s disease, stroke, and traumatic brain
injury (Yang et al., 2017; Zhang et al., 2017). From the
preceding, it is known that MSC-derived exosomes disrupt the
polarization of M1 microglia and trigger their transition to
the M2 phenotype, thereby significantly reducing inflammation.
In addition, exosome treatment is neuroprotective against
oxidative stress and also expands neuronal nerve density (Reza-
Zaldivar et al., 2019). Several studies provide evidence that
exosomes interact with neurogenic ecotopes through miRNA
transfer to neural precursor cells, triggering neural remodeling
events, neurogenesis, angiogenesis, and synaptogenesis (Cheng
et al., 2018). Some scientists have also modified exosomes
with miRNAs. For example, Chen et al. (2021) found that
elevated miR-26a enhanced axonal growth in hippocampal
neurons and axonal regeneration in the PNS, and then they
overexpressed miR-26a in exosomes and found that it could
activate the mammalian target of rapamycin (mTOR) pathway
to enhance axonal growth and renewal in the nervous system,
thus promoting neurogenesis (Table 1).

Discussion

Based on the data collected, it is known that brain aging
subsequently increases the incidence of neurodegenerative
diseases, which seriously affect the quality of life of the elderly.
Scientists have been seeking better ways to slow down aging,
and MSCs and their derived exosome therapies are emerging
promising strategies for treating various diseases. In recent
years, there has been increasing research interest in exosomes,
their innate ability to transport genetic material, protect it
from cellular degeneration, and deliver it to recipient cells
in a highly selective manner, suggesting that MSC-derived
exosomes are an ideal delivery system for small molecules and
a means of gene therapy for cancer treatment and potentially
regenerative drugs. In addition, encouraging preclinical data
suggest that MSC-derived exosome therapies may be superior to

cell-based therapies in terms of safety and versatility. Today, the
preparation of MSCs has become proficient and the extraction
of exosomes is being refined. However, the technology for
purification of exosomes after extraction still needs to be
addressed. Furthermore, the progression of exosomes on tumors
has been widely reported in the last decade or so. For example,
MSC-derived exosomes from bone marrow (BM MSCs)
stimulate the hedgehog signaling pathway in osteosarcoma
and gastric cancer cell lines, thereby promoting tumor growth
(Vakhshiteh et al., 2019). Therefore, the translation of therapies
from the laboratory to the clinic requires a clear understanding
of component characterization, immune response, etc., in order
to optimize their clinical application.
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