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ABSTRACT

Mitochondria play a key role in various cell processes
including ATP production, Ca2+ homeostasis, reactive
oxygen species (ROS) generation, and apoptosis. The
selective removal of impaired mitochondria by
autophagosome is known as mitophagy. Cerebral
ischemia is a common form of stroke caused by insuf-
ficient blood supply to the brain. Emerging evidence
suggests that mitophagy plays important roles in the
pathophysiological process of cerebral ischemia. This
review focuses on the relationship between ischemic
brain injury and mitophagy. Based on the latest
research, it describes how the signaling pathways of
mitophagy appear to be involved in cerebral ischemia.

KEYWORDS autophagy, mitophagy, mitochondria,
cerebral ischemia

INTRODUCTION

Stroke is one of the leading causes of death worldwide and is a
major cause of adult disability. Cerebral ischemia is a common
form of stroke caused by insufficient blood supply to the brain.
According towhichareasof thebrain areaffected, there are two
types: global ischemia, and focal ischemia.Repressionofblood
supply to the entire brain causes global ischemia while occlu-
sion of certain cerebral blood vessels causes focal ischemia.
The main symptoms of cerebral ischemia are sudden loss of
consciousness, blindness and coordination defects, including
speaking problems. Biochemically, there are profound reduc-
tions in ATP levels for very short periods during ischemia,
possibly for as little as 1–2 min. Nevertheless, there is massive
cell death in vulnerable regions. The critical factor is blood flow.

If blood flow is restored to the affected tissue soon enough,
cerebral ischemic damagemay be reversible; however, if blood
flow is not restored, the tissue dies resulting in irreversible
damage. Currently, there are two therapeutic strategies. The
most common, used in early cerebral ischemia, is to restore
bloodflowto theaffectedareaof thebrainasquicklyaspossible
by administering alteplase, aspirin and anticoagulants drugs.
Nevertheless, all of these drugs have some side effects in that
they can cause a second wave of damage, a consequence
termed reperfusion injury. Another therapeutic strategy is neu-
roprotection, which is intended to save the penumbral tissues
and toextend the timewindow for revascularization techniques.
However, at the present time, there are no known neuropro-
tective agents, and mechanisms of neuroprotection strategy
are still unclear. Thus understanding why this cell death arises
from such short insults is a major goal of research in the field.
Researchers have identified at least three recognizable path-
ways of ischemic cell death: necrotic, apoptotic, and
autophagocytotic cell death (Lipton, 1999). Different from
apoptosis and necrosis, which certainly lead to ischemic brain
injury, autophagy possibly serves as a potential therapeutic
target against ischemic brain injury (Carloni et al., 2010).

Autophagy is an evolutionarily conserved process by
which lysosomes degrade unnecessary or dysfunctional
proteins and cell organelles. The process of autophagy was
first observed by Ashford and Porter in 1962, when they
found that cells could eat themselves (Ashford and Porter,
1962). The term “autophagy” was first coined by De Duve,
who also established that lysosomes were responsible for
glucagon-induced autophagy (Deter et al., 1967; Deter and
De Duve, 1967). During autophagy, unnecessary or dys-
functional cellular components are engulfed by a double-
membraned vesicle known as an autophagosome. Then the
autophagosome is fused by lysosome, which leads to the
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degradation and the recycling of the cellular components
and proteins. In mammalian cells, there are three types of
autophagy: macroautophagy, microautophagy, and chaper-
one-mediated autophagy (CMA). Macroautophagy is the
most common and well-studied form, and, typically, when
general term “autophagy” is used it refers to macroau-
tophagy. Hence, in this rest of this review, the term “au-
tophagy” should be taken as referring to macroautophagy.
While autophagy has been known for more than fifty years,
its mechanisms have only come to be understood in the last
decade. During this period of explosive growth in under-
standing, in addition to classical autophagy, at least five
types of selective autophagy have been identified, namely
mitophagy, xenophagy, pexophagy, ribophagy, and reticu-
lophagy. Both classical autophagy and selective autophagy
are very important for cell and tissue homeostasis, and they
are involved in the natural process of aging as well as many
human diseases, including muscular dystrophy, cancer, and
innate immunity and neurodegenerative disorders (Mizush-
ima and Komatsu, 2011).

The roles of autophagy in the cerebral ischemia process
have been widely studied. Recent reports have showed that
autophagy can be induced in both in vitro (Meloni et al.,
2011) and in vivo (Tian et al., 2010) cerebral ischemia
models. In cerebral ischemia injury, autophagy is a double-
edged sword; it can be protective (Carloni et al., 2010) or
destructive (Koike et al., 2008). If its protective functions can
be controlled, autophagy could be a valuable therapeutic
target. However, the roles of selective autophagy in this
process are unclear and reviews are limited. In the past five
years, more and more groups have focused on the rela-
tionship between cerebral ischemia and selective autop-
hagy. Mitophagy is one well-studied type of selective
autophagy which is extremely important for maintaining
mitochondria homeostasis by removing damaged mito-
chondria. Mitochondria are called the “the powerhouses of
the cell” and are involved in cell signaling, cellular

differentiation, and cell death, as well as maintaining control
of the cell cycle and cell growth. Mitochondrial dysfunctions
are related to many diseases, including diabetes, heart fail-
ure, innate immunity responses and neurological defects
(Mizushima and Komatsu, 2011). In this review, we sum-
marize the current knowledge on the regulation of mitophagy
and its specific roles in cerebral ischemia and focus on the
molecular mechanisms and pathophysiological roles that
regulate mitophagy in ischemic brain injury.

MITOPHAGY SIGNALING PATHWAYS AND
RESEARCH METHODS

The name “mitophagy” was first coined by J.J. Lemasters in
2005. Lemasters and colleagues described how they found
depolarized mitochondria engulfed by vesicles coated with
the autophagosome marker MAP1 light chain 3 (LC3) when
they treated rat hepatocytes with serum starvation (Park
et al., 2006). While much is still unclear, in the past five years
considerable progress has been made in understanding the
molecular mechanisms of mitophagy and in determining its
pathophysiological roles (Fig. 1). Serious study of the bio-
chemical mechanism of mitophagy was first undertaken with
yeast. Kissova et al. reported that Uth1p, which was mainly
localized in the mitochondrial outer membrane (OMM) and
contained a SUN domain, was required for mitophagy. Dur-
ing nutrient starvation, Uth1p was required for eliminating
excess mitochondria (Kissova et al., 2004). Tal et al. repor-
ted that Aup1p was also required for mitophagy. Aup1 was a
member of the phosphatase2c superfamily and localized to
the mitochondrial intermembrane space; it facilitated mito-
phagy in stationary phase cells (Tal et al., 2007).

Mammalian homologues of Uth1p and Aup1p have not
been found. In addition, mitophagy in mammalian presents
some unique features. In general, the mechanisms of mito-
phagy in mammalian cells can be Parkin-dependent and

Figure 1. Trends in research on mitophagy in human disease. Summary of the study trends of mitophagy and its related human

disease from 2011 to 2015.
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Parkin-independent pathways. The possible mitophagy
pathways are summarized in Fig. 2 and discussed in the
following sections.

PINK1-Parkin signaling pathway in mitophagy

PINK1, a 64-KD protein, is encoded by PTEN-induced
kinase1, which contains a mitochondrial targeting sequence
(MTS). Parkin is an E3 ubiquitin ligase. PINK1 and Parkin
have been found to function in one pathway to suppress
mitochondrial damage in flies. PINK1 may be an upstream
regulator of Parkin (Clark et al., 2006; Park et al., 2006).
PINK1 and Parkin are often found mutated in Parkinson
patients and they are suspected pathological causes of early
onset of Parkinson’s disease, a process involving their reg-
ulatory role in mitophagy (Deas et al., 2011).

Parkinwas firstly demonstrated to be involved inmitophagy
in 2008. Narendra et al. found that Parkin normally resided in
the cytosol but it could be translocated to depolarized mito-
chondria after onehour treatment of amitochondria uncoupler,
carbonylcyanide m-chlorophenylhydrazone (CCCP). Mito-
chondria-localized Parkin can recruit the autophagy marker
LC3 to mitochondria, which promotes the degradation of
mitochondrial by mitophagy (Narendra et al., 2008).

The translocation of Parkin is required for PINK1 activity.
PINK1 shuttles between cytosol and mitochondria. In healthy
cells, PINK1 is constitutively imported into mitochondria and
cleaved by mitochondrial inner membrane rhomboid pro-
tease presenilin-associated rhomboid-like protein (PARL).
But when the mitochondria are depolarized by CCCP, PINK1
can be stabilized on the outer membrane of mitochondria
and recruits Parkin. In mouse cardiomyocytes, the recruit-
ment of Parkin by PINK1 was mitofusin 2 (Mfn2, mitochon-
drial outer membrane guanosine triphosphatase) but not
mitofusin 1 (Mfn1) dependent (Chen and Dorn, 2013). PINK1
stabilized in depolarized mitochondria phosphorylated Mfn2
to enhance the interaction between Parkin and Mfn2; Mfn2
served as a Parkin receptor on damaged mitochondria to
promote the translocation of Parkin from cytosol to mito-
chondria to induce mitophagy (Chen and Dorn, 2013).
However, Parkin could still translocate to mitochondria in
cultured embryonic fibroblasts lacking Mfn2, which indicated
other Parkin recruitment mechanisms exist (Chan et al.,
2011; Wauer et al., 2015).

Indeed, PINK1 and Parkin could physically interact with
each other, and Parkin could be phosphorylated on Thr175,
Thr217 and Ser65 by PINK1; more recent efforts have
revealed that this phosphorylation is required for Parkin’s
translocation (Kim et al., 2008). Parkin is a RING in between
RING (RBR) domain family of E3 ubiquitin ligases, contain-
ing an N-terminal ubiquitin-like (UBL) domain, RING1
domain, three zinc-coordinating domains and RING2 domain
(Wauer et al., 2015). In cytosol, Parkin exists in an auto-
inhibited conformation (Chaugule et al., 2011; Riley et al.,
2013; Wauer and Komander, 2013). In this status, Parkin’s

UBL domain as well as the repressor element block the E2-
binding site in RING1 domain, and the catalytic C431 in
RING2 is blocked by the unique Parkin domain (UPD, also
known as RING0) (Chaugule et al., 2011; Riley et al., 2013;
Wauer and Komander, 2013). After mitochondria depolar-
ization, stabilized PINK1 phosphorylates Parkin at Ser65 in
the UBL domain to activate Parkin by driving conformational
changes (Shiba-Fukushima et al., 2012). Another mecha-
nism that PINK1 activating Parkin is that PINK1 phospho-
rylates ubiquitin at Ser65 (pS65-Ub), and pS65-Ub binds and
activates Parkin due to Parkin’s high affinity for pS65-Ub
(Kane et al., 2014; Kazlauskaite et al., 2014; Wauer et al.,
2015). When binding with Parkin, pS65-Ub can release the
inhibitory UBL domain of Parkin from the RBR core and
stretches the of the helix in the REP, leading to conforma-
tional changes to make an ‘open’ active Parkin (Wauer et al.,
2015); releasement of the UBL domain also promotes the
phosphorylation of Parkin at S65 by PINK1, which further
activates Parkin (Kumar et al., 2015; Sauve et al., 2015;
Wauer et al., 2015).

Parkin’s promotion of mitophagy relies on its E3 ubiquitin
ligase activity. After treatment with CCCP, Parkin ubiquity-
lates the mitochondria proteins; then, the ubiquitin-binding
adaptor p62 aggregates ubiquitylated proteins and recruits
ubiquitylated cargo into autophagosome by binding to LC3;
finally, the mitochondria are degraded by lysosome (Pankiv
et al., 2007). However, many other groups have found that
p62 may not be essential for this process (Okatsu et al.,
2010), possibly due to redundancy with the related Ub and
Atg/LC3II-binding protein NBR1 or other autophagy
receptors.

However, this PINK1-Parkin signaling pathway model
was challenged by Richard J. Youle’s latest research. They
reported that autophagy receptor optineurin (OPTN) and
calcium binding and coiled-coil domain 2 (CALCOCO2,
also known as NDP52) were the primary receptors for
PINK1-and Parkin-mediated mitophagy, while p62 and
NBR1 were dispensable for this process (Lazarou et al.,
2015). They clarified the respective roles of PINK1 and
Parkin in mitophagy, and revealed a new PINK1-depen-
dant/Parkin-independent model of mitophagy. In this new
model, PINK1 was not just an initiator for recruiting Parkin,
but was a central regulator for inducing mitophagy. PINK1
generated phospho-ubiquitin on mitochondria to recruit
autophagy receptor OPTN, NDP52 and upstream autop-
hagy machinery to mitochondria for inducing mitophagy
(Lazarou et al., 2015). In other words, Parkin was not
essential for this process. In the absence of Parkin, PINK1
induced a lower level of mitophagy owing to the low basal
ubiquitin levels on mitochondria; in the presence of Parkin,
Parkin served as an amplifier to generate more ubiquitin
substrate for PINK1 to phosphorylate, inducing robust and
rapid mitophagy induction (Lazarou et al., 2015). Whether
other E3 ubiquitin ligases can have the same effects like
Parkin needs further exploration.
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Figure 2. Mechanisms of mitophagy. (a) In yeast, the outer mitochondrial membrane protein Autophagy-related 32 (Atg32) binds

the isolation membrane protein Atg8 through its WXXL-like motif. This process requires adaptor protein Atg11, which can form a

complex with Atg32 and Atg8 and physically link mitochondria with isolated membranes. Finally, the mitochondria are sealed by the

isolation membranes and fuse with lysosome to be degraded. Uth1p and Aup1p are both mitochondria membrane proteins and can

facilitate mitophagy under certain special conditions, such as starvation. (b) In mammalian cells, (1) Parkin-dependent pathway. After

treatment with CCCP or other mitochondria inhibitors, the mitochondria are damaged and lose membrane potential, which can lead to

impaired PINK1 cleavage and stabilization. At that point, PINK1 phosphorylates Parkin and ubiquitin at Ser65 to recruit Parkin to

damaged mitochondria from the cytosol. Parkin ubiquitylates the mitochondrial substrates and generates more ubiquitin substrate for

PINK1 to phosphorylate; then, the ubiquitin-binding adaptor p62/NDP52/OPTN aggregates ubiquitylated proteins and recruits

ubiquitylated cargo into autophagosome by binding to LC3. Finally, the mitochondria are sealed by the isolation membranes and fuse

with lysosomes to be degraded. (2) Parkin-independent pathway. The most important Parkin-independent pathway is the NIX/Bnip3

and FUNDC1 pathway. Under hypoxic conditions or starvation, the protein level of NIX or Bnip3 increase. NIX and Bnip3 localize on

the outer membrane of mitochondria and contain a WXXL-like motif facing the cytosol which can directly bind to the mammalian Atg8

orthologue and LC3, thereby facilitate mitophagy. FUNDC1 is a mitochondria outer membrane protein containing a classical LC3-

interacting region. Activated FUNDC1 directly binds with LC3 or ATG8 to induce subsequent mitophagy.
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NIX and Bnip3 signaling pathway in mitophagy

Bnip3, Bcl-2/E1B-19 KD interacting protein3, is a pro-apoptotic
mitochondrial protein. NIX/Bnip3L is a homolog of Bnip3 and
they share about 55% amino acid sequence identity (Chen
et al., 1999). The C-terminal transmembrane domains of Bnip3
and NIX are inserted into the outer mitochondrial membrane,
while their N terminals are exposed to the cytoplasm.

Many groups have found that Bnip3 and NIX play
important roles in autophagy and mitophagy. Bnip3 and NIX
can increase the production of ROS to activate autophagy
(Scherz-Shouval and Elazar, 2011); competition by Bnip3 or
NIX for binding Bcl2 could dissociate the Bcl2-Beclin1
complex to release Beclin1 to activate autophagy and
mitophagy (Bellot et al., 2009; Maiuri et al., 2007); During
in vivo starvation, Foxo3 was activated to bind to Bnip3 and
NIX promoter regions, which increased their protein level to
induce autophagy and mitophagy (Mammucari et al., 2007).

Despite the overall functional similarity between Bnip3
and NIX, many studies have also revealed their differences.
Up-regulation NIX could not restore the defects of mitophagy
caused by loss of Bnip3 (Shi et al., 2014). Bnip3 induced
mitochondrial permeability transition (MPT) and cytochrome
c release from isolated mitochondria (Kim et al., 2002), while
NIX also induced cytochrome c release but did not change
the MPT (Diwan et al., 2007). Bnip3 transcription could be
increased by hypoxia but not phenylephrine; in contrast, NIX
transcription was increased by phenylephrine but not by
hypoxia (Galvez et al., 2006). Under hypoxic conditions, HIF-
α bound to the Bnip3 promoter and increased the expression
of Bnip3, which promoted mitophagy to remove damaged
mitochondria and thereby prevented increase in the levels of
ROS (Zhang et al., 2008). Nevertheless, NIX seems to have
more important roles in programmed mitochondrial
clearance.

NIX plays important roles in red blood cell differentiation
and maturation. In most mammals, reticulocytes lack mito-
chondria, which are achieved by mitophagy regulated by NIX
(Aerbajinai et al., 2003; Sandoval et al., 2008; Schweers
et al., 2007). In the absence of NIX, the removal of mito-
chondria was significantly blocked which might be due to the
defects in forming mitophagosome (Schweers et al., 2007).
Mitochondria uncoupler treatment could restore the defects
of mitophagy in NIX deficient erythroid cells, indicating that
one mechanism for NIX inducing mitophagy was probably
due to its role in regulating mitochondria membrane potential
(Sandoval et al., 2008). One very interesting report revealed
that BH3-like domain was dispensable for mitochondrial
clearance, and mutation of the LIR (LC3-interaction region)
had measurable and modest effect on inducing mitophagy,
while deletion of the C-terminal of NIX caused complete loss
of activity of NIX (Zhang et al., 2012). They identified a
minimal essential region (named MER, amino acids 70-86),
which was a small domain in its cytoplasmic domain con-
taining hydrophobic amino acid residues and flanking
charged residues, for NIX activity (Zhang et al., 2012).

However, the exact of role of MER and how MER regulating
mitochondrial clearance are still unclear.

FUNDC1 signaling pathway in mitophagy

FUN14 domain containing 1 (FUNDC1), a mitochondria
outer membrane protein, has been reported to play essential
role in mitophagy, especially in hypoxic conditions (Liu et al.,
2012), but not limited to hypoxic conditions (Chen et al.,
2014). FUNDC1 contains a classical LC3-interacting region
(LIR) which makes it possible to directly bind with LC3 or
ATG8 to induce subsequent mitophagy (Liu et al., 2012).
Knockdown of FUNDC1 or mutated the LIR motif could
inhibit mitophagy (Liu et al., 2012). Under normoxia condi-
tions, FUNDC1 existed in ‘closed’ form, phosphorylated at
Tyr18 by Src tyrosine kinase with a lower affinity binding with
LC3 (Liu et al., 2012). Under hypoxia or carbonyl-cyanide
p-trifluoromethoxyphenylhydrazone (FCCP) treatment, Src
was inactivated and FUNDC1 could be dephosphorylated at
serine 13 (Ser-13) by PGAM5 phosphatase through direct
interaction to activate FUNDC1 (Chen et al., 2014; Liu et al.,
2012). Interestingly, ULK1 could interact with FUNDC1 and
phosphorylate it at serine 17, which in contrast to p-Tyr18
enhanced FUNDC1 activity to bind to LC3; once fully acti-
vated, FUNDC1 recruited more ULK1 to damaged mito-
chondria to form a feedback loop to induce mitophagy (Wu
et al., 2014). FUNDC1 is also involved in mitochondrial
dynamics regulation through interaction with DRP1 and
OPA1 (Chen et al., 2016) or calnexin and DRP1 (Wu et al.,
2016). FCCP treatment dissociated FUNDC1/OPA1 complex
while enhanced DRP1 recruitment to mitochondria to pro-
mote mitochondria fission (Chen et al., 2016). Under hypoxic
conditions, the association of FUNDC1 and calnexin was
attenuated while the interaction between FUNDC1 and
DPR1 was enhanced to promote mitochondria fission (Wu
et al., 2016).

The methods to detect mitophagy

Mitophagy is a selective form of autophagy in which dam-
aged mitochondria are degraded. A variety of biochemical
and cell biological methods for monitoring mitophagy have
been reported. Although existing mitophagy detecting
assays have their advantages, one single mitophagy
detecting assay cannot accurately identify this process. In
practice, complementary methods must be utilized to accu-
rately characterize the process of mitophagy (Zhu et al.,
2011).

Fluorescence microscopy

Observing mitochondria-related proteins or structures with
fluorescence microscopy has been widely used in the stud-
ies of mitophagy (Dolman et al., 2013). Because mitophagy
is a selective form of autophagy, examining the co-localiza-
tion of mitochondria and GFP-LC3 positive autophagosomal
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structures is an effective method for understanding it (Hol-
lville et al., 2014). Labeling mitochondria with MitoTracker
dyes is a way to observe mitochondria in live cells; however,
it is worth noting that different MitoTracker dyes have special
characteristics. Some MitoTracker dyes, such as Mito-
Traker®Orange CMTMRos and MitoTraker®Red CMXRos,
are mitochondria membrane potential-sensitive, and they
lose the staining ability after mitochondria depolarization;
While others, such as MitoTraker®Green and Mito-
Traker®RedFm, accumulate on mitochondria regardless of
mitochondrial membrane potential. For fixed cells, labeling
mitochondria by staining mitochondria proteins with anti-
bodies, such as TOM20, Cytochrome c and Hsp60, is an
effective way to monitor mitochondria-independent mito-
chondria membrane potential. The percentage of mitochon-
dria and LC3 co-localized puncta provides the quantitative
information about mitophagy.

Because damaged mitochondria are finally degraded by
lysosomes, the co-localization of mitochondria and lysoso-
mal markers, such as Lysotracker or lysosomal-associated
membrane proteins (e.g., LAMP-1 and LAMP-2), could be
used to monitor the process of mitophagy.

In Parkin/PINK1-dependent mitophagy pathways, PINK1
is stabilized on depolarized mitochondria and subsequently
recruits Parkin from cytoplasm to mitochondria. Parkin then
ubiquitylates the mitochondria substrates; while, at the same
time, p62, acting as an adaptor, links the ubiquitied mito-
chondria to autophagosome. Therefore, observing co-local-
izations of PINK1, Parkin, Ub and p62 with mitochondria
through fluorescence microscopy can provide useful infor-
mation for understanding the process of mitophagy (Hollville
et al., 2014; Murakawa et al., 2015; Narendra et al., 2010a).

Disappearance of fluorescence-tagged mitochondrial pro-
teins is a supporting evidence for mitochondrial clearance;
however, partial degradation of proteins without mitochondrial
removal and mitochondrial clearance through alternative
pathways can also result in elimination of fluorescence. Thus
tracking multiple proteins in parallel or additional morpholog-
ical identification must be carried out for confirmation. In
addition, reverse confirmation with lysosomal inhibitors is
expected to produce increased fluorescence signals.

Immunoblot for mitochondria proteins

Accompanying the removal of damaged mitochondria by
mitophagy, the level of mitochondria proteins, such as
TOM20 (outer mitochondrial protein), TIM23 (inner mito-
chondrial protein), cytochrome C oxidase subunit II (COXII)
(inner mitochondrial protein) and Cytochrome c (intermem-
brane space protein) will decrease. Western blot analysis for
these proteins is another quantified method to assess the
process of mitophagy. However, this method should be
combined detection of different mitochondrial proteins,
including outer and inner mitochondria proteins, intermem-
brane space protein, and matrix protein (Ding and Yin, 2012;
Lazarou et al., 2015). Only detection of mitochondrial outer

proteins, such as TOM20 and MFN1/2, is misleading
because these proteins are also degraded via the protea-
some system (Lazarou et al., 2015).

Mitochondrial DNA quantification

Mitochondria, as isolated organelles, have a small amount of
their own DNA. Mitochondria DNA (mtDNA) contains 37
genes which are essential for mitochondrial function (Taan-
man, 1999). The number of mtDNA is reduced companied by
mitophagy, while the nuclear DNA (nDNA) are relatively
stable. The ratio change between mtDNA and nDNA can be
an indicator of mitophagy (Lazarou et al., 2015; Murakawa
et al., 2015). The Human Mitochondrial DNA (mtDNA)
Monitoring Primer Set (Takara) is used for amplification of
mtDNA by real-time PCR and using nDNA content as a
standard (Murakawa et al., 2015); relative quantification of
mtDNA is analyzed by the difference in Ct values for mtDNA
and nDNA. Another mitochondrial DNA quantification
method is using DNA immunostaining and quantified by
immunofluorescence. The total cellular DNA volume
(cDNAv) (cDNA fluorescence intensity) is determined by
anti-DNA antibodies and nuclear DNA stain volume (nDNAv)
(nDNA fluorescence intensity) is determined by using DAPI.
The percentage of mtDNA stain remaining indicates mito-
phagy level, which could be calculated using this formula:
(cDNAv − nDNAv)/N (N is the cell numbers) (Lazarou et al.,
2015).

Ultrastructural evaluation

Electron microscopy (EM) provides direct images of
autophagosomes with engulfed mitochondria. Analysis of
autophagosome inclusions by comparing their morphology
with other cytosolic organelles helps to identify mitochondria
existing in these structures (Zhu et al., 2011). EM could
provide the ‘seeing is believing’ data for assessing the pro-
cess of mitophagy (Ding and Yin, 2012; Murakawa et al.,
2015). However, because of the limited cell numbers or
sections, data from EM studies must be interpreted carefully
and rigorously.

Detection of mitophagy using mitochondrial-targeted
mKeima

Recently, a sensitive and quantitative technique has been
developed to visualize the process of mitophagy. This
technique uses the mitochondrial-targeted mKeima to detect
and analyze mitophagy (Bingol et al., 2014; Kageyama et al.,
2014; Katayama et al., 2011; Murakawa et al., 2015; Nezich
et al., 2015). Keima is a coral-derived acid-stable lysosomal
protease-resistant fluorescent protein that exhibits a rever-
sible change in color in response to acidic pH. Keima exhi-
bits a bimodal excitation spectrum peaking at 440 and
586 nm, respectively corresponding to the neutral and ion-
ized states of chromophore’s phenolic hydroxyl moiety (Vi-
olot et al., 2009). These paradoxical pH-dependent changes
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in fluorescence make Keima able to clearly track the con-
version of autophagosome to autolysosome (Katayama
et al., 2011). To visualize the process of mitophagy, mito-
chondrial targeted monomeric Keima (mt-mKeima) was
generated by fusing a tandem repeat of the COX VIII pre-
sequence to mKeima to localize the protein mKeima to the
matrix of mitochondria (Katayama et al., 2011). After treat-
ment with CCCP, cells exhibited strong signals for mt-
mKeima at an excitation wavelength of 550 nm, while the
control groups displayed strong fluorescence at 438 nm
(Katayama et al., 2011). The ratio of (550/438) can be used
to clearly demonstrate the different distribution of intact
(green) and degraded (red) mitochondria (Katayama et al.,
2011). After cells were treated with CCCP for 2 h, punctate
structures with green fluorescence emerged, indicating that
EGFP-Parkin had been recruited to impaired mitochondria.
This emergence was accompanied by the appearance of a
steadily increasing ratio (550/438) of signals from mt-
mKeima (Katayama et al., 2011). The mt-mKeima method is
also used to measuring mitophagy in vivo (Sun et al., 2015).
Mitophagy basal levels are different in different tissues, with
a low signal in thymus and high rates in heart and brain (Sun
et al., 2015). In one study, the Purkinje cell layer and the
cerebellum regions had a higher level of mitophagy, while
the cortex, striatum and substantia nigra regions had only
modest levels of basal mitophagy (Sun et al., 2015).

MITOPHAGY AND CEREBRAL ISCHEMIA

As mentioned above, mutations of PINK1 and Parkin are sus-
pected to be pathological causes of some forms of Parkinson’s
disease in that they result in defects in mitophagy. In addition,
someotherneurodegenerativediseases, includingAlzheimer’s
disease (AD) (Casley et al., 2002) and Huntington’s disease
(HD) (Cui et al., 2006), are also related to mitophagy. Although
currently there is no systematic theory to explain the role of
mitophagy in cerebral ischemia,more andmore groups believe
mitophagy may have an important role in the process of cere-
bral ischemia. The effects of mitophagy on cerebral ischemia
brain injury have been controversial for years (Table 1) (Li et al.,
2012, Zuo et al., 2014). Both insufficient removal of damaged
mitochondria or excessive degradation of essential mitochon-
driawill cause cell death (OrdureauandHarper, 2014;Shi et al.,
2014), and the possible mitophagy pathways involved in cere-
bral ischemia are summarized in Fig. 3 and discussed in the
following sections.

Mitochondrial damage in cerebral ischemia

Energy consumption by the brain is huge compared to its
relative volume, while energy storage capacity is low.
Therefore lack of blood supply accompanied by oxygen and
glucose insufficiency for even a short time period may cause
severe damage to the brain. There are profound reductions
in ATP levels for very short periods during ischemia. Mito-
chondria play a key role in various cell processes including

ATP production, Ca2+ homeostasis, reactive oxygen species
(ROS) generation, and apoptosis. Thus, functional alter-
ations in mitochondria therefore have enormous potential for
causing severe cell damage and play important roles in the
pathophysiological process of cerebral ischemia.

The reductions of ATP levels and accumulation of AMP
activate the adenosine monophosphate AMP-activated pro-
tein kinase (AMPK) (Yan et al., 2013). AMPK, a serine
threonine kinase, serves as a central metabolic sensor.
AMPK can directly phosphorylate multiple downstream
substrates to inhibit ATP-consuming biosynthetic pathways
and promote catabolic ATP regenerating processes to
restore intracellular energy levels. During ischemic injury,
activated AMPK suppressed mammalian target of rapamycin
(mTOR) by phosphorylation, thereby up-regulate autophagy,
to play a protective effects on cell survival during ischemia
(Takagi et al., 2007). AMPK phosphorylated ULK1 and
activated ULK1 to induce mitophagy, to maintain mitochon-
dria homeostasis and cell survival during starvation (Egan
et al., 2011). In addition, AMPK could directly regulate
mitochondria biology through phosphorylation of mitochon-
drial fission factor (MFF) (Toyama et al., 2016). MFF was a
dominant receptor for DRP1 (Loson et al., 2013; Otera et al.,
2010; Shen et al., 2014). AMPK activated MFF to recruit
more DRP1 to mitochondria to induce mitochondria fission
and mitophagy (Toyama et al., 2016). Another report
revealed that ATP could directly regulate PINK1-Parkin
dependent mitophagy (Lee et al., 2015). All of these make
AMPK as a potential therapeutic target for brain stroke.

Moreover, mitochondria are the primary intracellular
sources of ROS and evidence obtained over the past two
decades reveals that reactive oxygen species (ROS) are
related to brain lesions. In normal conditions, ROS genera-
tion and elimination are balanced. Small amounts of ROS
are generated in the form of O� --

2 and then converted into
H2O2 by the antioxidant enzyme, magnesium superoxide
dismutase (Chan, 2001). Under the conditions of cerebral
ischemia, ROS is overproduced by mitochondria, which
directly damages lipids, proteins and nucleic acids, leading
to cell injury and cell death (Chan, 2001). ROS is also
involved in reperfusion injury (Yoshida et al., 1982).
Resveratrol has been reported to be a unique antioxidant
compound and extensive research has revealed resveratrol
protects against stroke in animal models (Sinha et al., 2002).
Resveratrol could significantly increase SOD activity and
improve mitochondrial integrity by preventing the loss of
mitochondria membrane potential to reduce the neuron
apoptosis after cerebral ischemia (Wang et al., 2014).
Selenium prevented glutamate and hypoxia-induced cell
death through reducing glutamate-induced ROS production,
preserving mitochondrial membrane potential, and increas-
ing mitochondrial biogenesis (Mehta et al., 2012). Consis-
tently, pre-treatment with antioxidant (Mitochondria-targeted
antioxidant 10-(6-plastoquinonyl) decyltriphenyl-phospho-
nium) prevented ischemia induced injury (Plotnikov et al.,
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2008). Methylene blue, another mitochondrial targeted
antioxidant also played neuroprotective role in cerebral
ischemia, through regulating mitophagy (Di et al., 2015)
(Mechanisms will be discussed in the later part).

Interestingly, moderately elevated ROS levels can induce
mitophagy in a DRP1 dependent manner (Frank et al.,
2012). In P53 or TP53-induced glycolysis (TIGAR) knockout
mice, ROS levels was increased via reduction of NADPH
and glutathione (GSH) and followed by Bnip3 activation to
induce mitophagy against ischemic injury; antioxidant
N-acetylcysteine could block this mitophagy process which
indicated ROS was required in this adaptive response
(Hoshino et al., 2012).

Classic mitophagy signaling pathways involved
in cerebral ischemia

Reperfusion can promotes mitochondrial dysfunction fol-
lowing focal cerebral ischemia in rats. During the reperfusion
period, the membrane potential of mitochondrial is
decreased significantly; this decrease is the main cause of
mitophagy (Li et al., 2012). It has also been established that
mitophagy can be induced in the cerebral ischemia reper-
fusion (I-R) process both in in vivo and in vitro models, and
that this process can be reversed by 3-methyladenine and
Atg7 silencing (Zhang et al., 2013). Studies have also
demonstrated that Parkin could be translocated to mito-
chondria during reperfusion and that ischemia-induced

Table 1. Highlights of research findings on the roles of mitophagy in cerebral ischemia

Animal/Cell Model Results Effect of
mitophagy

Reference

Male C57BL/6 mice
Primary cortical neurons

tMCAO
OGD-Rep

Cerebral ischemia-reperfusion induces
mitophagy by causing Parkin translocation
from cytosol to mitochondria.

Protective Zhang et al.
(2013)

Male Sprague-Dawley rats
NeuN positive cells

tMCAO Rapamycin induces mitophagy and attenuates
mitochondrial dysfunction.

Protective Li et al.
(2014)

Male Sprague-Dawley rats
(Brain tissue)

PC12 cells

pMCAO
OGD

Inhibition of DRP1 by pharmacologic inhibitor or
siRNA increases the infarct volume and
aggravates neurological deficits.

Protective Zuo et al.
(2014)

Male C57BL/6 mice
Primary cortical neurons

tMCAO
OGD-Rep

Endoplasmic reticulum (ER) stress induced by
ER stress

activators (tunicamycin and thapsigargin) protect
against

transient ischemic brain injury through Parkin-
dependent

mitophagy suppression.

Protective Zhang et al.
(2014)

Male Sprague-Dawley rats
CA3 neurons
Primary hippocampal
neurons

IPC
OGD

Suppression of DRP1 increases the vulnerability
of cells to OGD and global ischemia due to
amplified mitochondria mediated injury.

Protective Zuo et al.
(2016)

Male C57BL/6J mice
Cortex tissue
Cortex neuron

MCAO Hyperglycemia enhances ischemia-induced
mitochondrial dynamic imbalance towards
fission.

Harmful Kumari et al.
(2012)

Male C57BL/6J mice
NeuN positive cells
Murine hippocampal
neuronal HT22 cells

MCAO Selenium prevents glutamate and hypoxia-
induced cell death by reducing glutamate-
induced ROS production and preserving
mitochondrial membrane potential and
increasing mitochondrial biogenesis.

Harmful Mehta et al.
(2012)

Male Wistar rats
Coronal cortex tissue

MCAO Reperfusion promotes mitochondrial dysfunction
by decreasing mitochondria membrane
potential.

Harmful Li et al.
(2012)

Male Sprague-Dawley rats
Primary cortical neurons

MCAO Carnosine attenuates the increase of p-DRP1
and Parkin to inhibit the process of mitophagy.

Harmful Baek et al.
(2014)

Male Wistar rats
Hippocampal neurons

MCAO Resveratrol significantly increases SOD activity
and prevents the loss of mitochondria
membrane potential.

Harmful Wang et al.
(2014)

Mice
Primary cortical neurons

Neonatal
stroke mode

OGD-Rep

BNIP3 triggers excessive mitophagy. Harmful Shi et al.
(2014)
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neuronal injury was aggravated after administration of
mitophagy inhibitor mdivi-1 in the reperfusion phase, sug-
gesting that mitophagy underlies the neuroprotection that
occurred in the process of cerebral ischemia reperfusion
(Zhang et al., 2013). Zhang et al. also reported that

endoplasmic reticulum (ER) stress induced by ER stress
activators (tunicamycin and thapsigargin) protected against
the transient ischemic brain injury through Parkin-dependent
mitophagy (Zhang et al., 2014). The neuroprotective effects
of ER stress activators have been shown to be reversed by

Cerebral Ischemia

Hypoxia

HIF-1α 

Bnip3 NIX

Beclin1

Reperfusion

ROS
Parkin

ΔΨm

PINK1 Parkin

OPA1    Drp1
Mfn       Fis 

Mitochondria
Fusion/Fission

 
LC3II       P62 

Beclin1

Mitophagy

Heathy CellCell Death Cell Death

Figure 3. Possible mitophagy signalling pathways involved in cerebral ischemia. During the process of cerebral ischemia,

many different signalling pathways are involved in the activation or suppression of mitophagy. (1) The process of cerebral ischemia

can cause hypoxic conditions in tissue, which can increase the Bnip3 and NIX levels, and cause release of Beclin1 from the Bcl-2-

Beclin1 complex, and finally induce mitophagy. (2) Reperfusion is the most effective therapy for cerebral ischemia. Reperfusion

increases the level of ROS, which can decrease the mitochondria membrane potential, and lead to the translocation of Parkin from

cytosol to damaged mitochondria. Then, mitophagy can be facilitated in Parkin-dependent or Parkin-independent ways. (3)

Mitochondrial fragmentation and fission are essential for mitophagy. Cerebral ischemia can decrease the level of mitochondrial fusion

proteins, such as Opa1 and Mfn2, and increase the level of mitochondrial fission proteins, such as DRP1 and Fis. (4) Rapamycin can

significantly increase the expression of LC3-II and Beclin1, and promote the translocation of P62 to damaged mitochondria, and

finally facilitate mitophagy to exhibit neuroprotective functions. The process of mitophagy must be restricted to dysfunctional

mitochondria and kept at a balanced level. Insufficient removal damaged mitochondria or excessive degradation of essential

mitochondria will both cause cell death.
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autophagy inhibition (3-methyladenine and Atg7 knockdown)
or Parkin silencing (Zhang et al., 2014). In one transient focal
cerebral ischemia model, Parkin protein level was decreased
further companied by increasing reperfusion time after 1 h
left middle cerebral artery (MCA), while neuronal cell injury
was increased companied by Parkin’s reduction (Menges-
dorf et al., 2002), which might be due to defective mitophagy.

Despite of PINK1-Parkin mitophagy pathway, under
hypoxic conditions, Bnip3 and NIX were activated at the
mRNA level in a HIF-α dependent manner (Bruick, 2000;
Zhang et al., 2008). It has also been reported Bnip3 was
involved in delayed neuronal death in stroke (Shi et al.,
2014). When primary cortical neurons were treated with
OGD for 6 h followed by different periods of reperfusion (24,
48, 72 h), the Bnip3 protein level increased accompanied by
increased delayed neuronal loss, which appeared to be due
to Bnip's triggering of excessive mitophagy (Shi et al., 2014).
Although Bnip3 protein level was increased both in vitro
(Bruick, 2000) and in vivo (Schmidt-Kastner et al., 2004),
NIX protein seemed no significant increase. In contrast,
Brise-Archbold, J.L. et al. reported that NIX protein level was
increased after 4 to 7 days hypoxia/serum deprivation in
cultured Chinese hamster ovary cells (CHO-K1) and NIX
translocated to mitochondria after 5 days hypoxia/serum;
while upregulation and translocation of NIX were observed
after 6 h of middle cerebral artery occlusion in the rat model
(Birse-Archbold et al., 2005). In vivo, NIX was activated
(upregulation and translocation) before histological damage
(infarct development, neuronal loss) or biochemical marker
(Bax activation or caspase-3 activation) were detected,
which indicated NIX might be a potential therapeutic target in
ischemic injury (Birse-Archbold et al., 2005). Interestingly,
different from many studies, NIX as mitochondria out mem-
brane protein (Chen et al., 1999; Ding et al., 2010; Kanki,
2010), they reported NIX was predominately a cytosolic
protein which translocated from cytosol to mitochondria after
hypoxia stress (Birse-Archbold et al., 2005); in addition, the
mitophagy role in this study could be further explored.

Mitochondria dynamics, mitophagy, cerebral ischemia

Mitochondrial dynamics, the processes including mitochon-
drial fusion, fission, biogenesis and mitophagy, have been
recently implicated in cerebral ischemia injury. Mitochondria
are isolated organelles constantly going through cycles of
fusion and fission. Mitochondrial fusion is mediated by
dynamin-related GTPases termed mitofusins (Mfn1 and
Mfn2) and optic atrophy protein 1 (Opa1). Conversely,
mitochondrial fission is regulated by mitochondrial fission 1
protein (Fis1) and the dynamin-related protein 1 (DRP1)
(Chen and Chan, 2010; James et al., 2003; Yamamori et al.,
2015; Zuo et al., 2014). Fission can generate two daughter
mitochondria with either increased or decreased membrane
potential; the depolarized daughter mitochondria cannot be
fused and have to be removed by mitophagy, while over-
expression of Opal leads to increased mitochondria fusion

and decreased mitophagy (Twig et al., 2008). Fragmented
mitochondria are more likely to be taken up by autophago-
some due to their smaller size and can facilitate mitophagy
(Gomes et al., 2011). Santosh Kumari et al. revealed that
cerebral ischemia could decrease the level of mitochondrial
fusion proteins Opa1 and Mfn2, which were essential for
mitochondrial fusion (Kumari et al., 2012). They also
demonstrated that pre-ischemic hyperglycemia could
increase the level of fission proteins DRP1 and Fis1 (Kumari
et al., 2012). Hyperglycemia tended to tip the ischemia-in-
duced mitochondrial dynamic balance towards fission, which
led to mitochondrial fragmentation and damage (Kumari
et al., 2012). It has been reported that carnosine, an
endogenous pleiotropic dipeptide which has neuroprotective
activity against ischemic brain damage, could attenuate the
increase of p-DRP1 and Parkin to inhibit the process of
mitophagy (Baek et al., 2014). However, another report has
revealed that inhibition of DRP1 by pharmacologic inhibitor
or siRNA resulted in increasing the infarct volume and
aggravating the neurological deficits in a rat model of
pMCAO (permanent middle cerebral artery occlusion).
These effects may be due to the change of ROS generation,
Cyt-c release and activation of caspase-3 (Zuo et al., 2014).
In hippocampal CA3 neurons, ischemia induced more
mitophagy; this was accompanied by increasing DRP1
levels. Suppression of DRP1 increased the vulnerability of
cells to OGD and global ischemia due to amplified mito-
chondria-mediated injury (Zuo et al., 2016). All of these
indicate that DRP1 can be a potential therapeutic target for
brain ischemic stroke.

Compounds that potentially regulate mitophagy
in cerebral ischemia

Rapamycin is known to exhibit neuroprotective functions via
the activation of autophagy, as shown in a cerebral ischemia
model (Malagelada et al., 2010). Li et al. reported that
rapamycin could reduce brain injury after cerebral ischemia
by promoting mitophagy (Li et al., 2014). Their results
demonstrated that rapamycin could significantly increase the
expression of L3-II and Beclin-1 level, which means
increased autophagy and mitophagy (Li et al., 2014). This
process is thought to be mediated by upregulating p62
translocation to the mitochondria in response to ischemia
injury, which led to reduced infarct volume and inhibition of
mitochondrial dysfunction (Li et al., 2014).

Methylene blue (MB) is a lipophilic compound and has
been demonstrated to play neuroprotective roles in cerebral
ischemia-reperfusion injury (Miclescu et al., 2010; Shen
et al., 2013; Wen et al., 2011). In a MCAO model, MB
improved neurological function and reduced the infarct vol-
ume after acute cerebral ischemia due to augmenting mito-
phagy (Di et al., 2015). In a vitro OGD model, they revealed
MB promoted mitophagy by maintaining the MMP at a rela-
tively high level (Di et al., 2015). However, mitophagy is
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usually induced by the loss of MMP by regulating Parkin/
PINK1 mitophagy pathway or mitochondria fission and
fusion (Jin et al., 2010b; Kondapalli et al., 2012; Matsuda
et al., 2010; Narendra et al., 2010b; Nguyen et al., 2016;
Youle and Narendra, 2011).

Mitophagy, inflammation response, cerebral ischemia

The inflammation response is an important mechanism in
the pathogenesis of cerebral ischemia and other forms of
ischemic brain injury. Ischemic injury will be amplified with
an acute and prolonged inflammatory response, charac-
terized by activation of inflammatory cells (McColl et al.,
2007). Reintroduction of blood into ischemic tissue will also
cause a strong release of inflammatory mediators like
tumor necrosis factor (TNF) and leukocyte-endothelial cell
adhesion molecules; all these cellular events can initiate an
inflammatory condition which may contribute to further
vascular dysfunction and stroke damage (Carden and
Granger, 2000; Jin et al., 2010a; Prestigiacomo et al., 1999;
Ritter et al., 2000). Therefore, anti-inflammatory strategies
have been proposed (Gao et al., 2013; Palencia et al.,
2015; Zhang et al., 1995). Interestingly, recently, several
studies have identified new roles for mitochondria and
mitophagy in the regulation of an-inflammatory processes
(Matheoud et al., 2016; Mills and O’Neill, 2016; Minton,
2016; Zhong et al., 2016). Mitochondria are central regu-
lators of pyrin domains-containing 3 (NLRP3) inflamma-
some’s activation (Gurung et al., 2015); inflammasome is a
molecular platform to activate innate immune defense and
pyroptosis through several pro-inflammatory cytokines and
its interaction with caspase-1 (Schroder and Tschopp,
2010; Strowig et al., 2012). Inflammasome can be activated
by damaged mitochondria through regulating reactive oxy-
gen species (ROS), Ca2+ overload, reduced NAD+, mtDNA
and so on (Gurung et al., 2015). Anti-inflammatory
response by regulating mitophagy has attracted more
attention. Zhong et al. reported that Nuclear factor-κB (NF-
κB), a key activator of inflammation by priming NLRP3
activation, could restrain NLRP3 activation by regulating
p62-dependent mitophagy, thus to prevent excessive tissue
damage to the host. Zhao et al. revealed that A151, a
synthetic oligodeoxynucleotide containing multiple telomeric
TTAGGG motifs could reduce ischemic brain damage and
NLRP3 protein level, and A151 could maintain mitochon-
drial membrane potential intact, which indicated a role of
mitochondria in A151’s suppression of inflammation and
protection of ischemic injury (Zhao et al., 2015). Collec-
tively, accumulating knowledge about mitophagy or mito-
chondria’s participation in the processes of an-inflammatory
responses, regulating mitophagy in cerebral ischemia will
become a potential therapeutic strategy through anti-in-
flammatory process.

CONCLUSIONS

Mitochondria are the essential organelles which provide
energy to cells by producing ATP. Removal of damaged or
dysfunctional mitochondria by mitophagy has been proved
to be an important mitochondrial quality control mechanism.
Although mitophagy has no unified role in cerebral ische-
mia, great progress has been achieved in the research on
the functions of mitophagy in cerebral ischemia. Much
evidence from recent research supports the belief that
mitophagy has a neuroprotective role in cerebral ischemia,
at least to a certain extent. However, many questions
remain unanswered. For example, how can we exactly
monitor mitophagy during the cerebral ischemia process?
How does Parkin translocate from cytosol to mitochondria
after cerebral ischemia? What are the roles of PINK1 and
FUNDC1 in the process of cerebral ischemia? In addition, it
is also important to study the roles of mitophagy in different
phases or types of cerebral ischemia. Answering these
questions will not only improve our understanding of the
relationship of stroke and mitophagy, but it will also provide
theoretical support to help people find new effective treat-
ments for stroke patients.
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