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A significant amount of research investigations, spanning several
decades, has unequivocally determined that cell death pathways,
and their multi-faceted immunomodulatory activity, has major
implications for health and disease [1, 2]. The role of cell death
immunology is particularly impactful in the context of cancer or
infection [3, 4]. Harsh conditions, resulting from infection
orchestrated by pathogenic microbes (especially bacteria or
viruses) or due to physicochemical stressors within tumour
microenvironment (TME), induce cell death in specific target cells
[5, 6]. In case of infections, such target cells predominantly consist
of cells against which pathogenic microbes show specific tropism
(e.g., epithelial, or immune cells) [7], or cells that die during host
level-responses against the infection (e.g., neutrophils, macro-
phages, or T cells) [8]. In case of cancer, such target cells
predominantly consist of cancer cells unable to cope with genetic
instability or TME-associated stressors (e.g., hypoxia, acidosis, or
nutrient-deprivation), followed by immune cells that die due to
TME-associated stressors (e.g., neutrophils, dendritic cells) or
cancer-driven direct induction of dysfunction or exhaustion (e.g.,
CD8+T cells) [6, 9, 10]. Such cell death induced due to the
progression of infection or a tumour, largely supports rather than
suppress, the severity of disease and patient mortality [11].
Therapeutic interventions aimed at disease amelioration also
operate via induction of cell death, especially in the case of cancer,
e.g., conventional cytotoxic therapies (like chemotherapy, targeted
therapy, radiotherapy) [12, 13], and immunotherapies (like
immune checkpoint blockers [ICBs], T cell-based therapies,
dendritic cell [DC] vaccines, and oncolytic viruses) [14–16].
Although the primary aim of therapies against infection is not
orientated toward cell death induction per se, yet this could be a
potential side-effect of several such modalities e.g., antibiotics or
anti-viral medications [17].
Cell death has a major influence on the TME and the infected

tissue, because dying/dead cells secrete or passively release an
overabundance of immunomodulatory factors [18]; e.g., small
metabolites including extracellular ATP or other nucleic acids and
lipids [19]; cytokines like interleukin 1 beta (IL1β), tumour necrosis
factor (TNF), type I interferon (IFN), IL6, IL33, and transforming
growth factor beta 1 (TGF-β) [20, 21]; mitochondria-associated
factors like mitochondrial DNA (mitDNA) [22, 23]; chemokines like
C-X-C motif chemokine ligand 1 (CXCL1), CXCL11, CXCL2, CXCL8,
CXCL10, CXCL3, CXCL9, C-X3-C motif chemokine ligand 1
(CX3CL1), and C-C motif chemokine ligand 2 (CCL2) [24]; and a
series of danger signals or damage-associated molecular patterns
(DAMPs), like surface-exposed calreticulin (CALR) or extracellular
high mobility group box 1 (HMGB1) [25]. Together with the
cancer-relevant or microbes-derived antigens that associate with
the dying cells, and the immunological composition of the TME or
site of infection, above immunomodulatory factors regulate the
immunological impact of cell death on disease progression or
inhibition [26]. Interestingly, a spatiotemporally defined

combination of danger signals or DAMPs, cytokines or chemo-
kines, and metabolites, emitted by dying cells can drive antigen-
specific T cell immunity [16, 26]. Such immune responses can pave
way for tumour regression or resolution of infection, accompanied
by establishment of immunological memory against cancer or
microbial antigens. This immunologically peculiar subtype of cell
death has been termed either immunogenic cell death (ICD) or
inflammatory cell death [16].
In recent years, substantial research has been dedicated to

revealing the molecular as well as cellular pathways operating
during the sensing and decoding of dying cells-associated
immunomodulatory signals by innate and adaptive immune cells
[27]. In “Immunology of Cell Death in Cancer and Infection” (a
special issue of Genes & Immunity), a panel of leading scientists
investigating immunology of cell death contributed to a discus-
sion on mechanisms behind cell death immunology and its clinical
implications.
A large volume of work on DAMPs-driven immune responses

has been done in the context of cancer [28]. Just like dying cancer
cells, microbes-infected stressed or dying cells can also release
DAMPs that can modulate immune sensing of infected cells.
However, cytokines or chemokines have received more attention
in the context of infection-associated cell death rather than
DAMPs [29]. In his review article [30], W.G. Land surveyed the
current literature on respiratory viruses (including, coronavirus
disease-19 [COVID-19]) and found that DAMPs-driven immune
responses also dominated respiratory virus pathology together
with cytokine-associated responses. This review concludes that
DAMPs might have an underappreciated role in the pathogenesis
of acute respiratory distress syndrome and systemic inflammatory
response syndrome (including COVID-19). The review also high-
lights how DAMPs might serve the purpose of diagnostic or
prognostic biomarkers for such infections. This review is very
timely because, a recent single-cell resolution analyses of lung-
associated bronchoalveolar fluid from patients with severe COVID-
19, found that COVID-19 associated lung pathology was asso-
ciated with considerable release of extracellular ATP [31].
Accordingly, genetic signatures of purinergic and inflammasome
signalling (that is downstream of extracellular ATP) were enriched
across various lung-associated immune compartments [31].
In the context of cancer, DAMPs form the cornerstone of the ICD

concept. Over the past decade, while ICBs have worked really well
against T cell-infiltrated tumours yet they have repeatedly failed
against various T cell-depleted tumours like glioblastoma (GBM).
Such failures have fuelled an interest in exploiting ICD to
overcome cancers like GBM. In their review article [32], Decraene
and co-authors (Steven De Vleeschouwer’s lab) discuss how GBM
can benefit from ICD-based therapies capable of stimulating anti-
GBM immunity. The authors describe the major mechanisms
behind ICD and its preclinical as well as clinical implications for
GBM. Notwithstanding such remarkable advancements accom-
plished over the past decade, the clinical translation of ICD-based
immunotherapy still remains a major challenge. In their original
contribution [33], Van Gool, and co-workers (Wilfried Steucker-led
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clinical center) describe interesting clinical observations pertaining
to an immunotherapy regimen combining IO-Vac® vaccine
(tumour lysate-pulsed DCs, matured via IL-6, TNF, and IL-1β, as
well as Newcastle Disease Virus (NDV)), with ICD-induced NDV
therapy, and local electro-hyperthermia, administered to the GBM
patients. They observed that their multi-modal immunotherapy
regimen by itself had similar clinical performance as standard-of-
care therapy involving temozolomide (TMZ). However, the
combination of both TMZ as well as the multi-modal immu-
notherapy significantly improved overall survival of the GBM
patients. This observation deserves more clinical validation in
better designed clinical trials.
Beyond DAMPs and ICD, there is an urgent need to identify

novel regulators of other danger signalling pathways [34]. In their
original contribution [35], Liang and colleagues (Buzukela
Abuduaini’s lab) reported that overexpression of RALY, a multi-
functional RNA-binding protein, induced upregulation of genes
relevant for NOD-like receptor signalling while causing inhibition
of type I IFN signalling, which ultimately associated with decrease
in proliferation of cancer cells. Further research is required in the
future to reveal translational impact of signalling proteins like
RALY for cell death immunology.
Finally, in the context of a tumour, induction of cancer cell

death is obviously a top priority from the perspective of disease
amelioration [36]. However with the clinical success of cancer
immunotherapy, cell death of CD8+T cells has also come into
focus since this can be debilitating for the success of immu-
notherapies that rely on their activation for anti-cancer efficacy
[37]. However, while this concept is pre-clinically well established
yet its clinical existence is not always demonstrated. In their
original contribution [38], Vanmeerbeek and co-authors (Abhishek
D. Garg’s lab) applied integrated computational immunology
approaches to bulk-tumour transcriptomic and single-cell (sc)
RNAseq data from melanoma patients in clinical studies applying
ICBs. They found that stem-like memory CD8+/CD4+T cells that
predicted superior patient response to ICB-treatment, also
enriched for signatures of cell death/apoptosis resistance. In fact,
these distinguishing characteristics were together necessary for
predicting clinical responses to anti-PD1 ICB, after the melanoma
patients had previously progressed on anti-CTLA4 ICB.
In summary, this special issue of Genes & Immunity emphasizes

the importance of exploring cell death immunology from multiple
perspectives (e.g., target cells vs. immune cells, disease subtypes,
type of therapies), and highlights the importance of context
behind the disease promoting or inhibiting impacts of cell death
pathways. One area that still needs more attention than it is
currently getting, is biomarkers related to cell death immunology
that are still largely lacking for most diseases.
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