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The problem of finding stereo correspondences in binocular vision is solved effortlessly

in nature and yet it is still a critical bottleneck for artificial machine vision systems. As

temporal information is a crucial feature in this process, the advent of event-based

vision sensors and dedicated event-based processors promises to offer an effective

approach to solving the stereo matching problem. Indeed, event-based neuromorphic

hardware provides an optimal substrate for fast, asynchronous computation, that

can make explicit use of precise temporal coincidences. However, although several

biologically-inspired solutions have already been proposed, the performance benefits

of combining event-based sensing with asynchronous and parallel computation are yet

to be explored. Here we present a hardware spike-based stereo-vision system that

leverages the advantages of brain-inspired neuromorphic computing by interfacing two

event-based vision sensors to an event-based mixed-signal analog/digital neuromorphic

processor. We describe a prototype interface designed to enable the emulation of a

stereo-vision system on neuromorphic hardware and we quantify the stereo matching

performance with two datasets. Our results provide a path toward the realization of

low-latency, end-to-end event-based, neuromorphic architectures for stereo vision.

Keywords: neuromorphic, event-based processing, event-based sensing, stereo vision, asynchronous

computation

1. INTRODUCTION

Biological and artificial binocular visual systems rely on stereo-vision processes to merge the visual
information streams. This implies solving the stereo-matching problem, i.e., finding correspondent
points in two slightly shifted views (Cumming and Parker, 1997). Typical applications in
robotics that can benefit from stereo vision include navigation in unknown environments, object
manipulation, and grasping. However, current machine-vision approaches still lag behind their
biological counterpart mainly in terms of bandwidth and power consumption (Tippetts et al.,
2016; Steffen et al., 2019). Classical methods are based on frame-based vision sensors. The main
challenges of frame-based algorithms are spatial redundancy and temporal information loss due
to the intrinsic nature of fixed-rate processing. This affects latency, throughput, and power
consumption, making frame-based approaches difficult to integrate into mobile platforms.

Biological systems, on the other hand, seem to efficiently solve the stereo-matching problem
by using space-variant and asynchronous space-time sampling (Steffen et al., 2019). Space-variant
resolution refers to a non-uniform distribution of retinal photoreceptors, with higher density in
the center (fovea) and a decreasing density toward the periphery. Asynchronous instead refers
to event-driven, self-timed sensing and processing. Therefore, a massively parallel, asynchronous,
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event-based chain, from sensing to processing, seems to be a
promising solution for more robust and efficient architectures of
stereo vision.

In this context, neuromorphic hardware has proven to be an
effective substrate (Chicca et al., 2014; Indiveri et al., 2015). To
date, the emerging field of event-based stereo vision has shown
successful approaches that interface Spiking Neural Networks
(SNNs) with neuromorphic event-based sensors, also referred
to as “event cameras,” in order to build real-time event-based
visual processing systems (Mahowald, 1994a; Osswald et al.,
2017). Inspired by the retinal ganglion cells, the neuromorphic
vision sensors broadcast information, independently for all the
pixels, only in response to significant changes in illumination,
which results in a low-power, low-latency, event-driven, and
sparse input stream (Lichtsteiner et al., 2008; Posch et al., 2010;
Berner et al., 2013). Spiking neurons, in turn, can process
signals using temporal information, and therefore, can take full
advantage of an event-based input stream to solve the stereo-
matching problem. However, although several biologically-
inspired implementations of stereo vision (Mahowald, 1994b;
Piatkowska et al., 2013, 2017; Dikov et al., 2017; Osswald
et al., 2017; Kaiser et al., 2018) have extensively been explored,
only a few solutions fully exploit the advantages of parallel
computation, with an end-to-end neuromorphic architecture
that can replace traditional Von Neumann architectures.
In Dikov et al. (2017), the first scalable architecture of the
Marr and Poggio cooperative network (Marr and Poggio, 1976,
1977, 1979) is implemented on the SpiNNaker platform (Furber
et al., 2014). Despite the short latency (2 ms) of the network
and the portable design, the reported power consumption
of the neuromorphic implementation (90W for a 3-board
SpiNNaker machine) makes it difficult to integrate in mobile
or autonomous applications. More recently, Andreopoulos et al.
(2018) proposed the first fully end-to-end stereo pipeline,
implemented on multiple TrueNorth processors (Sawada et al.,
2016). The architecture achieves a 200× improvement, compared
to Dikov et al. (2017), in terms of power per pixel per disparity
map (0.058 mW/Pixel). Both solutions, however, emulate the
cooperative stereo network on digital hardware. Inspired by
biological neurons, analog neuromorphic circuits, by contrast,
can potentially lead to more promising solutions for low-power,
yet noisy, computation.

Following up on the work from Osswald et al. (2017),
we present an end-to-end neuromorphic architecture of
cooperative stereo vision implemented on mixed analog/digital
neuromorphic hardware. Compared to the previous work, here
we replaced the mixed-signal Very Large Scale Integration
(VLSI) ROLLS chip (Qiao et al., 2015) with a scalable multi-
core design (Moradi et al., 2018). Moreover, the proposed
solution shifts the event-based computation directly on chip
and provides a more robust, biologically-inspired coincidence
detection mechanism. In the next section, we describe the
digital interface between the sensing and the processing
stage. Then, we present the neuromorphic implementation of
the spiking network and we quantify the stereo matching
performance with a synthetic dataset and an event
camera dataset.

FIGURE 1 | The neuromorphic stereo-vision setup: OpalKelly XEM7360 [1],

DYNAP [2], Stereo DAVIS240C [3].

2. METHODS

The stereo-vision architecture introduced here combines two
event-based sensors, the Dynamic and Active Pixel Vision
Sensor (DAVIS) (Berner et al., 2013), and three VLSI multi-
core analog/digital Dynamic Neuromorphic Asynchronous
Processors (DYNAPs) (Moradi et al., 2018) integrated in a 4-
chip board. As a prototype, we designed the interface between
sensing and processing on a dedicated Field Programmable
Gate Array (FPGA) device (Xilinx Kintex-7 FPGA on the
OpalKelly XEM7360).

2.1. Event-Based Sensing
As opposed to classical frame-based cameras, event-
based sensor encodes information with lower latency and
redundancy (Gallego et al., 2019). Inspired by the biological
photoreceptors, the neuromorphic pixels operate independently
and send out asynchronous events in response to significant
changes in illumination using an event-based data protocol
Address Event Representation (AER) (Deiss et al., 1998). The
polarity of those events encodes increases (ON events) or
decreases (OFF events) in illumination. Overall, this results
in fast data acquisition with low latency and high temporal
resolution. Compared to the original DVS (Lichtsteiner et al.,
2008), the DAVIS sensor features a higher spatial resolution
(240× 180) and adds an APS (Active Pixel Sensor) readout.

In the proposed architecture, the two DAVIS sensors are
mounted on a stereo-setup (see Figure 1) and are separated by a
baseline distance of about 6 cm, which is similar to the pupillary
distance of humans. Events are sent separately from both retinas
to an FPGA using the AER protocol.
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FIGURE 2 | Overview of the event-based digital interface.

2.2. Sensors-Processor FPGA Interface
Figure 2 shows the main modules of the event-based digital
interface. The communication to/from the FPGA is based on a
4-phase handshake protocol, handled by the Handshake Receiver
(HSR). Since the 4-phase handshake interfaces two different clock
domains, metastable states of the input events could occur. This
is handled by the Metastability Synchronizer (MSC) module,
which uses a chain of two Flip-Flops to prevent metastability.
A pre-processing element (PEL) reduces the input resolution to
a 16 × 16 array to redirect the AER events to the destination
core on the neuromorphic processor. The pre-processed events
are thus forwarded to a small FIFO with eight entries, in charge
of absorbing the pipeline stall due to the successive multiplexing
stage. The DAVIS Input Selector (DIS) module multiplexes the
data using a round-robin scheme and forwards them to the
Handshake Sender (HSS), which handles the output handshake
with the neuromorphic processor.

2.3. Event-Based Processing
The architecture computational substrate is a multi-core
asynchronous mixed-signal neuromorphic processor fabricated
using standard 0.18 µm 1P6M CMOS technology, the
DYNAP (Moradi et al., 2018). Each core comprises 256
adaptive exponential integrate-and-fire (AEI&F) silicon neurons
that emulate the biophysics of their biological counterpart, and
four different dedicated analog circuits that mimic fast and slow
excitatory/inhibitory synapse types (Brette and Gerstner, 2005).
Each neuron has a Content Addressable Memory (CAM) block,
containing 64 programmable entries allowing to customize
the on-chip connectivity. A fully asynchronous inter-core and
inter-chip routing architecture allows flexible connectivity
with microsecond precision under heavy systems loads. Digital
peripheral asynchronous input/output logic circuits are used to
receive and transmit spikes via an AER communication protocol,
analogous to the one used for the event-based input stream. As
a result, the proposed implementation leads to a prototype for a
fully asynchronous pipeline of event-based stereo vision.

2.4. The Spiking Neural Network Model
The SNN implemented on the DYNAP is adapted from the
structure presented in Osswald et al. (2017). It consists of three
neuronal populations: the retina, the coincidence detectors, and
the disparity detectors (see Figure 3). Each coincidence and
disparity neuron is assigned a triplet of coordinates, a horizontal

cyclopean position (x = xR + xL), a vertical cyclopean position
(y), and a disparity value (d = xR − xL), which determines the
neuron representation of a location in the 3D space.

Each coincidence neuron receives excitatory inputs from a
pair of retina cells tuned to its same spatial location (xR or xL),
thereby encoding temporal coincidences among pairs of inter-
ocular events. However, the temporal information is crucial but
not sufficient to correctly solve the stereo ambiguity, which arises
from matching features from different stimuli. For instance, two
stimuli moving synchronously on a plane yield four clusters of
activation in the coincidence detectors population: two correct
matches along the direction of constant disparity, here referred to
as True Targets (TT) and two wrong matches along the direction
of constant cyclopean position, here referred to as False Targets
(FT), which correspond to the erroneous perception of two
stimuli moving in depth.

This ambiguity is reduced in the disparity population by
means of two mechanisms of inhibition: recurrent inhibition
(Type I) across disparity neurons tuned to the same line of
sight (i.e., x = xL or x = xR) and feed-forward inhibition
(Type II) from coincidence neurons tuned to the same
cyclopean position. Moreover, disparity neurons receive feed-
forward lateral excitation from coincidence neurons tuned to
the same disparity. This excitatory-inhibitory balance allows
integrating the stimulus spatiotemporal features over time,
thereby implementing the matching constraints of cooperative
algorithms (Marr and Poggio, 1976; Mahowald, 1994b; Osswald
et al., 2017). As a result, the SNN model can solve the
stereo matching problem, with only TT represented in the
disparity population.

2.5. Neuromorphic Hardware
Implementation
The entire pipeline of visual information processing was designed
to be a scalable neuromorphic architecture. In our proof-of-
concept mixed-signal implementation of stereo vision, both
coincidence and disparity detectors are implemented using
silicon neurons. All neurons in the architecture are emulated
by parallel physical circuits in real-time on the neuromorphic
processor. In order to optimize the trade-off between the retina
field of view and the computational resources on hardware, the
input pixels from the event cameras are downscaled to two 2D
arrays of 16 × 16 neurons on FPGA which, in turn, project to
a 3D array of coincidence detectors. Therefore, the array has a
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FIGURE 3 | The spiking neural network model. The input space of the retina (R, L) is downscaled and processed by four populations of coincidence (C) and disparity

(D) neurons (first one highlighted in light gray). Excitatory (red) and inhibitory (blue) connections are shown. Adapted from Osswald et al. (2017).

width of 16 neurons, both in the xR and xL dimensions. The y
dimension, instead, is further downscaled to four levels, hereafter
referred to as network “layers” L1–4 (Figure 3). The same
structure is implemented for the 3D array of disparity neurons.
In total, the architecture comprises Nn = 3, 072 silicon neurons
and Ns = 62, 562 silicon synapses (see Supplementary Data 1.2

for the estimated power consumption of the network).

2.5.1. Coincidence Detection
Since coincidence detection is a key component of our model,
we carefully emulated and further optimized the low-power
mechanism exploited by biological brains. Specifically, temporal
coincidences are detected by combining the mechanism of supra-
linear, dendritic summation of synaptic events with slow and fast
synaptic time constants. As in biological brains, AMPA synaptic
currents can boost the effect of slow NMDA synapses when both
synaptic inputs are close in time (González, 2011). Coincidence
detectors are emulated on the chip exploiting the non-linear
properties of the dedicated analog synapse circuit block, which
mimics the biological NMDA voltage-gating dynamics. Each
coincidence detector is connected to one of the corresponding
input retina cells via the slow (NMDA-like) synapse and to
the other one via the fast (AMPA-like) synapse circuit block.
Only if both synapses are stimulated in rapid succession
the coincidence detector neuron fires. A demonstration of
coincidence detection emulated on-chip is shown in Figure 4

(see Supplementary Data 1.1 for a full characterization of the
proposed coincidence detection building block). To reduce the
effect of high-frequency homolateral excitation (Dikov et al.,
2017), we included one inhibitory connection from each input
neuron to the coincidence detectors population. By controlling
the ratio between excitatory/inhibitory synaptic time constants,
this helps to suppress incoming monocular events with a high
input rate, which would otherwise boost the activation of

coincidence detectors, leading to the erroneous perception of
inter-ocular coincidences.

2.5.2. Disparity Detection
Lateral feed-forward inhibition was implemented with a
separate population of coincidence neurons receiving
excitatory connections from the coincidence detectors
(Supplementary Figure 3). As a result, the effect of the lateral
inhibition is delayed with respect to the feed-forward input from
the population of excitatory coincidence detectors. This allows
to boost the activity of neurons receiving excitatory inputs due
to temporally correlated inter-ocular events and therefore helps
to suppress false targets in the disparity population.

2.5.3. Network Calibration
As shown in Osswald et al. (2017), neurons in the emulated SNN
model of cooperative stereo vision compute an approximation of
the local covariance of the spatiotemporal visual information. As
a result, neuronal and synaptic time constants are key parameters
in the proposed architecture, and they were configured as follows.
First, we measured the distribution of both monocular and
interocular inter-spike-intervals of the input events. Then, the
time constants of coincidence detectors were set according to
the constraints in (Supplementary Data equation S2). Finally,
the neuronal time constants of disparity detectors were set
significantly larger than the time constants of coincidence
detectors, i.e., within the timescale of hundreds of milliseconds.

2.6. Experiments
Prior to a full-scale implementation of the prototype architecture,
we assessed the stereo matching performance by comparing the
network output to an event-based ground truth. We included in
our interface design another datapath that uses the OpalKelly
USB3.0 to allow high-speed data transfer from the PC. This
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FIGURE 4 | Emulation of coincidence detection: recorded membrane potential of a coincidence detector as a function of the NMDA voltage-gating threshold (VNMDA).

As the threshold decreases, the silicon neuron responds to larger inter stimulus interval delays and therefore, the coincidence detector sensitivity increases.

allowed us to validate the network performance in two scenarios.
First, we used a synthetic dataset to test the effectiveness of
lateral inhibition with temporally correlated input events. Next,
we tested the network performance with real events collected
with the event cameras.

2.6.1. Stereo Matching With Synthetic Inputs
As a first step, we generated a synthetic dataset to mimic the
output of two neuromorphic retinae recording the scenario
of motion on a plane, and specifically two stimuli (dark
edges) moving in opposite directions on different depth planes
(Figure 5B). The spiking network model in Osswald et al. (2017)
is designed to have individual coincidence detectors for each
event polarity. However, since a full-scale implementation of the
model is out of the scope of this work, we chose to focus our
analysis on one event polarity. Figure 5A shows the reproduced
activity in the input neurons, together with the expected output
of the disparity population. The neural activity is depicted as
a temporal image, with gray levels representing synchronous
activation in time.

We define as “stimulus speed” the number of input neurons
sequentially activated by the stimulus over time. Thus, we chose
a speed of 20 input neurons/s for both stimuli, with each
input neuron firing at 50 Hz when the stimulus moves to its
corresponding location (Supplementary Figure 7A). Moreover,
events were generated with vertical coordinates such that they
would target only one out of four network layers.

Since the goal is to validate the effect of lateral inhibition,
we explicitly constructed the input events with perfect temporal
inter-ocular correlation. In this scenario, only if the network
uses the lateral inhibition to integrate not only temporal but also
spatial features of the stimuli, the ambiguity can be resolved.

2.6.2. Stereo Matching With Event Cameras Inputs
Real-time scenarios recorded with event cameras inevitably
produce noisy events, mainly due to camera jitter and variable
latency. Therefore, in order to validate the proposed approach
for an end-to-end event-based architecture of stereo vision, it
is essential to assess whether the network can still resolve the
ambiguity of stereo correspondences with noisy inputs. To this
end, we reproduced the scenario of motion on a plane simulated
with synthetic data and recorded events from the event cameras.
The experimental setup is illustrated in Figure 6A.

The software “Processing” (Reas and Fry, 2007) was used to
simulate two dark edges moving on a white background at a
constant speed on two different screens. The setup was calibrated
using the MATLAB Stereo Camera Calibrator Toolbox with
the grayscale images of the DAVIS240C. Upon estimating the
camera extrinsics and intrinsics, one screen was placed around
the camera vergence point and the second one between the
vergence point and the stereo setup. In order to optimize the ratio
between spatial resolution and the number of input neurons,
a window of 96 × 96 pixels centered around the stimulus was
applied to filter out information outside the region of interest,
and the recorded events were further downscaled with a kernel
of 6× 6 pixels.

2.7. Stereo Matching Performance
2.7.1. Event-Based Ground Truth
In order to assess the stereo matching performance of the
network, an event-based ground truth is required. While this
is intrinsically available in the case of synthetic datasets, it is
not as straightforward with a real dataset. For this scenario, we
assumed as true matches the stereo correspondences detected
with generalized time-based technique (Ieng et al., 2018) with
spatial, temporal, and motion consistency used as matching
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FIGURE 5 | Synthetic dataset: the neural activity is depicted as a temporal image, with gray levels representing synchronous activation in time (A). Two spike trains

were generated to simulate the activity of event cameras in response to two edges moving in opposite directions at constant depth levels (B). Input binocular time

series and expected activation over time of disparity neurons are shown as temporal images.

FIGURE 6 | Event camera dataset. Sketch of experimental setup (A) two monitors were used for the generation of two edges separated in depth and moving on a

plane. After calibration, the monitor generating Stimulus 1 was placed closer to the region of the camera vergence point, while Stimulus 2 was placed closer to the

stereo setup. Pointcloud reconstruction (B) with generalized time-based technique (time window ǫ = 2 ms, exponential decay kernel τ = 10 ms and a spatial kernel of

10 × 10 pixels).

constraints1. To increase the ground-truth accuracy, we fed
the generalized time-based technique with one stimulus at a
time so that there was no stereo ambiguity. Finally, detected
stereo correspondences were labeled as true targets if yielding
a correlation score larger than c = 0.4 (resulting pointcloud
reconstruction shown in Figure 6B).

1As the DAVIS240C does not integrate the synchronous luminance information,
the luminance consistency constraint could not be included in our analysis.

2.7.2. Accuracy
The stereo matching accuracy was measured with the following
metrics proposed in Osswald et al. (2017).

1. Percentage of Correct Matches (PCM):

PCMC,D(ti) =
TTC,D(ti)

FTC,D(ti) + TTC,D(ti)
(1)

with TTC,D(ti), and FTC,D(ti) being the normalized number of
true targets and false targets recorded within a time window
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FIGURE 7 | Results of network emulation with the synthetic dataset. Mean firing rate of coincidence neurons (C, excitatory population) and disparity population (D)

(A). Histogram of encoded disparity values across the trial duration in both coincidence (blue) and disparity neurons (orange) (B). As the activity clusters around the

true disparity values (d = 0, d = −3), the disparity population successfully resolves the stereo ambiguity.

ti, both for coincidence and disparity neurons. Spikes were
labeled as true targets if the minimum euclidean distance
in the 2D plane (x, d) between the recorded neuron id and
the ground truth neuron ids was smaller than the threshold
distance Dmin = 1.

2. True Target Amplification (TTA) and False Target
Amplification (FTA):

TTA =

∑
ti
TTD(ti)

∑
ti
TTC(ti)

FTA =

∑
ti
FTD(ti)

∑
ti
FTC(ti)

(2)

which allow quantifying the disparity sensitivity (TTA) and
the degree to which false targets are suppressed due to
recurrent and lateral feed-forward inhibition (FTA).

3. RESULTS

3.1. Stereo Matching With Synthetic Inputs
Figure 7 shows the mean firing rate of coincidence (excitatory
population) and disparity neurons during the whole trial.
The coincidence detectors successfully detect the temporal
matches, i.e., an action potential arises only when the
input events from the retina cells are coincident in time.
However, coincidence detectors still respond to false targets,
i.e., coincident events arising from different stimuli. Indeed,
in this scenario, binocular time series related to different
stimuli are perfectly synchronized (Supplementary Figure 8A)
and therefore not distinguishable from the true targets in the
temporal domain (Mulansky and Kreuz, 2016). However, as
they activate coincidence detectors along the dimension of
constant cyclopean position, they also trigger the activation of
the correspondent inhibitory coincidence detectors, leading to
inhibition of disparity detectors tuned to the same cyclopean
position (Supplementary Figure 4). This is not the case for true

targets as binocular events due to the same stimulus target
coincidence detectors along the dimension of constant disparity,
which injects excitatory current into target disparity detectors
tuned to the same disparity. As a result, disparity detectors
integrate evidence of true disparities and effectively solve the
stereo ambiguity.

This is well-depicted by the metrics of stereo matching
performance. Compared to coincidence detectors, disparity
neurons can successfully suppress false targets (FTA = 0.08),
while still being responsive to true targets (TTA = 0.45). This
leads to a PCM score of 0.88, compared to PCM = 0.57 for
coincidence detectors.

As temporal information is the key feature for an event-
based network, the stimulus speed is a crucial factor influencing
the network performance. Indeed, as the number of input
neurons sequentially activated by the stimulus decreases, the
ratio TTA/FTA decreases, thereby affecting the stereo matching
performance (Figure 8).

3.2. Stereo Matching With Event Cameras
Inputs
Analogously to the analysis performed with synthetic data,
we first measured the average instantaneous firing rate of
coincidence and disparity neurons during one trial with
data from the event cameras. Notably, binocular time series
of non-correspondent stimuli are less correlated in real
scenarios (Supplementary Figure 8B). Therefore, false and true
targets become more separable from the temporal information
already. This is why the activation of coincidence detectors
responding to false targets is reduced compared to those
responding to true targets (Figure 9). However, disparity
detectors still achieve better performances in resolving the stereo
ambiguity (Figure 10).
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FIGURE 8 | Performance sensitivity to the stimulus speed: PCM (bottom graph, with median and interquartile range, measured across one trial over time windows

ti = 300 ms), TTA, and FTA (top graph). As the stimulus speed increases, the stereo matching performance increases (i.e., lower FTA).

FIGURE 9 | Results of network emulation with event camera dataset from network layer L2. Mean firing rate of coincidence neurons (C, excitatory population) and

disparity population (D) (A). Histogram of encoded disparity value across the trial duration in both coincidence (blue) and disparity neurons (orange) (B). As the activity

clusters around the true disparity values, the disparity population successfully resolves the stereo ambiguity.

4. DISCUSSION

We have presented a prototype architecture for cooperative
stereo vision implemented on a scalable neuromorphic
architecture. Recovering the 3D structure of a scene is
still computationally expensive for conventional computer
vision approaches. Yet, biology shows several examples
of stereo vision whereby space-variant and asynchronous
space-time sampling are some of the key features involved.

With parallel, sparse, and asynchronous computation,
neuromorphic hardware promises to offer an optimal substrate
for a low-latency implementation of 3D vision. However,
only a few approaches developed so far fully exploit the
advantages of analog asynchronous computation. Hereby we
implemented a biologically-inspired, event-based network
of stereo vision on a mixed analog-digital neuromorphic
processor and we validated the stereo matching performances of
the architecture.

Frontiers in Neurorobotics | www.frontiersin.org 8 November 2020 | Volume 14 | Article 568283

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Risi et al. On-Chip Spike-Based Stereo Vision

FIGURE 10 | Stereo matching accuracy: PCM, median and interquartile range. In all network layers (L1–4) the PCM of disparity neurons is larger than the PCM of

coincidence neurons, showing that disparity detectors can still solve the stereo ambiguity with slower, and uncorrelated, real stimuli.

Our model is derived from the work of Osswald et al.
(2017), which presents software simulations of the full-scale
implementation. By solving the stereo-matching problem with
leaky-integrate-and-fire neurons, the simulated spiking network
proves an effective approach to fully exploiting the event-based
visual sensors. However, the full potential of the model and its
scalability can only be leveraged if the neurons operate in parallel.
Here we validated the stereo-matching abilities of the network
by implementing it on a massively parallel neuromorphic
processor. Compared to the previous feasibility study based
on the ROLLS chip (Osswald et al., 2017), the proposed
solution shifts the coincidence detection mechanism, previously
on FPGA, directly on analog silicon neurons. Exploiting the
non-linear properties of a dedicated analog circuit, that mimics
the biological NMDA voltage-gating dynamics, led to a robust
coincidence detection mechanism that could ease the network
sensitivity to device mismatch, which is a crucial feature of
subthreshold mixed-signal neuromorphic processors. In this
regard, we anticipate that quantifying the effect of device
mismatch on coincidence detection will be a crucial step prior
to a full-scale implementation of the network on-chip.

In order to validate the effectiveness of the neuromorphic
substrate in solving the stereo correspondence problem, we
assessed the network performances in two scenarios. First, with
a synthetic dataset, we demonstrated the crucial role of the
synaptic kernel of feed-forward lateral inhibition. To do so,
we explicitly constructed the input binocular time series such
that false targets would be temporally correlated and, therefore,
only distinguishable from the true matches if disparity neurons
integrated the stimulus spatiotemporal features. However, this
is only possible when the temporal dynamics of the stimulus
are comparable with the neuron synaptic time constants, as

we showed in Figure 8. In other words, as the network
exploits motion cues to solve the stereo matching problem, the
network temporal sensitivity becomes intrinsically related to the
network spatial resolution. Thus, the number of input neurons
sequentially activated by the moving stimulus over time is a
crucial factor: increasing the number of neurons sensitive to the
input field of view would restore the network sensitivity to lower
speed stimuli.

The second scenario with data from event cameras allowed
us to test the network performance with noisy time series,
whereby non-correspondent inter-ocular events are not perfectly
correlated. Here the lateral inhibition fails due to lower speed
stimuli (Supplementary Figure 7B). Yet the network can still
achieve good stereo matching performances due to the recurrent
inhibition, which triggers competition among disparity neurons
tuned to the same line of sight. In this scenario, the feed-
forward excitatory input from coincidence detectors responding
to temporally correlated stimuli boosts the activation of disparity
neurons responding to true targets, therefore successfully leading
to false target suppression again.

Overall, both experiments validate our approach with
stimulus motion yielding constant disparity. The future step
is testing the network dynamics in the case of motion-
in-depth, which naturally addresses the trade-off accuracy
vs. speed. Indeed, coincidence detectors feature low-latency
response to short inter-ocular time differences, thereby setting
the network temporal resolution within the timescale of
microseconds. Disparity detectors, by contrast, need to integrate
the stimulus motion cues over time to resolve the stereo
ambiguity, and therefore they require longer neuronal time
constants (up to 100 ms). In fact, by receiving excitatory
and inhibitory projections from coincidence and inhibitory
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neurons, respectively, disparity neurons compare evidence of
the current stimulus statistics against the integrated evidence
of the stimulus spatiotemporal features. Measuring the network
response in the case of motion in depth will allow investigating
the effect of this excitatory/inhibitory balance on the stereo-
matching performances. Moreover, since no synaptic plasticity
is included in the architecture and given the event-based nature
of the input stimulus, a prior assumption about the stimulus
statistics is currently required to calibrate the network. Future
implementations on the new generation of DYNAP chips will
allow to incorporatemechanisms of short-term plasticity, thereby
enabling an autonomous adaptive calibration procedure.

Although the architecture proposed is scalable by
construction, implementing very large-scale systems based
on such architecture, able to operate in real-time, requires
adequate resources, and supporting neuromorphic processing
hardware. The DYNAP processor used in this study comprises
only 1,024 neurons, distributed among four cores of 256 neurons
each. However, the routing scheme implemented on that device
supports all-to-all connections of up to 16 by 16 chips providing
already the ability to scale the system up to 256k neurons. This
would, however, require very large printed circuit boards, or
many boards interconnected among each other. The DYNAP
chips proposed in Moradi et al. (2018) could be integrated
into a system comprising a much higher number of cores
[e.g., the IBM TrueNorth chip has 4,096 cores (Merolla et al.,
2014), and the Intel Loihi chip has 128 cores (Davies et al.,
2018)] without making any changes to the design. This would
enable the construction of larger scale stereo-vision setups that
would still be able to operate in real-time, given the parallel
processing ability of the emulated neurons and synapses. We
anticipate that designing an end-to-end asynchronous dedicated
architecture of this type would allow to fully leverage the
potential of sparse, event-based computation of SNN models
of cooperative stereo-matching. An additional strategy that
would enable the construction of large-scale stereo-vision setups
would be to use more complex vision pre-processing stages,
for example, implemented using convolutional networks and
applying the same principles presented in this work to the
features extracted by the convolutional network, rather than the
raw pixel values. This would allow us to use a smaller feature
space compared to the resolution of the vision sensor, and
increase robustness to noise in the vision sensors. As discussed
in Steffen et al. (2019), although there are many methods for
event-based depth estimation, the lack of a comprehensive
dataset or a standard testbed makes it difficult to compare them.
Yet, some event-based datasets for stereo vision have been
recently released (Andreopoulos et al., 2018; Zhu et al., 2018).
Implementing the full-scale model on new generations of mixed
analog/digital neuromorphic processors would allow comparing
the architecture performances against already existing methods.
In the long-term, the goal of the approach proposed is to
enable on-chip estimation of depth on a per-event basis, with
the highest resolution confined around the camera vergence
point. Indeed, conventional approaches of event-based stereo

vision constrain the search window for stereo matches along
the epipolar lines, which results in the point of zero disparity to
be shifted at infinity, and depth error increasing quadratically
with depth. Instead, in this work, we took inspiration from the
biological coarse and space-variant sampling and processed
the raw events with large input search zones. In other words,
here disparity detectors tuned to zero disparity respond to
targets moving around the camera vergence point. While this
naturally constrains the spatial (and therefore depth) resolution,
it could set out an optimized solution with latency response
and space-variant sampling. Combined with vergence control,
this active perception strategy could lead to promising solutions
for embedded neuromorphic architectures of stereo vision in
humanoid robots (Gallego et al., 2019). Moreover, the need for
compelling benchmarks that could show the advantages of spike-
based computation in real-world scenarios is currently one of the
major challenges for the neuromorphic research field (Davies,
2019). Our solution could show a valuable example of exploiting
spike-timing to process real-time information in closed-loop
systems, by emulating sparse, parallel computation of biological
neurons in order to solve the stereo matching problem.
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