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The unique capabilities of gamma-delta (γδ) T cells to recognize cells under stressed con-
ditions, particularly infected or transformed cells, and killing them or regulating the immune 
response against them, paved the way to the development of promising therapeutic 
strategies for cancer and infectious diseases. From a mechanistic standpoint, numerous 
studies have unveiled a remarkable flexibility of γδ T cells in employing their T cell receptor 
and/or NK cell receptors for target cell recognition, even if the relevant ligands often remain 
uncertain. Here, we review the accumulated knowledge on the diverse mechanisms of 
target cell recognition by γδ T cells, focusing on human γδ T cells, to provide an integrated 
perspective of their therapeutic potential in cancer and infectious diseases.
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inTRODUCTiOn

More than three decades after the discovery of gamma-delta (γδ) T  cells (1), the research com-
munity is still missing a compelling picture about their mechanisms of activation and target cell 
recognition. Despite the relatively small abundance of γδ T cells in the human blood, it is clear that 
this lymphocyte population plays an important role at the interface between the innate and the 
adaptive immune systems. These cells share T  cell receptor (TCR) rearrangements and memory 
functions (2) with their αβ T cell counterparts, but differ in their response kinetics and mechanisms 
of target cell recognition. Thus, γδ T cell activation is typically independent of antigen presentation 
by major histocompatibility complex (MHC) molecules. Furthermore, γδ T cells bear a plethora of 
NK cell receptors (NKRs) on their surface, which allow for very fast responses against infected or 
transformed cells (3), thus contributing to a first line of defense that precedes antigen-specific αβ 
T-cell responses (4).

Unlike αβ T cells, there is little evidence of thymic negative selection of self-reactive γδ T cells. 
Vγ9Vδ2 T cells, which constitute the major (60–95%) γδ T cell subtype in humans, seemingly expand 
in the periphery in response to microbial or stress-induced phosphorylated antigens (2) while 
displaying preferential Vγ9-JP TCR rearrangements (5). Other human γδ T cell subsets, namely 
Vδ1+ and Vδ3+ T cells that are highly reactive to cytomegalovirus (CMV) infection (6), display TCR 
repertoires biased toward sequences recognizing CMV-infected cells (7). But while Vγ9Vδ2 TCR 
recognition has been well characterized and discussed (5, 8), it remains less clear how other γδ T cell 
subsets are activated to participate in lymphoid stress surveillance (9).

The purpose of this review is to discuss the current knowledge on target cell recognition by human 
γδ T cells (Table 1), emphasizing the role of the TCR as well as NKRs and their ligands, in the context 
of cancer and infectious diseases.

TUMOR CeLL ReCOGniTiOn

Early research on the molecular mechanisms of γδ T cell recognition in the 1990s led to the realiza-
tion of its unusual independence of peptide processing and MHC-restricted presentation, in marked 
contrast with αβ T lymphocytes (42–44). One of the first lines of evidence came from non-peptidic 
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TabLe 1 | Tumor- or infected cell-associated ligands recognized by gamma-delta (γδ) T cells.

Ligand Receptor γδ subset infection/cancer Reference

CD1 proteins + endogenous or exogenous lipids T cell receptor (TCR) Duodenal Infection (10, 11)
BTN3A1 + phosphoantigens TCR Vγ9Vδ2 Infection (5)
Endothelial protein C receptor TCR Vγ4Vδ5 Both (12)
Annexin A2 TCR Vγ8Vδ3 Both (13)
Heat shock protein 60 TCR Both (14–17)
F1-ATPase TCR Cancer (18)
SEA and SEE TCR Infection (19)
OXYS TCR Infection (20)
DXS2 TCR Infection (21)
Glycoprotein I TCR Infection (21)
MSH2 TCR Both (14, 22)

NKG2D (22)
HLA-E NKG2C Infection (23)
HA Sialic acid receptor Infection (24)
CD48 2B4 Cancer (25–27)
MICA/MICB TCR Vδ1 Both (28–30)

NKG2D (29–32)
MICA NKG2D Vγ9Vδ2 Cancer (33)
UL16 binding protein (ULBP)1 NKG2D Vγ9Vδ2 Cancer (34)
ULBP2 NKG2D Vδ1 Cancer (35, 36)
ULBP3 NKG2D Vδ1 Cancer (35–37)
ULBP4 TCR and NKG2D Vδ2 Cancer (38)
? NKp30 Vδ1 Both (39, 40)
PVR/Nectin-2 DNAX accessory molecule 1 Vγ9Vδ2 Cancer (41)

“?” means undescribed/unknown in the referenced studies.
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prenyl pyrophosphates [“phosphoantigens” (PAg)] recognized 
by Vγ9Vδ2 TCRs (45, 46). Initially, bacteria and parasites were 
shown to produce strong PAg agonists for Vγ9Vδ2 TCRs (47), 
but later it became clear that these could also be activated by 
weaker agonists, such as isopentenyl pyrophosphate (IPP) and 
dimethylallyl pyrophosphate, that are natural intermediates of 
the mevalonate pathway of isoprenoid and steroid synthesis in 
eukaryotic cells (48). Importantly, the dysregulation of the meva-
lonate pathway in some tumor cells allows for the accumulation 
of these (weaker) PAgs, thus promoting Vγ9Vδ2 TCR-mediated 
recognition (49). Furthermore, treatment with zoledronate or 
pamidronate (which are approved drugs) was shown to be very 
effective at inducing the accumulation of intracellular PAgs like 
IPP, and thus potentiate TCR-dependent Vγ9Vδ2 T cell cytotox-
icity against tumor cell targets, including cancer stem cells (50).

A key recent breakthrough was the discovery of butyrophilin-
related proteins, especially BTN3A1, as major molecular determi-
nants of Vγ9Vδ2TCR-mediated recognition of PAgs, even if the 
underlying mechanism has gathered some controversy. A model 
supporting extracellular PAg presentation to the Vγ9Vδ2 T cell 
(in a MHC-like manner) was first proposed, with biophysical and 
structural data in support (51). However, following reports dem-
onstrated that PAgs interact directly with the intracellular B30.2 
domain of BTN3A1 through a positively charged surface pocket; 
and that charge reversal of pocket residues abrogates PAg binding 
and Vγ9Vδ2 T cell activation, with no detectable association with 
the extracellular domain of BTN3A1 (13, 52, 53). More recently, 
it has been shown that changes in the juxtamembrane domain of 
BTN3A1, which is located close to the start of the B30.2 domain, 
induced marked alterations in Vγ9Vδ2 T  cell reactivity, thus 
highlighting the importance of the intracellular domain for the 
correct Vγ9Vδ2 T cell function and activation (54). Because of its 

location between the intracellular and the extracellular domains, 
the B30.2 domain seems critical in translating the pAg-induced 
conformational change of BTN3A1 from the inside to the outside 
of the target cells (55, 56).

Besides sensing PAgs, γδ T cells seemingly recognize trans-
formed cells through proteins that are expressed at the cell surface 
in a stress-induced manner. Some examples are typically endog-
enous proteins, such heat shock protein 60 (14–17) or FI-ATPase 
(18), that can be ectopically expressed on the cell membrane upon 
transformation and recognized by Vγ9Vδ2 TCRs to promote 
tumor cell lysis. More recently, endothelial protein C receptor 
(EPCR), which acts on the coagulation cascade, was shown to 
be exposed on the cell surface during transformation and rec-
ognized by a non-Vδ2 (Vγ4Vδ5) TCR (12). Similarly, Annexin 
A2, expressed on tumor cells in response to increasing quantities 
of reactive oxygen species, engaged directly with a Vγ8Vδ3 TCR 
(13). The identification of these rather different ligands highlights 
the complexity of tumor cell recognition via γδ TCRs. This 
notwithstanding, it is clear that γδ T cells also rely on “NK-like” 
mechanisms for tumor cell recognition, using receptors such as 
2B4 and NKG2D, originally thought to be specific to NK cells.

The first indication of an NK-like recognition mechanism 
was unveiled upon the ability of stimulated murine γδ T cells to 
recognize CD48 (25, 26), a well-known 2B4 ligand, suggested to 
work as an accessory molecule that strengthens effector–target 
interactions (27). Surprisingly, only the 2B4+ γδ T cells were able 
to develop non-MHC-restricted cytotoxicity against lymphoma 
cells (57, 58). Although 2B4 is also expressed on activated human 
γδ T cells, its relevance is still unclear as 2B4 engagement failed to 
promote proliferation or cytokine production (59).

Much more consensual is the role of NKG2D, which is widely 
expressed not only in NK cells but also in most γδ and some αβ 
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T cells (31, 60, 61). In human γδ T cells, both Vδ1+ and Vδ2+ 
subsets, NKG2D was shown to be responsible for recognition 
of tumor cells expressing MHC class I chain-related (MIC) A/B 
(28,  29, 31–33, 62) or UL16 binding protein (ULBP) 1/2/3/4 
(34–38, 50, 63) ligands. In fact, human carcinoma samples from 
lung, breast, kidney, ovary, and prostate cancers expressing MICA 
or MICB presented higher levels of infiltrating Vδ1+ T cells, which 
in turn were able to target and kill autologous and heterologous 
tumor cells (25, 59). Our group’s work revealed that ULBP1 was 
particularly important for leukemia and lymphoma cell recogni-
tion by PAg-activated Vγ9Vδ2 T cells (34). Notwithstanding, one 
should note the relevance of a synergistic TCR engagement for an 
efficient cytotoxic response (37, 38). In fact, some works suggested 
that MIC or ULBP recognition by γδ T cells is not only restricted 
to NKG2D but also involves the γδ TCR (26, 31). A similar recog-
nition pattern was also observed against human MutS homolog 
2 (hMSH2) ectopically expressed in epithelial tumor cell lines. 
Both TCRγδ and NKG2D were able to interact with hMSH2 and 
contribute to Vδ2+ γδ T cell-mediated cytotoxicity and interferon 
γ (IFN-γ) production (14, 22).

Besides 2B4 and NKG2D, DNAX accessory molecule 1 
(DNAM-1) was also shown to be widely expressed in Vδ1+, Vδ2+, 
and Vδ1−Vδ2− γδ T cell subsets (64); and masking DNAM-1 on γδ 
T cells significantly inhibited tumor cell killing (64, 65). DNAM-
1-dependent γδ T cell recognition was reported for hepatocellular 
carcinoma (41), acute (65) and chronic (64) myeloid leukemia, 
and multiple myeloma (66) cell lines. More specifically, Vγ9Vδ2 
T cells were shown to use DNAM-1 to interact with Nectin-2 and 
PVR that are widely expressed in the tumor cell targets (41, 65). 
Curiously, PVR engagement potentiated γδ T  cell cytotoxicity, 
whereas Nectin-2 blocking did not affect it (41). Tumor targets 
that expressed both DNAM-1 and NKG2D ligands were able to 
engage both receptors on γδ T cells, having a synergistic effect 
on their cytolytic activity (41, 64, 66). Moreover, therapeutic 
strategies that enhanced the expression of NKG2D or DNAM-1 
ligands, such as MICA/B and ULBP1/2, or Nectin-2 and PVR, 
respectively, potentiated γδ T  cell recognition of colon cancer, 
glioblastoma, multiple myeloma, and lymphoma cells (67–70).

From a therapeutic perspective, γδ T cell recognition of tumor 
cells may also rely on the induced expression of natural cytotoxicity 
receptors (NCRs) that recognize a distinct set of tumor-associated 
ligands, such as B7-H6 or BAT3 (71). Thus, our group has shown 
that NKp30 and NKp44 can be reproducibly induced in vitro in 
Vδ1+ (but not Vδ2+) γδ T cells (39). A very mild expression of 
NKp44 on expanded γδ T cells had been reported before (72); 
and shown to contribute γδ T cell cytotoxicity against myeloma 
cells (61). In our studies, we observed not only a robust expres-
sion of NKp44 but also NKp30, in Vδ1+ T  cells activated with 
TCR agonists and IL-15 (or IL-2); and both receptors enhanced 
γδ T cytotoxicity against tumor target cells (39, 73). Among the 
various known ligands for NCRs, it is still unclear which are most 
relevant for NCR+ Vδ1+ T cell recognition of tumor cells. While 
the NKp30 ligand, B7-H6, is an obvious candidate (74), a very 
recent report identified an unanticipated ligand for NKp44 in the 
form of platelet-derived growth factor (PDGF)-DD (75), known 
for its capacity to promote of tumor cell proliferation, epithelial–
mesenchymal transition, and angiogenesis. PDGF-DD ligation 

to NKp44 enhanced IFN-γ and TNF-α secretion (by NK cells), 
which in turn induced tumor cell growth arrest (75). Additional 
investigation will be needed to elucidate the relative importance 
of NCR, NKG2D, DNAM-1, or TCR ligands in tumor cell recog-
nition by γδ T cells, aiming to maximize their potential in cancer 
immunotherapy.

inFeCTeD CeLL ReCOGniTiOn

Multiple lines of evidence since the late 1980s have shown that 
γδ T  cells display strong activities against bacteria, including 
Mycobacterium tuberculosis (76–81); parasites, such as Plasmodium 
falciparum (82–86); and viruses (87, 88), most notably CMV (89–91).

Vγ9Vδ2 T cells can be specifically and potently activated by 
PAgs like (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate, an 
intermediate of the 2-C-methyl-d-erythritol 4-phosphate pathway 
employed by eubacteria and apicomplexan protozoa but not by 
eukaryotes (48, 92, 93). This likely underlies the striking expan-
sions of Vγ9Vδ2 T cells in individuals infected with M. tuberculosis 
(76–81) or P. falciparum (83). Besides PAgs, several other mol-
ecules of microbial origin have been proposed as γδ T cell antigens 
accounting for the specific recognition of infected cells. These 
candidates include the bacterial superantigens SEA (and to a lesser 
extent SEE) (19); OXYS and DXS2, two mycobacterial proteins 
found to activate γδ T cells from BCG-infected human subjects 
but not from healthy donors (20, 21); and HSV-1 glycoprotein I, 
specifically recognized by a Vγ1.2Vδ8 TCR independently from 
antigen processing and MHC presentation (20, 21).

Subsequent reports demonstrated that γδ T cells also recognize 
stress antigens of cellular origin, either in antibody-like or antigen-
presentation-like fashion. γδ T cells can indeed directly recognize 
stress proteins like hMSH2, a nuclear protein ectopically expressed 
on the cell surface of different epithelial tumor cells and induced 
by EBV transformation (22); and Annexin A2 whose expression 
was induced by CMV infection and recognized specifically by a 
Vγ8Vδ3 T cell clone (13). On the other hand, γδ T cells can rec-
ognize nonpolymorphic MHC-like (class Ib) proteins presenting 
lipids, such as CD1 proteins, in a similar way to other unconven-
tional T cells like NKT or MAIT cells (11, 94–96). In particular, 
a subpopulation of Vδ1+ T cells has been clearly shown to bind 
CD1d loaded with the self-lipid sulfatide (97) but any concrete 
link to the recognition of infected (or transformed) cells remains 
to be established. Of note, another CD1-like protein, EPCR, was 
shown to bind directly (independently of lipid cargo) the TCR of 
a Vγ4Vδ5 T cell clone (expanded from a CMV+ individual), thus 
allowing it to recognize endothelial cells infected with CMV (12).

In addition to the TCR, γδ T  cells can also use NKG2D to 
recognize cells infected with various viruses and intracellular 
bacteria (32, 98–102). More specifically, the stress-inducible 
molecule, MICA, was induced on the surface of dendritic and epi-
thelial cells by M. tuberculosis infection in vitro and in vivo; and its 
binding to NKG2D, substantially enhanced the TCR-dependent 
Vγ9Vδ2 T cell response to PAgs (28). Furthermore, in the case 
of Brucella, ULBP1 was the main NKG2D ligand upregulated on 
infected macrophages, and its engagement promoted Vγ9Vδ2 
T cell cytotoxicity and cytokine production, which contributed 
to the inhibition of bacterium development (100).
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A few other receptors have implicated in γδ T cell recognition 
of infected cells. Thus, another NKR, NKG2C, constitutively 
expressed on Vδ1+ T cells, induced a cytolytic response against 
HIV-infected CD4+ T cells expressing its ligand, HLA-E (23). On 
the other hand, we found that NKp30 can also play an important 
role in HIV-1 infection upon its induced expression in Vδ1+ 
T cells; NKp30 ligation triggered the production of CCL3, CCL4, 
and CCL5 chemokines that suppressed the replication of a CCR5 
tropic strain of HIV-1 (40). Finally, in the case of avian influenza 
(H5N1), γδ T cells were reported to use sialic acid receptors for 
the recognition of viral hemagglutinin (24). To understand how 
different microorganisms may elicit distinct pathways of γδ T cell 
recognition of pathogen-associated or stress-induced antigens 
remains a challenge for future research.

COnCLUDinG ReMaRKS

In contrast with the well-established paradigm of MHC-restricted 
recognition of peptides by conventional αβ T cells, or even MHC 
class Ib-dependent recognition of lipids by unconventional αβ 
T  cells, the molecular mechanisms of target cell recognition by 
γδ T cells remain poorly understood. A notable exception is the 
BTN3A1-mediated sensing of PAgs by Vγ9Vδ2 T  cells, which 
underlies their responses to tumors and infections like TB or 
malaria. For most other γδ T cell subsets, however, TCR specificities 
are either unknown, not generalizable or of unclear physiological 
relevance. Therefore, the identification of relevant, non-Vγ9Vδ2 
TCR ligands remains a major challenge in the γδ T cell field.

On the other hand, while NKRs are also clearly involved 
in γδ T cell recognition of tumor or infected cells, we still lack 
appropriate understanding how the multiple signals derived from 
all the expressed NKRs are integrated, also with those coming 
from the TCR itself. This likely depends on the relative expression 
levels of the various putative NKR and TCR ligands in each target 
cell, which adds significant complexity to the process of γδ T cell 
recognition.

The broad spectrum of MHC-unrestricted recognition of 
infected or transformed cells by γδ T makes them attractive 
candidates for adoptive cell therapy (ACT). All clinical trials 

have thus far concentrated on Vγ9Vδ2 T cells, probably due to 
their relative abundance in the peripheral blood and especially 
the availability of FDA-approved drugs, such as zoledronate and 
pamidronate, that allow their activation and expansion in  vivo 
(103). Vγ9Vδ2 ACT has shown promising pre-clinical results 
against TB (104) and has already been tested in various cancer 
clinical trials [reviewed in Ref. (105)] that documented its safety 
and some (albeit still sub-optimal) efficacy (106–108). This could 
be maybe explained by Vγ9Vδ2 T cell susceptibility to exhaustion 
and activation-induced cell death (AICD). Nonetheless, improve-
ments in Vγ9Vδ2 ACT protocols may still increase their efficacy, 
as indicated by some studies with exogenous provision of IL-2, 
importantly without the need for lymphodepleting precondition-
ing (109, 110). As for Vδ1+ γδ T cells, they are less susceptible to 
AICD and exhaustion when compared to Vγ9Vδ2 T cells (111). 
However, no clinical trial has yet focused on this γδ T cell subset, 
mostly due to the lack of clinical-grade protocols allowing their 
successful expansion. Importantly, we have recently developed 
a clinical-grade process to effectively expand Vδ1+ T cells while 
also inducing NCR (and augmenting NKG2D) expression; and 
established the proof-of-concept in leukemia xenograft models 
(73). We further anticipate NCR+ Vδ1+ ACT to be a promising 
therapeutic strategy also for solid tumors and chronic viral 
infections.
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