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The US Neisseria meningitidis urethritis clade (US_NmUC) 
harbors gonococcal deoxyribonucleic acid alleles and causes 
gonorrhea-like urogenital tract disease. A large convenience 
sample of US_NmUC isolates (N = 122) collected between 
January 2015 and December 2019 in Columbus, Ohio 
demonstrated uniform susceptibility to antibiotics 
recommended for gonorrhea treatment and meningococcal 
chemoprophylaxis.
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In 2015, clusters of urethritis cases caused by a urethrotropic 
clade of Neisseria meningitidis (Nm) were identified at sexually 
transmitted disease (STD) clinics in the United States [1–5]. 
This pathogen, now known as the US N meningitidis urethritis 
clade (US_NmUC), has since been identified in the United 
Kingdom (UK) and Vietnam [6–8]. Several evolutionary pro-
cesses likely contribute to the US_NmUC’s urethrotropic na-
ture, including the following: loss of capsule and 
lipooligosaccharide sialylation; acquisition of Neisseria 
gonorrhoeae (Ng) deoxyribonucleic acid (DNA), including a 

functional gonococcal denitrification pathway that facilitates 
microaerobic growth; enhanced resistance to antimicrobial 
peptides; and high surface expression of a unique factor 
H-binding protein, which enhances resistance to complement- 
mediated killing [2–5, 9, 10].

Antibiotics recommended for gonorrhea treatment are also 
recommended for Nm-associated urogenital infections 
[11, 12], and evidence suggests that they are effective for 
US_NmUC-related infections [2, 13]. However, there are re-
ports of US_NmUC isolates with reduced susceptibility to pen-
icillin, ciprofloxacin, and azithromycin [2, 6–8, 14, 15]. We 
have previously reported the absence of gonococcal antibiotic 
resistance alleles and known resistance determinants in 
US_NmUC isolates recovered in Columbus, Ohio [5]. In the 
present study, we extended these earlier results and correlate 
genomic findings with phenotypic antibiotic susceptibility re-
sults in our cohort of banked US_NmUC isolates. We exam-
ined antibiotics commonly used in STD clinic settings, 
including those recommended for gonorrhea treatment, and 
antibiotics recommended for meningococcal chemoprophylax-
is [12, 16].

METHODS

Collection of US_NmUC Isolates

Between January 2015 and December 2019, we recovered 140 
US_NmUC isolates from individuals seeking care at an urban 
STD clinic in Columbus, Ohio and were able to perform anti-
biotic susceptibility testing (AST) in 122 (87%). All isolates 
were confirmed to be US_NmUC by polymerase chain reaction 
and whole-genome sequencing (WGS), as previously described 
[2, 3]. The yearly number of isolates tested declined over time 
(2015 [N = 69], 2016 [N = 36], 2017 [N = 12], 2018 [N = 3], and 
2019 [N = 2]), and most were recovered from the urethra of 
male patients (N = 119 of 122; 97.5%). One isolate was recov-
ered from the rectum of a male patient (N = 1 of 122; 0.8%), 
1 from the oropharynx of a male patient (N = 1 of 122; 0.8%), 
and 1 from the oropharynx of a female patient (N = 1 of 
122; 0.8%).

Antibiotic Susceptibility Testing

We assessed the minimum inhibitory concentration (MIC) for 
penicillin, cefixime, ceftriaxone, ciprofloxacin, azithromycin, 
rifampin, tetracycline, and gentamicin using gradient diffusion 
E-test strips according to the manufacturer’s instructions 
(bioMérieux, Inc.). In brief, 0.5 McFarland suspensions were 
inoculated onto Mueller-Hinton Agar supplemented with 5% 
sheep blood (Becton Dickinson and Co.) and incubated with 
E-test strips at 35–37°C in 5% CO2 for 20–24 hours. Because 
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higher azithromycin MICs have been reported when Nm is 
tested under 5% CO2 compared with ambient air [17], we de-
termined azithromycin MICs under both conditions. Finally, 
we confirmed penicillin MICs using broth microdilution 
(BMD) according to Clinical and Laboratory Standards 
Institute (CLSI) guidelines [18]. We based MIC interpretations 
(Table 1, footnote section) on CLSI guidelines for penicillin, 
ceftriaxone, ciprofloxacin, azithromycin, and rifampin [19] 
and on the European Committee on Antimicrobial 
Susceptibility Testing (EUCAST) guidelines for tetracycline 
[20]. Because no CLSI or EUCAST standards exist for Nm 
for cefixime and gentamicin, we used published interpretations 
for Ng [19, 21].

Genomic Analysis for Determinants of Decreased Antibiotic Susceptibility

We examined WGS data to identify alleles known to be associ-
ated with decreased antibiotic susceptibility using the genome 
comparator tool in PubMLST [22]. Antibiotic resistance muta-
tions that are well described for the pathogenic Neisseria were 
examined by Clustal W alignment and included the 
following determinants: penA, ponA, pilQ, mtrR/C/D/E, and 
porB (β-lactam resistance), gyrA, gyrB, parC, and parE (fluoro-
quinolone resistance), 23S_rRNA, rpsE, and mtrR/C/D/E (mac-
rolide resistance), rpsJ (tetracycline resistance), and rpoB 
(rifampin resistance). In addition to mtrCDE, we also checked 
genes encoding other efflux pumps ( farA/B, macA/B, marR, 
and norM) and previously reported resistance mutations in 
penA (I312M, V316T, A501V, F504L, A510V, N512Y, I515V, 
H541N, G545S, P551L, and I566V), gyrA (T91F, T91I, and 
D95A), mtrR (G45D, A39T, and −35A deletion), porB 
(G120K and A121D), and rpsJ (V57M) [5, 6, 15, 23, 24]. 
Finally, we examined for the presence of blaTEM (β-lactamase 
gene), which is associated with gonococcal penicillin 
resistance [25].

Ethical Approval

The Institutional Review Board at the Ohio State University ap-
proved this study.

RESULTS

All of the US_NmUC isolates were susceptible to ceftriaxone, 
ciprofloxacin, rifampin, and tetracycline (Table 1). Most iso-
lates (75.4% by E-test and 98.4% by BMD) had intermediate 
penicillin susceptibility. Thirty isolates were penicillin-resistant 
by E-test, but all had intermediate susceptibility by BMD. 
Whereas 67.2% were azithromycin-susceptible under 5% 
CO2, 100% were susceptible under ambient air. The MICs per-
taining to cefixime (100%) and gentamicin (86.1%) for most 
isolates were in the susceptible range reported for Ng.

We identified no alleles that conferred phenotypic resistance 
to ceftriaxone, ciprofloxacin, azithromycin, rifampin, and 

tetracycline. All isolates had the mtrR allele 383, which is unique 
to the US_NmUC and does not carry mutations associated with 
elevated MtrCDE efflux pump activity [23]. All isolates had the 
penA allele 316, which carried F504L, A510V, N512Y, I515V, 
H541N, and I566V changes, but without other described muta-
tions. The gonococcal blaTEM was absent in all isolates.

DISCUSSION

Contrary to observations in Ng, widespread resistance to clin-
ically relevant antibiotics in Nm remains rare [23, 26–28]. 
However, the US_NmUC has acquired gonococcal DNA over 
time [3, 5], including alleles associated with decreased antibiot-
ic susceptibility [5–8]. Whereas antibiotics recommended for 
gonorrhea treatment appear to remain effective for treating 
US_NmUC-related urogenital infections, phenotypic antibiotic 
susceptibility analyses have been reported in a limited number 
of isolates, with some reporting decreased penicillin, ciproflox-
acin, and azithromycin susceptibilities [2, 4, 6–9, 14, 15]. A 
ciprofloxacin-resistant US_NmUC rectal isolate (MIC = 
0.38 mg/L) in the UK had acquired a partial gonococcal gyrA 
allele 9 (with T91F and D95A) [6]. Eight of 19 US_NmUC iso-
lates from Vietnam contain the same T91F and D95A muta-
tions in the gyrA allele 381. An additional Vietnam isolate 

Table 1. Minimum Inhibitory Concentration of US_NmUC Isolates (N= 
122) to Select Antibiotics

Antibiotic Agent MICa Range
Interpretationb

S I R

Penicillin (BMD) 0.06–0.25 1.6% 98.4% 0%

Penicillin 0.064–0.5 0% 75.4%c 24.6%

Ceftriaxone <0.002–0.004 100% – –

Ciprofloxacin <0.002–0.012 100% 0% 0%

Rifampin 0.004–0.5 100% 0% 0%

Azithromycin, ambient air <0.016–0.75 100% – –

Azithromycin, 5% CO2 0.094–6 67.2% – –

Tetracycline 0.125–0.5 100% – 0%

Cefixime <0.016–<0.016 – – –

Gentamicin 1.5–6 – – –

Abbreviations: US_NmUC, US Neisseria meningitidis urethritis clade; BMD, broth 
microdilution; MIC, minimum inhibitory concentration; S, susceptible isolates; I, 
intermediate isolates; R, resistant isolates.  

NOTE: Clinical and Laboratory Standards Institute (CLSI) MIC interpretative standards: 
penicillin, susceptible ≤0.06 μg/mL, intermediate = 0.12–0.25 μg/mL, and resistant 
≥0.5 μg/mL; ceftriaxone, susceptible ≤0.12 μg/mL; ciprofloxacin, susceptible ≤0.03 μg/ 
mL, intermediate = 0.06 μg/mL, and resistant ≥0.12 μg/mL; rifampin susceptible ≤0.5 μg/ 
mL, intermediate = 1 μg/mL, and resistant ≥2 μg/mL; azithromycin susceptible ≤2 μg/mL. 
European Committee on Antimicrobial Susceptibility Testing (EUCAST) interpretative 
standard: tetracycline, susceptible ≤2 μg/mL and resistant >2 μg/mL. A dash mark (–) in 
the interpretation column indicates no CLSI or EUCAST standard exists for N meningitidis 
and for that specific category. For cefixime and gentamicin, published interpretation for 
the closely related pathogen Neisseria gonorrhoeae are as follows: cefixime, susceptible 
≤0.25 μg/mL; gentamicin, susceptible ≤4 μg/mL, intermediate = 8–16 μg/mL, and 
resistant ≥32 μg/mL.  
aMIC μg/mL; unless otherwise noted, the MIC values were determined using the E-test.  
bS, I, and R given as the percentages of all (N = 122) isolates tested.  
cThree isolates with penicillin MIC = 0.064 μg/mL by E-test were categorized as having 
intermediate susceptibility; 2 were subsequently determined to be susceptible (MIC = 
0.06 μg/mL) and 1 intermediate (MIC = 0.125 μg/mL) by BMD.
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had a T91I mutation in the gyrA allele 382. The MICs of these 9 
isolates ranged from 0.19 to 3 mg/L [7, 8]. Retchless et al [5] re-
ported that a urethral isolate from New York had acquired a 
gonococcal-like mtrR sequence (allele 39) associated with ele-
vated azithromycin MICs, whereas Sukhum et al [15] reported 
decreased azithromycin susceptibility for 7 of 8 urogenital iso-
lates with testing performed under 5% CO2.

The aforementioned findings indicate that antibiotic resis-
tance determinant acquisition is a concern in the US_NmUC. 
However, among US_NmUC isolates collected from 2015 to 
2019 in Columbus, Ohio, we correlated the absence of geno-
typic resistance determinants with the phenotypic suscepti-
bility to antibiotics recommended for gonorrhea treatment 
(ie, ceftriaxone) [12] and meningococcal chemoprophylaxis 
(ie, ceftriaxone, ciprofloxacin, and rifampin) [16]. Many 
US_NmUC isolates had decreased azithromycin susceptibil-
ity when tested under 5% CO2 conditions, but not under am-
bient air. Although the clinical significance of these in vitro 
findings are not known, they agree with previous reports of 
elevated azithromycin MICs when testing occurs under 
CO2-enriched conditions [17].

Most US_NmUC isolates had intermediate penicillin sus-
ceptibility, but they were susceptible to ceftriaxone and had 
very low cefixime MICs. The chromosomally mediated penicil-
lin resistance in Ng is attributed to 5 mutated resistance deter-
minants (penA, ponA, porB, mtr, and pilQ), which can be 
transferred to a susceptible strain by homologous recombina-
tion [29]. Neisseria meningitidis and Ng with reduced suscept-
ibility to penicillin commonly harbor alterations in the penA 
gene encoding the penicillin binding protein 2 (PBP2). The 
mosaic-like structure of the penA gene, with ∼60 amino acid al-
terations, has evolved by homologous recombination with 
penA genes of commensal Neisseria species [30] and is associ-
ated with reduced cefixime susceptibility. Three mutations 
(G545S, I312M, and V316T), all absent in the tested 
US_NmUC isolates, were proposed to be responsible for re-
duced cefixime susceptibility [31], but only in the presence of 
other amino acid changes that have little apparent effect alone 
[32]. An L421P substitution in ponA (PBP1), together with 
overexpression of the MtrCDE efflux pump and mutations in 
porin (PorB) and the type IV pilin channel (PilQ), were in-
volved in high-level penicillin resistance [33]. These mutations 
were absent from our isolate collection [5]. Finally, we did not 
perform phenotypic β-lactamase testing, but the gonococcal 
blaTEM was absent in all isolates [25], and the observed interme-
diate penicillin susceptibility does not support the presence of 
other β-lactamases, such as the one encoded by blaROB-1, which 
has been reported in invasive Nm serogroup Y isolates and con-
fers high-level penicillin resistance (>2 mg/L) [26, 34]. Overall, 
our findings support the clinical observation that patients diag-
nosed with US_NmUC urethritis did not experience treatment 
failure after receiving ceftriaxone-based regimens [2, 13].

We note several important study limitations. All isolates that 
underwent AST were collected at one STD clinic; therefore, the 
findings may not represent the susceptibility profile of 
US_NmUC isolates circulating elsewhere. The US_NmUC evo-
lution has been characterized by acquisition of gonococcal 
DNA, including genes associated with antibiotic resistance. 
Given the cohabitation of US_NmUC and Ng, ongoing surveil-
lance is critical to determine whether US_NmUC isolates con-
tinue to acquire antibiotic resistance genes.

CONCLUSIONS

The US_NmUC isolates from Columbus, Ohio were suscepti-
ble to antibiotics used for gonorrhea treatment and for menin-
gococcal chemoprophylaxis. However, given that this emerging 
urethrotropic Nm clade shares an ecologic niche with—and has 
acquired genes from—Ng, ongoing surveillance is warranted to 
monitor for the development and spread of antibiotic 
resistance.
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