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Abstract Transcriptional regulators (TRs) participate in essential processes in cancer pathogenesis and are critical
therapeutic targets. Identification of drug response-related TRs from cell line-based compound screening data is often
challenging due to low mRNA abundance of TRs, protein modifications, and other confounders (CFs). In this study, we
developed a regression-based pharmacogenomic and ChIP-seq data integration method (RePhine) to infer the impact of
TRs on drug response through integrative analyses of pharmacogenomic and ChIP-seq data. RePhine was evaluated in
simulation and pharmacogenomic data and was applied to pan-cancer datasets with the goal of biological discovery. In
simulation data with added noises or CFs and in pharmacogenomic data, RePhine demonstrated an improved performance
in comparison with three commonly used methods (including Pearson correlation analysis, logistic regression model, and
gene set enrichment analysis). Utilizing RePhine and Cancer Cell Line Encyclopedia data, we observed that RePhine-
derived TR signatures could effectively cluster drugs with different mechanisms of action. RePhine predicted that loss-of-
function of EZH2/PRC2 reduces cancer cell sensitivity toward the BRAF inhibitor PLX4720. Experimental validation
confirmed that pharmacological EZH2 inhibition increases the resistance of cancer cells to PLX4720 treatment. Our results
support that RePhine is a useful tool for inferring drug response-related TRs and for potential therapeutic applications. The
source code for RePhine is freely available at https://github.com/coexps/RePhine.
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Introduction

Cancer, one of the most common causes of death [1], is
characterized by uncontrolled cell division [2,3]. Pharma-
cological treatments such as chemotherapy, targeted
therapy, and immunotherapy are widely used. Accurate
drug selection has the potential to improve patient outcomes
by matching the patient’s genomic characteristics with the
most effective treatment available [4]. The comprehensive
delineation of the association between drug response and
omics features by using a suitable computational model
may significantly contribute to preclinical research and
drive clinical decision-making. Most existing drug response
prediction methods are based on direct putative correlations
between individual genes’ mRNA levels and drug sensi-
tivity measurement [4]. Such predictions, however, are not
always sufficiently robust due to the inherent experimental
noises [5,6]. The robust identification of drug response
biomarkers remains a significant challenge.

Many transcriptional regulators (TRs), including tran-
scription factors (TFs) and chromatin regulators (CRs), can
control cell development and cell survival by regulating the
expression of target genes [7–9]. For example, inhibiting
the TFs ESR1 and SP1 could induce the death of myeloma
cells [10] and targeting the CR BRD4 rescues the response
to the γ-secretase inhibitors in T-cell acute lymphoblastic
leukemia [11]. These studies reveal the complicated and
vital roles of TRs and emphasize the necessity of systematic
identification of drug response-related TRs. However, a
number of biological features of TRs (e.g., low mRNA
abundance, protein modifications, and localizations) pose
challenges to such identification [12–14]. For example, by
using Cancer Cell Line Encyclopedia (CCLE) data, the
resistance role of zinc finger E-box binding homeobox 1
(ZEB1) can be directly reflected by its mRNA level corre-
lated to the response to the drug erlotinib, but there is no
obvious correlation in the case of Fos proto-oncogene
(FOS) (Figure S1A and B), though both TRs are known
biomarkers of erlotinib [15,16]. Therefore, solely relying on
the mRNA levels of TRs to identify TR-drug response re-
lationship lacks identification power (false negatives) and
may even lead to inaccurate associations (false positives) in
the existing compound screening data. Given the im-
portance of TRs in tumorigenesis and the limitations of
existing data, a new strategy is required to explore the
functional roles of TRs in drug response [17]. However, the
effects of copy number variations (CNVs), data noises, and
confounding mutations of some kinase genes or tumor
suppressor genes, as well as how to accurately infer targets,
pose challenges in this identification effort.

In this study, we hypothesized that the association of a
TR with drug response could also be inferred through the
association between the expression of its downstream

targets and the drug treatment (Figure 1A). Based on this
notion, we developed the regression-based pharmacoge-
nomic and ChIP-seq data integration method (RePhine)
which takes pharmacogenomic and ChIP-seq data as input
and identifies TRs associated with response to pharma-
cological drug therapy (Figure 1B). We demonstrated that
RePhine has an improved performance in comparison with
several commonly used methods in TR identification in
simulation and pharmacogenomic data. Through the
RePhine analysis pipeline, we characterized TR response
signatures of drug treatments. Utilizing RePhine, we un-
covered a BRAF inhibitor resistance mechanism relevant
to the functional loss of polycomb repressive complex 2
(PRC2). This mechanism was then validated by drug
treatment experiments in cell lines and bioinformatic
analyses in CRISPR screening data, The Cancer Genome
Atlas (TCGA) patient cohorts, and differentially expressed
genes between BRAF inhibitor-sensitive and resistant
cells.

Method

Description of the RePhine method

The RePhine method is designed to identify the TRs whose
targets have concordant correlations with drug response
(Figure 1B and C). RePhine adjusts for confounders (CFs)
by calculating the partial correlation coefficients between
expression of all the genes and one specific drug treatment
across all the cell lines. Next, RePhine measures the TR
targets quantitatively from ChIP-seq data. Then, RePhine
identifies the drug response-related TRs by regressing the
TR target measurements on the partial correlation coeffi-
cients. RePhine employs the two metrics — univariate P
value (uniP) and multivariate P value (multiP) — to
evaluate the significance of the associations of TRs to the
given drug.

The RePhine method consists of the four steps that were
described as below (Figure 1C, Figure S2; File S1).

Step 1: CF identification and correction

In Step 1.1, the effect of CNVs is adjusted. To account for
the fact that gene copy numbers can influence gene ex-
pression levels independent of TR regulation [18], RePhine
utilizes a linear model to evaluate the impact of a TR on the
expression of its targets.

The following model is fitted:

Y x= + (1)n
expr

n
cnv

n
adj exprcnv _

where xn
cnv is the copy number of a certain gene in the cell

line n; Yn
expr is the expression value of this gene in the same

cell line; the fitted residual n
adj expr_ is considered as the
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Figure 1 A schematic view of RePhine hypothesis and analysis workflow
A. The biological hypothesis of RePhine model. Association between a TR and drug response can be inferred by the pattern of its targets. TR identification
is based on the TR association with drug response, which is indirect information (indicated by the grey dashed arrow) that can be inferred from TR
regulation profiles and target association with drug response. B. Overview of the RePhine analysis procedure. The purpose of RePhine is to identify drug
response-related TRs by integrating pharmacogenomic data and ChIP-seq data. C. RePhine analysis workflow. TR, transcriptional regulator; TF, tran-
scription factor; CR, chromatin regulator; CNV, copy number variation; CF, confounder; A represents a target gene of the TR; C represents drug response.
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adjusted expression; cnv is the coefficient.
In step 1.2, mutation CFs are identified. Some somatic

mutations can influence drug response independent of TR
regulation, and such mutations may confound the identifi-
cation of drug response-related TRs. To identify such mu-
tations related to drug response, a two-stage procedure is
applied.

In step 1.2.1, genes with mutations at extremely low
frequency across the cancer cell lines (< 5% of the number
of the cell lines) are filtered.

In step 1.2.2, Adaptive Lasso (AL) is then used to select
significantly drug response-related mutated genes [19]:

y x= argmin || ||

+ (2)

Adaptive LASSO drug
j
M

j
mut

j
mut

j
M

j
mut

j

=1
2

=1

where ( )x x x= , ,j
mut

j
mut

nj
mut

1
T

represents the mutation

status (0 for the wild type and 1 for the mutation) in the gene
j (from the step 1.2.1) across all the n cell lines;

( )y y y= , ,drug drug drug
1 n

T
represents the drug sensitivity

score in the corresponding cell lines; = 1 /j j ;

( )= , ,j M1
T
is the ordinary least-squares

estimator; is selected by leave-one-out cross-validation;M
is the gene count from step 1.2.1. mut is the coefficient
estimated by the equation.

The R “glmnet” package is utilized for step 1.2.2. A
likelihood ratio test is used to estimate the significance of β.
Genes with both significant uniP and multiP (P < 0.01) are
used as the CFs in the subsequent partial correlation com-
putation step 1.3.

In step 1.3, the partial correlation coefficients are cal-
culated to adjust the effect of the CFs (estimated from step
1.2) and accurately measure the association between the
drug response and the expression of all the genes (estimated
from step 1.1). The detailed calculation of the partial cor-
relation coefficients is described in File S1. The R “ppcor”
package is used to perform the computation for each gene in
this step.

In step 1.4, the partial correlation coefficients of cancer
type-specific genes are down weighted. Expression in
tumor vs. normal samples in 14 cancer types, sourced from
TCGA data, is compared before this step. Then RePhine
performs down-weighting of the genes which are differen-
tially expressed [calculated by “limma” package with false
discovery rate (FDR) < 0.001] in less than 1/3 of the cancer
types. Then, RePhine is applied to a pan-cancer dataset such
as CCLE, aiming to identify pan-cancer drug response-
related TRs. The goal of this step is to reduce the effect of
cancer type-specific genes. For such genes, the partial
correlation coefficients are set to zero. In our calculation,

only 10% of the genes are corrected in this step and most
TRs are not affected (Table S1). Compared to the non-
filtering procedure, the filtering step up-weights the TRs
related to the common cancer pathways as expected
(Table S1). This step is optional and it can be skipped when
applying RePhine to other datasets.

Step 2: regulatory potential calculation

To determine the targets of TRs from ChIP-seq data, we
implement a modified model [20] by additionally con-
sidering peak signal strength; in the original model, only
peak counts and distances to genes were considered.
Regulatory potential (RP) scores are calculated for given
genes to measure the regulation strength of TRs. The im-
plemented model is:

RP e m= ( × ) (3)gene
TR

i
k d

i=1
(0.5+4 )i

where k represents the count of peaks around the gene; d is
the distance from the center of peak i to the transcriptional
start site (TSS) of the gene; e d(0.5+4 )i is defined in the
original study [20]; m is the overall enrichment of the signal
for the peak regions from the Encyclopedia of DNA
Elements (ENCODE) database.

Step 3: selection of the TRs most relevant to drug response

In step 3.1, TR independence is estimated through Elastic-
Net (EN) model. Many TRs have overlapping regulation
effects with other TRs. To select the key regulators among
the overlapping TRs, an EN method is conducted by re-
gressing the RP scores on the partial correlations of all the
genes. By using this step, RePhine takes both effects of
TFs and CRs into account simultaneously. The EN
estimator [21] is defined as:

{
}

y x= argmin
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RP

t
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nt
RP T

1 is a vector of gene RP scores

corresponding to the t-th TR (TRt) from step 2; p is the
count of TRs; ypartial represents the partial correlation of the
corresponding gene generated in step 1.4.

If multiple replicates or samples in different cell lines are
available for the same TRt, RePhine only chooses the re-
plicate or sample with the largest statistical effect of asso-
ciation between the targets and the given drug (the most
significant uniP) to represent the TRt (analogously to the
approach of the RABIT method [17]).

To determine the α in the EN model, we tried different
values of α and found highly consistent results of TR
selection (see File S1 and Table S2 for more details).
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Therefore, α is fixed to 0.8 to shorten the time of calcula-
tions. λ is obtained from leave-one-out cross-validation
where the parameter “lambda.1se” is used to avoid the over-
fitting. The R “glmnet” package is used in the calculation.

In step 3.2, a likelihood ratio test is utilized to assess
the significance of estimated coefficients for both the EN
model step (step 3.1) and the AL model step (step 1.2.2);
uniP and multiP are calculated by comparing the good-
ness of fit of these two models with inclusion/exclusion
of the selected variable. In the univariate setting,
model 1: y x intercept= + is compared to model 2:
y intercept= . In multivariate setting, all predictors se-
lected from AL or EN are regarded as “S ”; thus, model 1:
y = βS + intercept is compared to model 2: y = βS–x +
intercept, where x is the variable of interest. Variables y
and x in the AL and EN models are the same as those in
the step 1.2.2 and step 3.1, respectively. The R “lrtest”
package is used in this step.

In these procedures, uniP is used to measure the overall
significance of associations between RP scores and partial
correlation coefficients; multiP is applied to assess the in-
dependence of the associations.

Step 4: visualization of the association

In this step, an enrichment algorithm is additionally im-
plemented to visualize the association and the enrichment
patterns. Permutation P value (permuP) is used to assess
significance of the enrichment. The details of the algorithm
are as follows:
1) Rank the N genes according to the partial correlation
coefficients.
2) Normalize the vector Preg (the RP scores) to a range [0, 1]
across the genes within the sample by dividing by the
maximum values.
3) Evaluate values for the genes as belonging (hit) and not
belonging (miss) to the TR targets weighted by the partial
correlation rpartial. For the top i genes ranked by partial
correlations:

D TR i P
r

N( , ) = × (5)hit j i j
reg j

partial k

R

where N P r= ×R j
N

j
reg

j
partial k

=1
and k = 1.

( )D TR i P
N P

( , ) = 1 × 1 (6)miss j i j
reg

j
N

j
reg

=1

where N represents the gene count.
4) Estimate the maximum deviation of Dhit − Dmiss from
zero. For random distributions of TR targets, the enrichment
score ES(TR) will be a relatively small value. In contrast, if
targets with higher RP scores assemble at the top or bottom
of the partial correlation list, the ES(TR) will be high. When
Preg is binary (0 or 1), ES(TR) reduces to the original gene

set enrichment analysis (GSEA) ES (see File S1 for details).
When Preg is equal to 0 or 1 and k is simultaneously equal to
0, the ES(TR) will be the standard Kolmogorov-Smirnov
test statistics [22].
5) Permute the gene labels and re-compute the ESs. Repeat
1000 times to obtain the distribution of ESrandom. The as-
sessment of P value is based on the positive or negative
segments of the distribution of ESrandom depending on the
sign of ES(TR).

Pharmacologically-relevant patterns such as positive-
association, negative-association, and non-association
could be distinguished and visualized through the afore-
mentioned formula (Figure S3).

Drug combination screening

The interaction between PLX4720 and GSK126 is mea-
sured by the combination index (CI) derived from
CalcuSyn [23]. CI = 1 indicates additive effects; CI > 1 and
CI < 1 indicate antagonism and synergism, respectively.

Results

RePhine has an improved performance in simulation
data with added noises and CFs

To systematically examine whether RePhine can accurately
identify the associations between the TRs and the drug re-
sponse, its performance was evaluated in the simulation
datasets. We compared RePhine with three commonly used
methods: Pearson correlation (PC) analysis, logistic re-
gression model, and GSEA (Figure S4). With the increase
of CF counts and expression noise levels, RePhine showed a
significantly improved performance (Figures S4A–C). Al-
though RePhine didn’t overperformed GSEA with the ex-
pression noise level increasing because both methods
consider target information, RePhine had an improved
performance when noise was added to the RP scores of
target information (Figures S4D–G). In addition, we also
compared these methods in the scenario where multiple
noises and CFs were added simultaneously to a balanced
dataset and an imbalanced dataset, respectively (Figure S4H
and I). RePhine exhibited higher area under the receiver
operating characteristic (AUROC) values than the three
commonly used methods in the balanced dataset when noise
level and CF count increasing. Similarly, RePhine showed
higher area under the precision recall curve (AUPRC) values
in the imbalanced dataset when noise level and CF count
increasing. These simulation results clearly demonstrate the
advantage of RePhine over these commonly used methods
(for more details of the comparison, see File S1). RePhine
employs a novel strategy with careful consideration of
noises and CFs and enables robust identification of TRs.
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RePhine enables identification of TRs with significant
and non-significant correlation between their mRNA
levels and drug response

When applied to pharmacogenomic data, RePhine can
identify TRs which have significant correlation between
their mRNA expression levels and drug response. Further-
more, RePhine can also identify candidate TRs which do
not have significant correlation between their mRNA ex-
pression levels and drug response (Figure 2A and B). We
applied RePhine to data from CCLE and ENCODE and
performed both RePhine and PC analysis to compare the
two methods which are based on two different biological
assumptions. For each TR, two metrics were calculated: 1)
RePhine significant score (uniP) in log scale with direction
(resistance or sensitivity) and 2) Pearson correlation coef-
ficient (PCC) between its mRNA level and drug response.
For the 24 drugs available in CCLE, the two metrics were
positively correlated in most drugs (Figure 2A, Figure
S5A), supporting the biological assumption that TRs in-
fluencing the target regulation by their mRNA activation or
deficiency could also be effectively identified by target-
based methods such as RePhine. In the specific examples of
erlotinib (a well-established anti-cancer targeted therapy
drug agent [15]) and paclitaxel (a chemotherapy drug),
RePhine significant scores (uniP) were highly correlated
with the PCCs across all the TRs (Figure S5B and C).

How does RePhine perform on TRs which do not have
significant PC between their mRNA expression levels and
drug response? We then chose erlotinib to assess this issue.
First, we divided the TRs into 3 groups. Group 1 contained
the PC-correlated-only TRs (Figure 2B, green set; having
significant PC between their mRNA expression levels and
drug response but not RePhine significant uniP). Group 2
contained the RePhine-correlated-only TRs (Figure 2B, blue
and purple sets; having RePhine significant uniP between
their mRNA expression levels and drug response but not
significant PC); TRs in the purple set additionally had
RePhine significant multiP (within the RePhinemultivariate
EN cutoff multiP < 0.005), and thus were predicted to be
involved in the drug response independently (named
RePhine-correlated-only independent TRs) (Figure 2B,
Figure S5D). Group 3 contained the PC-RePhine-shared-
correlated TRs (Figure 2B, red set, common TR candidates).

We then performed protein–protein interaction (PPI)
analysis to investigate the biological connections among the
TR candidates within each set. RePhine-correlated-only
independent TRs (purple set) had more significantly en-
riched PPIs than PC-correlated-only TRs (Table S3). Both
the RePhine-correlated-only independent TRs (purple set)
and the PC-RePhine-shared-correlated TRs (red set) had
over-represented pairwise PPIs (Figure 2C, Figure S6A).
The pairwise PPIs achieved higher enrichment by pooling

such TRs together (P = 2.58E−10, derived from STRING
database; Figure 2C and D; Table S3), suggesting tighter
biological connections. In contrast, there were less sig-
nificantly enriched PPIs observed among the CA-
correlation-only TRs (green set) and among the CA-
correlation-only and PC-RePhine-shared-correlated TRs
(green and red sets) (Figure S6B and C; Table S3), sug-
gesting unrelated and random connections between them. In
addition, FOS and STAT3, two known biomarkers of erlo-
tinib [16,24–26], had tight interactions with the other can-
didates (Figure 2C and D).

RePhine has an improved performance in CCLE da-
taset

To comprehensively evaluate the RePhine performance in
real data, we next conducted PPI enrichment analyses to the
TR candidates from PC analysis, GSEA, and RePhine for all
drugs in CCLE dataset (Table S4).
RePhine-correlated independent TRs (having both sig-

nificant uniP and significant multiP; see Method for details)
displayed a significantly higher PPI enrichment than PC-
correlated TRs (P = 0.003575, derived from STRING da-
tabase; Table S4). However, this enrichment was not sig-
nificantly higher than that of GSEA-correlated TRs. The
results are reasonable because GSEA candidates contain
redundant TRs such as subunits of the same complex, which
tend to have more PPIs but RePhine only identifies the
independent TRs among these redundant TRs. To test this
notion, we compared the RePhine-correlated TRs that only
had significant uniP (where functionally redundant TRs
were not removed) with GSEA-correlated TRs. The results
showed that the RePhine-correlated TRs had a significantly
higher PPI enrichment than GSEA-correlated TRs (P =
6.52E−05, derived from STRING database; Table S4). The
significantly higher PPI enrichment of RePhine-correlated
TRs suggests that TRs identified by RePhine have tighter
biological connections and functional consistency.

To further evaluate the effectiveness of RePhine, we next
performed PPI enrichment analyses (Table S4) and litera-
ture searching for CCLE drugs with marketing approval
(Table S5) to compare RePhine with a published effective
method “DoRothEA” [27]. Both methods were applied to
CCLE data. RePhine-correlated independent TRs had a
significantly higher PPI enrichment (P = 0.01488, paired
t-test; Table S4), and the count of publication-consistent
TRs (the true positives) of RePhine was higher than that of
DoRothEA (38 hits vs. 12 hits; P = 1.078E−04, Fisher’s
test). In contrast, the counts of the false negatives and the
candidates without literature support of RePhinewere lower
(16 hits vs. 36 hits, P = 0.004141, Fisher’s test; 55 hits vs. 80
hits, P = 0.00942, Fisher’s test; Table S5). The counts of the
contrary predictions of both methods (where the predicted
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Figure 2 Comparison of the results between RePhine and PC analysis in CCLE data
A. Density plot for distribution of SCCs between RePhine significant scores (−Log10 RePhine uniP with direction) and PCCs of all 24 CCLE drugs. PCCs
are calculated between TR mRNA level and drug response. B. Comparison of RePhine and PC in erlotinib. TRs shown in green (PC-correlated-only), blue
and purple (RePhine-correlated-only), and red (PC-RePhine-shared-correlated) represent candidates that have significant P values in PC analysis, RePhine,
and both methods, respectively. TRs shown in purple represent RePhine-correlated-only independent TRs that additionally have RePhine significant multiP
(within the RePhine multivariate EN cutoff multiP < 0.005). C. PPI network among RePhine-correlated-only independent TRs. D. PPI network by pooling
RePhine-correlated-only independent TRs and PC-RePhine-shared-correlated TRs together. PC, Pearson correlation; CCLE, Cancer Cell Line En-
cyclopedia; SCC, Spearman correlation coefficient; PCC, Pearson correlation coefficient; uniP, univariate P value; multiP, multivariate P value; EN,
Elastic-Net; PPI, protein–protein interaction.
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resistance or sensitivity were contrary to the publications)
were similar (7 hits vs. 13 hits).

RePhine effectively clusters drugs with similar action
mechanisms

Next, we took advantage of RePhine to explore the re-
lationship between TR regulation and drug response. We
defined the TR significance profiles of RePhine correlation
(−Log10 uniP with direction) across all CCLE drugs as TR
response signatures. The response signatures reflect whe-
ther each drug has a specific TR response pattern. We
computed the response signatures for all ENCODE TRs (n =
160). Notably, we did not filter TRs in this procedure.
RePhine uniP values were calculated for all 160 TRs.

Our results suggest that drugs with similar action me-
chanisms tend to have similar TR signatures and RePhine
can effectively cluster drugs with similar action
mechanisms together. RePhine-based clustering separated
the drugs into three clusters (Figure 3A). In cluster 1, all
chemotherapy drugs as well as an HDAC inhibitor (pano-
binostat) were clustered together but away from other tar-
geted therapy drugs. In cluster 3, drugs targeting EGFR
(erlotinib, AZD0530, lapatinib, and ZD-6474) [28–30] were
clustered together with an HSP90 inhibitor (17-AAG). In
cluster 2, there were two subgroups. Cluster 2.1 contained
two ALK inhibitors (PF-2341066 and TAE684), an ABL
inhibitor (nilotinib), a CD4/6 inhibitor (PD-0332991), an
IGF-1R inhibitor (AEW541), and two multi-kinase in-
hibitors (sorafenib and TKI258) [28]; in cluster 2.2, two
MEK inhibitors (PD-0325901 and AZD6244), two RAF
inhibitors (PLX4720 and RAF265), an MET inhibitor
(PHA-665752), which were related to MAPK signaling
[31], were clustered. All the drugs in cluster 2 were targeted
therapy drugs [28]. In addition, clustering based on RePhine
signatures had an improved performance compared with
GSEA-based clustering in the mechanism-focused separa-
tion of the CCLE drugs (Figure 3A, Figure S7; File S1).

Hierarchical clustering analysis further separated 160
TRs into five clusters, which were associated with different
types of therapies (Table 1). Each cluster showed enriched
pairwise PPIs and functional consistency (Figure 3B; Table
S6). For example, TR response signatures in chemotherapy
drugs were associated with cell cycle as expected (Figure
3A and B), indicating that the cell cycle-related TRs could
significantly regulate chemotherapy response [32]; the TRs
in cluster 1 enriched in AP1 pathway were positively cor-
related with the response to both BRAF inhibitor and EGFR
inhibitors. The TRs in cluster 5 that are related to EGF
response and IFN-related pathways were only associated
with the response to EGFR inhibitors (Figure 3A and B).

How can this TR clustering inform regarding response to
anti-PD-1 immunotherapy? To answer this question, we

integrated in vivo anti-PD-1 CRISPR screening data and
patient-level anti-PD-1 response data from two previous
studies [33,34]. By comparing these TR clusters with
CRISPR screening candidates, we found that the top 5 TRs
(STAT1, SMARCA4, STAT2, GTF2F1, SMARCC1) whose
loss-of-function would trigger the resistance to anti-PD-1
therapy were enriched in cluster 5 (P = 0.034, one-tail
Fisher’s test; Figure 3C). To validate this observation, we
explored the associations of these TRs with anti-PD-1 drug
response in the patient cohorts [33]. Although these TRs
were not observed to be differentially expressed between
responders and non-responders, mutations of the genes
encoding TRs in cluster 5 exclusively resulted in lower
probability of complete response to anti-PD-1 therapy than
that of partial response and progressive disease, which was
identified through a multivariate logistical analysis by ac-
counting for mutation loading (P = 0.0144, Table S7).

These results suggest that TRs particularly associated
with response to EGFR inhibitors (Table 1, cluster 5) are
also linked with anti-PD-1 effect [34]. Interestingly, it has
been reported that EGFR pathways can positively regulate
the activation of PD-1/PD-L1 pathway [35,36]; such studies
may explain why there is a common TR response signature
between EGFR inhibitors and anti-PD-1.

Identification of EZH2 as a BRAF inhibitor resistance-
related TR

PLX4720, the precursor of vemurafenib (PLX4032), is an
ATP-competitive BRAF inhibitor. Resistance to BRAF in-
hibitors may rapidly develop in patients, but the
mechanisms underlying this resistance are not fully under-
stood [37–39]. We applied RePhine to PLX4720 using
CCLE data and ENCODE ChIP-seq data, and identified
GTF3C2, YY1, ESR1, E2F1, MYC, GATA3, RBBP5,
EZH2, E2F4, ZEB1, and ZNF217 as the RePhine-
negatively-correlated independent TRs (RePhine coeffi-
cient < 0, uniP < 1E−5, multiP < 0.005, Figure 4A; Table
S8). Among them, EZH2, E2F4, ZEB1, and ZNF217 are
primarily transcription repressors (Table S9). On the other
hand, activations of SPI1, CEBPB, and EP300 were de-
termined as PLX4720 sensitivity predictors (RePhine
coefficient > 0).

To validate all these candidates obtained from RePhine,
we integrated the CRISPR-meditated gene knockout
screening results for these candidates in A375 cells with
PLX4032 treatment [37]. We used the MAGeCK method to
interpret the CRISPR results [40]. Beta scores from
MAGeCK indicate sgRNA abundances in the screen and
the differences of beta scores between treatment and control
reflect the effects of the drug on cell survival after gene
knockout [40]. RePhine-identified candidates including
resistant-related TRs as well as sensitive-related TRs were
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Figure 3 RePhine-characterized TR response signatures of drug clusters and functional enrichment
A. Heatmap of RePhine-characterized response signatures of all TRs across the drugs. Blue and red colors indicate negative and positive RePhine
correlations, respectively. Some well-known TRs in each cluster are highlighted. “ward.D” and “complete” methods were used to cluster the TRs and
drugs, respectively. B. Enriched pathways of TRs in each cluster. P value was obtained from Fisher’s test. C. Summary of overlapping TRs between
clusters 1−5 TRs and anti-PD-1 response-related TRs.
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Table 1 Hierarchical clustering of TRs associated with different types of therapies

Cluster Characteristic of TRs

1 TRs with RePhine correlation to most MAPK inhibitors such as PLX4720 and erlotinib
2 TRs with positive RePhine correlation to chemotherapy drugs and cell cycle inhibitors
3 TRs with comparatively moderate RePhine correlation to drugs
4 TRs with positive RePhine correlation to EGFR inhibitors but with negative correlation to ABL and ALK inhibitors
5 TRs with positive RePhine correlation to EGFR inhibitors and MEK inhibitors but with negative correlation to

chemotherapy drugs and CDK inhibitors

Note: TR, transcriptional regulator; MAPK, mitogen-activated protein kinase; EGFR, epidermal growth factor receptor; ABL, Abelson tyrosine kinase; ALK, anaplastic
lymphoma kinase; MEK, mitogen-activated protein kinase kinase; CDK, cyclin-dependent kinase.

Figure 4 EZH2 is predicted as a BRAF inhibitor resistance-related TR by RePhine
A. Scatter plots showing the RePhine predicted response to PLX4720 of the top candidates (uniP < 1E−5, multiP < 0.005, permuP < 0.05) and the TR
knockout effects on PLX4032 response derived from the CRISPR screening data. The X-axis represents the difference of beta scores between drug
treatment and control. Higher scores represent increased degrees of drug resistance affected by the gene knockout. Y-axis represents the −Log10 RePhine
uniP with direction (sensitive or resistant) of TRs related to drug response from RePhine. B. Visualization of EZH2 enrichment pattern. All genes were
ordered by partial correlations from positive to negative. Maximum deviation from zero is defined as enrichment score. Targets of EZH2 have concordant
negative partial correlations. C. Scatter plot showing correlation between EZH2 expression and PLX4720 response. permuP, permutation P value.
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all observed to correspond well with the differences of beta
scores from CRISPR results (Figure 4A). These results in-
dicate that RePhine can effectively identify drug response-
related TRs.

Validation of EZH2 as a PLX4720 resistance-related
TR by drug experiments

Our RePhine results showed that EZH2 is related to
PLX4720 resistance. We observed that EZH2 had negative
RePhine correlation with the PLX4720 response (Figure
4B); however, its mRNA levels did not exhibit any corre-
lation with the PLX4720 response (Figure 4C). Therefore,
we performed experimental validation of this RePhine
prediction.

To experimentally validate the RePhine prediction of
EZH2, we performed drug combination experiments with
GSK126 and PLX4720. GSK126 is a potent and highly
selective EZH2 inhibitor [41]. In both BRAF V600E mutant
cell lines, A375 and SK-HEP-1, treatment with PLX4720
and GSK126 simultaneously resulted in antagonistic in-
hibitory effects at most dosage combinations (average CI =
3.281 for A375; average CI = 1.833; Figure 5A–D). In
contrast, in the BRAF wild-type cell line JHH-7, there was
no strong antagonistic interaction at most dosage combina-
tions (average CI = 1.021), which suggests that the
antagonistic effect is BRAF activation-dependent (Figure
S8A and B). Contrary to our expectations, PLX4720 and
GSK126 showed slight synergistic effect at high GSK126
dosages in SK-HEP-1 and JHH-7 (control) cell lines. This is
possibly due to EZH2 being functional at the high dosage or
existence of off-target pathway inhibition [42]. Similar an-
tagonistic interactions were observed in two previous stu-
dies: experiments in cell lines [43] and in vivo mouse
models [44]. It was worth pointing out that such studies
claimed synergistic effect between BRAF inhibitors and
EZH2 inhibitors in a subset of cancers that had EZH2 am-
plification or gain-of-function mutations which led to re-
distribution of H3K27me3 [44]. Their control experiments
(in cell lines with wild-type EZH2) supported our finding,
but the studies’ authors did not comment on their control
findings.

Validation of EZH2 as a PLX4720 resistance-related
TR by bioinformatics analyses

We next validated the EZH2 role in PLX4720 resistance by
analyzing the EZH2 ChIP-seq targets selected by RePhine,
the differentially expressed genes in PLX4720-resistant cell
lines, the relationship between PLX4720 response and
PRC2 gene mutations in the CCLE data, and the effect of
PRC2 deficiency on clinical outcomes in patients.

Given that EZH2 is a methyltransferase for H3K27 [42],

we analyzed the EZH2 ChIP-seq targets selected by
RePhine (Table S10). Besides the H3K27me3 signatures,
the EZH2 ChIP-seq targets were enriched in several cancer-
related pathways (Figure S8C; Table S10). Interestingly,
knockout of genes encoding PRC2 essential subunits and
other H3K27me3-related TRs, including ZNF217 [45,46],
also drove the cells to become comparatively resistant to
BRAF inhibitor treatment according to the CRISPR-
mediated gene knockout data (Figure S8D; Table S11).

We also discovered that EZH2 and genes encoding other
PRC2 subunits were significantly down-regulated in the
BRAF inhibitor-resistant cells in two independent expres-
sion datasets GSE68840 and GSE68599 (Figure 5E).

In the analysis of PLX4720 response and PRC2 gene
mutations in the CCLE data, we found that cell lines con-
taining mutations in both BRAF and H3K27me3-related
genes had significantly lower PLX4720 response than those
with only BRAF mutations (P = 0.044, t-test; Figure S8E).

In TCGA skin cutaneous melanoma (SKCM) patient
cohort dataset, where around half of the patients gained
BRAFmutations, we investigated whether PRC2 deficiency
affects clinical outcomes in patients. We defined an activity
score for each patient to evaluate the activity of PRC2.
Patients with relatively lower PRC2 activity scores had
worse outcomes than those having higher scores in the
BRAF mutant group (hazard ratio = 0.62, P = 0.041, 95%
confidence interval: 0.40–0.98; Figure 5F). In contrast, the
PRC2 activity scores were not predictive of overall survi-
vals in the BRAF wild-type group (hazard ratio = 1.14, P =
0.516, 95% confidence interval: 0.76–1.71; Figure 5G),
consistent with the results of the univariate Cox regression
analysis (Figure S8F).

Discussion

Due to low mRNA abundance of TRs and complexity of
biological regulation mechanisms, detecting the linkage
between TRs and drug response is still challenging. In this
study, RePhine was developed to effectively perform three
main tasks: 1) an integrative analysis on ChIP-seq targets to
produce TR identification robust toward noise and com-
plicated protein modifications, 2) an accurate measurement
of correlation patterns by adjusting all potential CFs that
are not under the impact of TR regulation, and 3) appli-
cation of quantitative and informative target inference by
considering both ChIP-seq signals and the distances from
peaks to the targets to achieve a better evaluation of the
associations.

There are still areas for further improvement. First,
although significant correlations between TRs and phar-
macological profiles could be detected through RePhine by
exploring targets’ profiles, the relationship may not be
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Figure 5 Validation of EZH2 as a BRAF inhibitor resistance-related TR
A. and B. Antagonistic inhibitory effect of the BRAF inhibitor PLX4720 and the EZH2 inhibitor GSK126 in A375 cells (A) and SK-HEP-1 cells (B). Cell
viability was normalized to untreated cells at 48 h. C. and D. CI and fraction of A375 cells (C) and SK-HEP-1 cells (D) affected by drugs at different
concentration combinations. Average CI (mean ± SD) was shown below. CI > 1 indicates antagonism. E. Down-regulation of PRC2 gene in BRAF
inhibitor-resistant cells. F. and G. Kaplan-Meier plots for SKCM patients with mutant BRAF (F) and wild-type BRAF (G). Lower PRC2 activity scores
were associated with worse outcomes in BRAF mutant group but not in the BRAF wild-type group. CI, combination index; FC, fold change; SKCM, skin
cutaneous melanoma.
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causal. Some upstream regulators or kinases may exist that
influence the drug response and simultaneously regulate
downstream TRs. Therefore, TR target analyses and TR
knockout or activation experiments combined with drug
response examination are also required to validate the
causal relationship. Second, because RePhine identifies
drug response-related TRs through the targets, it is re-
stricted to the cases where reliable target information is
available. Lack of ChIP-seq data or ChIP-seq data with too
few targets would mislead the identification of TRs. Hence,
some existing target prediction algorithms could be
exploited and complemented to facilitate target inference.
Third, detection of acquired resistance is limited due to lack
of post-treatment data in CCLE [28]. It is not trivial to
detect the secondary alterations in response to drug treat-
ment, which may elucidate why secondary resistance to
erlotinib through acquired STAT3 activation [47] could not
be detected by RePhine. In addition, due to lack of post-
treatment data, it is hard to integrate the effect of drug
perturbations on genes [28,48]. However, the pre-treatment
correlation identified by RePhine may still be relevant to
such drug influence on TRs. For example, FOS is selec-
tively up-regulated by EGF stimulation and inhibited by
EGFR TKI treatment in sensitive cells rather than in re-
sistant cells [16]. If FOS could not be inhibited by EGFR
TKI, the cells with higher FOS levels would not be sensitive
to EGFR inhibition, and there would be no correlation be-
tween FOS activity and drug response. Nevertheless, such
associations need further evaluation when post-treatment
data are available.
RePhine has been further applied to an independent un-

published liver cancer dataset containing RNA-seq data,
copy number information, and DNA sequencing data from
more than 50 primary liver cancer cells coupled with
pharmacological profiles for nearly 100 anti-cancer
drugs [49]. Our novel identification, which has been vali-
dated by experiments, is that MYC promotion could in-
dependently and significantly increase the response of three
drugs: BI-2536, PF-562271, and panobinostat. However,
MYC mRNA did not show any correlations with the phar-
macological profiles (Figure S9). The positive results ob-
tained by applying RePhine to this liver cancer dataset
further suggest that RePhine is an effective method for
identifying drug response-related TRs and could be used in
other independent pharmacogenomic data.

Code availability

RePhine, which is implemented as an R package and
accompanied by a user guide, is available at https://github.
com/coexps/RePhine. RP scores, TCGA differentially ex-
pressed gene sets, modified Python scripts of RP score

calculation, and R code for simulation and application for
CCLE data are also available at https://github.com/coexps/
RePhine.
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