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Abstract CD28 is recognized as the primary costimulatory molecule involved in the

activation of naı̈ve T cells. However, the biochemical signaling pathways that are activated

by CD28 and how these pathways are integrated with TCR signaling are still not under-

stood. We have recently shown that there are at least two independent activation pathways

induced by CD28 costimulation. One is integrated with TCR signaling in the context of

the immunological synapse and is mediated through transcriptional enhancement and

the second is mediated through the induction of mRNA stability. Here, we review the

immunological consequences and biochemical mechanisms associated with CD28 costi-

mulation and discuss the major questions that need to be resolved to understand the

molecular mechanisms that transduce CD28 costimulation.
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T cell activation requires the recognition of specific peptide-major histocompatibility

complexes (MHC) displayed on the surface of antigen presenting cells. Because foreign

protein antigens must compete with self-proteins for binding to MHC, T cells have evolved

to recognize very low numbers of specific peptide-MHC complexes. This low number of

receptor/ligand interactions and the relatively low affinity of T cell antigen receptor (TCR)

for peptide-MHC complexes are not sufficient to allow for intercellular interactions.

Effective T cell activation requires the participation of a variety of cell surface accessory

molecules that form receptor/ligand pairs between T cells and antigen presenting cells

(APC). These accessory molecules mediate two important functions. First, they provide
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adhesion to allow for the formation of stable T cell:APC conjugates. Second, they provide

costimulatory signals that work in concert with TCR signaling to promote T cell activation

and differentiation. Clearly all proteins that interact between the two cells will provide

some contribution to intercellular adhesion. In contrast, only a subset of the accessory

molecules have been documented to provide effective costimulatory functions. Although

the basic concept of costimulation is well established, the specific molecular mechanisms

whereby costimulatory molecules influence T cell activation and differentiation events are

not fully understood.

CD28 costimulation

The two signal model and the concept of costimulation are well engrained in our under-

standing of the regulation of T cell activation and tolerance. T cell encounter with peptide-

MHC ligands in the absence of an ongoing innate immune response generally does not lead

to effective T cell activation and rather favors the induction of tolerance. One of the key

consequences of the innate immune response is the upregulation on dendritic cells of CD80

and CD86, the ligands for CD28. Because CD28 is the major costimulatory molecule

expressed on naı̈ve T cells, CD28 can be viewed as the T cell-associated receptor for

detection of the presence of a pathogen. At the same time, dendritic cells in the T cell zones

of the lymph nodes can express high levels of CD80/CD86. However, as we and others

have recently shown, engagement of CD28 requires continued stimulation through the

TCR [1, 2]. Thus, this synergistic cross talk between TCR and CD28 provides a mecha-

nism for coincidence detection to regulate T cell activation and control the initiation of T

cell immune responses.

CD28 has been shown to have important functional consequences on T cell activation

[3–6]. CD28 costimulation leads to a dramatic upregulation in IL-2 expression mediated by

enhanced transcription and mRNA stabilization [7, 8]. CD28 costimulation also plays an

important role in T cell survival, inducing expression of the anti-apoptotic protein Bcl-XL

[9], and can regulate the metabolic activity of T cells [10]. T cell activation in the absence

of CD28 leads to T cell anergy rather than activation, and costimulation through CD28 can

protect against anergy induction [11, 12]. CD28 plays a key role in the generation of Th2

responses [13]. Finally, CD28 is required for the thymic maturation of NKT cells [14] and

T regulatory cells [15]. Because CD28 is expressed on naı̈ve T cells, it plays a critical role

in initial T cell priming. Once T cells are activated, additional costimulatory molecules are

upregulated, including ICOS, OX40, and 41BB that can enhance T cell survival, expansion

and/or effector function [16, 17].

The impact of CD28 costimulation on T cell function can sometimes appear paradox-

ical. For example, CD28 costimulation is required to protect T cells from the induction of

anergy, but is also required for tolerance induction [18]. CD28 is not required for thymic

maturation of conventional CD4 and CD8 T cells, but is essential for the development of

NKT and regulatory T cells [14, 15]. CD28 costimulation plays an important role in

promoting Th2 differentiation, but is not required for Th2 effector cytokine secretion. The

opposite is true for Th1 cells, which can differentiate in the absence of CD28, but require

CD28 for subsequent IL-2 secretion. Thus, although the importance of CD28 costimulation

is well recognized, the molecular mechanisms whereby CD28 can regulate T cell devel-

opment, activation, expansion, and differentiation and how these molecular mechanisms

are integrated with signals from the TCR are not understood.
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Attenuation of the immune response during aging

The most striking changes in the immune response in the elderly are in the reduction of

immune response to newly encountered antigens. This creates a major health problem in

this population because of the frequency of exposure to new variants of highly mutable

viruses, such as influenza and RSV, emerging pathogens, such as SARS, opportunistic

bacterial infections, and possibly cancer. The reduced immune response during aging is a

multifactorial process, including reduced hematopoietic stem cells and lymphoid precur-

sors, thymic involution, reduced T and B cell proliferation, germinal center formation, and

effector cell maturation, decreased cytokine signaling, increased ratio of memory to naı̈ve

T cells, and overproduction of regulatory T cells [19–27]. In spite of the potential com-

plexity of understanding the relative importance and potential interplay among all of the

factors associated with immune senescence, a major component of the reduced immune

response in the elderly may be associated with a failure to provide CD28 costimulation. In

mice, adoptive transfer experiments have identified an intrinsic defect in activation of

naı̈ve CD4 T cells [28–32]. Interestingly, activation of the innate immune response and,

presumably, associated CD28 costimulation can restore antigen responses in T cell from

old mice that have been adoptively transferred into young animal [31]. In addition, the

defect in T cell proliferation and effector T cell generation in vitro can be rescued by

the addition of exogenous IL-2 [33], an analogous phenotype to T cell activation in the

absence of CD28 costimulation [34]. In humans, aging is associated with a downmodu-

lation of CD28 expression [35]. CD28-null T cells accumulate with age and up to 70% of

CD4 and 95% of CD8 T cells do not express CD28 [35]. Even in young adults 20–30% of

CD8 T cells can be CD28-null. CD28-null cells are thought to be generated by repeated

antigen stimulation and so represent a form of memory T cell. These T cells are replica-

tively senescent with highly eroded telomeres, but are also resistant to apoptosis, which

allows them to accumulate to high numbers. Functionally, CD28-null T cells are hypo-

responsive, have defects in effector function, and may be immunosuppressive [35, 36].

Taken together these results from both animal models and human samples indicate that

diminished CD28 costimulation may contribute to attenuation of immune responses in the

elderly.

Biochemical events associated with CD28 signaling

In spite of the current understanding of T cell signaling events and long-term interest in

CD28 costimulation, the biochemical events associated with CD28 costimulation are still

not well understood. CD28 signaling is associated with several different protein interaction

motifs in the cytosolic tail that can mediate recruitment and activation of downstream

signaling proteins (Fig. 1). The most studied signaling pathway downstream of CD28 is

activation of PI3K through SH2 domain interactions of p85 with phospho-Y170 within the

YxxM motif [37, 38]. PI3K activation is predicted to impact on T cell activation through

the enhanced recruitment of PH domain proteins to the membrane, including Itk and Akt.

Itk phosphorylates and activates PLCc, increasing the calcium and PKC responses [39, 40].

Sustained calcium signaling leads to calcineurin-dependent nuclear localization of NFAT.

PKCh plays an important role in the upregulation of NF-jB and AP1 [41]. Akt is a central

regulator of cell activation, proliferation, and survival [42]. In T cells, Akt is thought to

mediate the CD28-mediated, PI3K-dependent inhibition of the cell cycle regulator, p27KIP,

that promotes cell cycle entry and progression [43], as well as the pro-survival factor,
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Bcl-XL [44]. Akt also plays a role in CD28-mediated glucose uptake, which may play a

key role in CD28 regulation of T cell metabolism [45, 46]. Although the precise linkage is

not yet established, Akt can cooperate with PKCh in CD28-mediated regulation of a NF-

jB reporter construct in Jurkat T cells [47]. Akt can also inhibit GSK-3, the kinase that

opposes calcineurin and drives NFAT back to the cytosol. Thus, Akt leads to sustained

NFAT activation. All of these transcription factors, NF-jB, AP1, and NFAT, play an

important role in the upregulation of IL-2 transcription. Although it is clear that CD28 can

promote activation of PI3K, the functional role of PI3K activation in CD28 costimulation

remains controversial. In murine tumor cell lines, disruption of the PI3K interaction site in

CD28 inhibited IL-2 production [37, 38], but this was not the case in transfected Jurkat

cells [48, 49]. This discrepancy was thought to be resolved when Jurkat cells were found to

lack both PTEN and SHIP-1, phosphatases that inactivate the products of PI3K [50, 51].

However, transgenic or retroviral reconstitution of normal murine T cells from CD28-

deficient mice with CD28 mutations in the YxxM motif had a limited phenotype [52–56].

A defect in Bcl-XL induction and T cell homing was noted [52, 54, 57], but there was little

overall impact on the immune response and T cell activation resulted in normal levels of

IL-2 secretion. This discrepancy was resolved when we showed that the YxxM motif was

required for CD28-mediated recruitment of PKCh, activation of NF-jB and upregulation

of IL-2 transcription, but that this did not impact on IL-2 secretion because the primary

pathway for CD28 induction of IL-2 secretion was mediated through mRNA stability [56,

58] (Wang X and Miller J, unpublished data). Although the YxxM motif appeared to be

functionally relevant for CD28 costimulation, recent data indicate that this may not be

mediated through activation of PI3K as originally proposed [59].

CD28 can also recruit the adaptor proteins Grb2 through SH2 and SH3 domains and

GADS through SH3 domains [60–63]. Both adaptor proteins can recruit SOS and so

activate Ras. However, CD28-mediated activation of Ras appears to be limited to antibody

cross-linking and is not induced by B7 [64]. Interestingly, GADS also interacts with SLP76

and LAT, which can bind the guanine nucleotide exchange factor Vav, and the Grb2 SH3

domain can interact with Vav directly [65]. Vav has been implicated downstream of CD28

costimulation, and PKCh has been shown to interact with Vav in Jurkat T cells [66–69].

Mutation of the Grb2/GADS binding site on CD28 leads to a decrease in Vav

Fig. 1 Signaling motifs in the cytosolic tail of CD28. The sequence of the cytosolic tail of CD28 and three
potential docking sites for cell signaling molecules are shown below. The amino acid number of the start of
the motif relative to the mature CD28 protein is shown above. Note that in some publications the amino acid
positions in CD28 have been numbered to include the 19 amino acid leader sequence. Phosphorylation of
Y170 creates a docking site for SH2 domains which has been shown to bind to PI3K (YxxM) and Grb2
(YxN). The YxxM motif mediates recruitment of PKCh to the cSMAC, upregulation of IL-2 transcription,
and induction of Bcl-XL expression. The polyproline motif starting at 175 has been shown to interact with
the SH3 domain of Itk and GADS. The polyproline motif starting at 187 can bind the SH3 domains of Lck
and Grb2. The Lck SH2 domain can also bind to phosphorylated Y188. CD28-filamin interaction is also
dependent on this polyproline motif. Y188 is important for CD28 localization to the cSMAC. The
polyproline motif starting at P187 mediates IL-2 mRNA stability and contributes to cytokine expression,
humoral responses, and the reorganization of lipid rafts. See text for references and further discussion
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phosphorylation and can inhibit IL-2 production [60]. CD28 costimulation can also

enhance TCR signaling downstream, most notably through activation of JNK [70] and

ERK, possibly through inhibition of the Ras antagonist, Rap1 [71, 72]. CD28 has been

shown to bind to the SH3 domain of Itk [40, 73]; however, the functional significance of

this interaction and of the polyproline motif starting at 175 is not clear. Recently, filamin A

has been shown to be recruited to the immunological synapse and may play a role in lipid

raft organization or PKCh recruitment [74, 75]. Interestingly, filamin A recruitment to the

immunological synapse is dependent on the polyproline motif starting at 187 [74]. Filamins

are large, actin binding scaffolds that have been shown to interact with over 20 different

proteins associated with cell migration and signaling [76, 77]. Finally, CD28 can interact

with both the SH2 and SH3 domains of Lck [78, 79]. The original model was that

recruitment of Lck to CD28 resulted in CD28 activation, because Lck was shown to

mediate phosphorylation of Y170, creating the binding site for the SH2 domains of PI3K

and Grb2 [79, 80]. However, more recently, Lck has been considered as an effector of

CD28 costimulation. Double mutation of the prolines at 187/190 results in a defect in the

thymic maturation and peripheral differentiation of T regulatory T cells, whereas mutation

of Y170 has no effect [15, 81, 82]. Likewise, we have shown that the ability of CD28 to

enhance IL-2 mRNA stability requires the polyproline motif, but not the YMNM motif [56,

58] (Wang X and Miller J, unpublished data). In vivo this translates to a more dramatic

effect of the P187/P190 mutation compared to the Y170 mutation [52, 83]. Although the

functional relevance of this polyproline motif is clear, whether any or all of these effects

are mediated though Lck recruitment is not known.

CD28 costimulation within the immunological synapse

One of the major complications in dissecting CD28 costimulation is that most of the

specific pathways that are activated by CD28 costimulation are shared with TCR signaling.

Both protein profiling of signaling intermediates [84] and genetic profiling of changes in

gene expression [85, 86] have suggested that CD28 costimulation functions primarily to

modify those signaling pathways that can be regulated by the TCR itself and it has been

difficult to identify a unique contribution of CD28. One potential site where CD28 could

impact on TCR signaling is within the cSMAC of the immunological synapse [87–90]. The

proteins that are recruited to the immunological synapse between a T cell and APC are not

randomly distributed. They segregate into at least three subdomains, called supramolecular

activation clusters [91]. The central region, cSMAC, is enriched for cell surface proteins

such as the TCR, CD4, CD28, and a minor fraction of CD45, along with associated

signaling proteins such as PKCh and Lck; the peripheral region, pSMAC, contains the

integrin, LFA-1, and associated cytoskeletal components, such as talin; and an outer region

that contains the majority of CD45 [92–100]. Additionally, some proteins such as CD43

are excluded from the interface altogether [101]. In addition to the spatial arrangement of

proteins within the immunological synapse, there is a dramatic temporal organization as

well. Initially, TCR and CD4 form small clusters that coalesce into the cSMAC, while

LFA-1 moves out into the pSMAC [94, 95]. CD28 is also recruited to these TCR clusters in

the immature immunological synapse [102]. This remodeling provides a brief colocal-

ization of CD4 and the phosphatase, CD45, possibly accounting for the initial activation of

the CD4-associated Src family kinase, Lck [96, 99]. Sustained TCR signaling is thought to

take place within microclusters that form at the periphery of the synapse and transduce

signals while being transported through the pSMAC enroute to the cSMAC [103–105].
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It was recently shown that CD28 can also be recruited to these microclusters and these may

provide an additional site for TCR/CD28 signal integration [106].

The functional relevance of the localization of proteins to specific domains within the

immunological synapse is not clear. The best example is for CD45, the cell surface phos-

phatase that plays an important role in Lck activation (by removal of the inhibitory phosphate

at Y505), but can also inhibit T cell activation by removal of the activating phosphate at Y354

of Lck and possibly other signaling molecules. CD45 is polarized toward the APC, but

largely excluded from the immunological synapse. Thus, CD45 is at high concentration at the

site of TCR microcluster formation, possibly enhancing association of TCR/CD4 with

activated Lck. Microclusters then move through the pSMAC, which is a region of very low

CD45 [96, 99, 105]. We have shown that the exclusion of CD45 from the immunological

synapse is dependent on LFA-1 expression and the failure to exclude CD45 correlates with

reduced calcium signaling [107]. Thus, the pSMAC may regulate the magnitude of sustained

TCR signaling by segregating CD45 from activated TCR complexes. Whether TCR sig-

naling is restricted to microclusters or persists after localization in the cSMAC is still

controversial. Initially it was proposed that TCR signaling occurred within the cSMAC

region; however, recent data indicate that the cSMAC is a site for TCR downregulation

[108]. More recently it was shown that under conditions of suboptimal TCR engagement,

signaling may persist in the cSMAC and so the cSMAC may be a site for regulating the

threshold of TCR signaling for optimal T cell activation [109, 110]. Finally, CD28 signaling

has been associated with localization of CD28 and PKCh to the cSMAC. Although T cells

express a number of PKC isoforms, PKCh is selectively activated and recruited to the

immunological synapse, where it is colocalized with TCR and CD28 in the cSMAC [93, 97].

PKCh plays an essential role in transducing TCR-mediated activation of NF-jB [41, 111,

112]. Expression of CD28 is required for the targeting of PKCh to the cSMAC and in the

absence of CD28 PKCh is recruited to the immunological synapse, but it is diffusely dis-

tributed across the synapse and is not focused into the cSMAC [56, 113]. This disruption in

PKCh localization in the absence of CD28 correlates with a loss in PKCh-dependent

induction of NF-jB and IL-2 transcription. Interestingly, all of these functions of CD28

(recruitment of PKCh to the cSMAC, activation of NF-jB, and upregulation of IL-2 tran-

scription) are lost by a single amino acid mutation of the PI3K interaction site in the cytosolic

tail of CD28 [56]. In addition, we have mapped the cSMAC localization signal in the

cytosolic tail of CD28 [1]. Mutation of a single amino acid (Y188F) reduces the efficiency of

CD28 recruitment to the immunological synapse and disrupts localization of CD28 to the

cSMAC. Interestingly, localization of PKCh mirrors CD28 localization, indicating that

CD28, and not other signals within the cSMAC, is the primary signal for PKCh localization

within the synapse. Finally, the Y188F mutation also results in reduced activation of NF-jB,

suggesting that mislocalization of CD28 and correspondingly PKCh may reduce the mag-

nitude of CD28 costimulation. Taken together these findings suggest that the magnitude of

TCR signaling and the integration between TCR and CD28 signaling may occur within and

through the spatial organization of proteins in the immunological synapse.

CD28 costimulation through the upregulation of mRNA stability

Although TCR and CD28 signaling normally occur within the context of the immuno-

logical synapse, the ability of CD28 to upregulate IL-2 mRNA stability can be transduced

in trans, i.e. from a separate site on the cell surface from TCR engagement [114]. This

argues that TCR and CD28 signaling integration can take place downstream from plasma
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membrane-associated events. Furthermore, we have shown that the CD28 induced IL-2

transcription and mRNA stability are mediated through independent motifs within the

CD28 cytosolic tail (Wang X and Miller J, unpublished data). The induction of mRNA

stability is transduced through a polyproline-like motif; however, the specific signals that

are activated by this motif are not clearly identified. The regulation of mRNA stability is

largely controlled by AU-rich elements (ARE) within the 30 UTR of the mRNA [115–

117]. ARE-mediated mRNA degradation plays an important role in the regulation of many

genes [118, 119], including cytokines [7]. RNA stability can also be regulated by micr-

oRNA, although the relationship between microRNA and ARE-mediated mRNA decay are

not well established [120]. The current model for regulated mRNA stability is that AU-

binding proteins that induce mRNA instability, such as TTP, bind to the 30 UTR in

unstimulated cells [121]. T cell activation leads to an increase in expression of TTP, and

TTP can bind to the AU-rich region in the IL-2 30 UTR and drive IL-2 mRNA degradation

[122, 123]. TTP recruits the multi-component exosome, allowing for deadenylation and 30

exonuclease digestion of the mRNA. In some cases, mRNA molecules can also be targeted

by a 50 de-capping enzyme allowing for 50 exonuclease digestion as well [117, 124]. In the

absence of ARE-mediated mRNA degradation, either by genetic disruption of TTP

expression [125] or the deletion of the ARE from TNF [126], overexpression of TNF

results in the induction of autoimmune inflammatory diseases. The stability of ARE-

containing mRNAs can be enhanced during cell activation events, although the mecha-

nisms that mediate this stabilization are not well understood [115–117]. One model that

has been proposed is that cell signaling induces the recruitment of different AU-binding

proteins, such as HuR, that may compete with TTP for binding to the 30 UTR and, thus,

interfere with TTP-dependent recruitment of the exosome. Although HuR can bind to the

ARE in IL-2 mRNA, HuR does not appear to be involved in CD28-mediated mRNA

stabilization [127]. Alternatively, MAP kinase activation has been implicated in the

induction of mRNA stability. JNK can induce IL-2 and IL-3 mRNA stability [128–130];

p38 has been implicated in the stabilization of IL-2, IL-6, IL-8, and TNFa mRNA [131–

133]; and ERK can stabilize COX-2 mRNA in smooth muscle cells. One potential target

of MAP kinase activation is TTP itself. Phosphorylation of TTP appears to increase the

stability of TTP, probably through the association with 14-3-3. However, whether phos-

phorylation itself directly impacts on TTP binding affinity for ARE or whether 14-3-3

association regulates the ability of TTP to recruit the exosome degradation machinery

remain controversial [134–136].

The initial focus on the regulation of mRNA stability in T cells was the JNK pathway.

A JNK-response element was identified by mutagenesis in the 50 end of IL-2 mRNA and

two proteins, YB-1 and nucleolin, were found to bind to this element [129]. YB-1 and

nucleolin are ubiquitously expressed multifunctional nucleic acid binding proteins [137,

138]. However, these proteins alone are not sufficient to induce mRNA stability and

require at least one protein that might bind to the 30 UTR. In addition, the ability of CD28

to enhance JNK activity [70, 139] and the importance of JNK in IL-2 expression [140]

remain controversial. More recently the focus has been on NF90, which was originally

identified as a transcription factor associated with NFAT [141], and is now recognized as

an RNA-binding protein. NF90 can compete with TTP for binding to the AU-rich region

of the IL-2 mRNA [142]. NF90 is localized in the nucleus in resting cells, but T cell

activation results in movement of the majority of NF90 to the cytosol and this nuclear-

cytosolic shuttle event is linked to IL-2 mRNA stabilization. Recent analysis of NF90

knock out T cells has confirmed an important role of NF90 in the regulation of IL-2

secretion, but it is not clear how much of this effect is mediated through NF90’s effect on
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IL-2 transcription or mRNA stability [143]. The signals that regulate NF90 localization/

function, how CD28 might impact on regulation of NF90, and how NF90 might interact

with other factors that impact on mRNA stability are not understood.

Two pathways of CD28 costimulation

Recent attempts to dissect the different roles of CD28 in normal T cells have suggested that

distinct functions might be mediated by different signaling pathways [55, 56]. We have

defined two independent pathways that impact on the ability of CD28 to upregulate IL-2

expression [1, 56, 114] (Wang X and Miller J, unpublished data). It is well established that

CD28 costimulation can enhance cytokine secretion through an increase in transcription

and through the induction of mRNA stability. But the relationship between these molecular

events and their relative impact on the levels of cytokine secretion were not understood.

We have recently shown that these two mechanisms involved in the upregulation of IL-2

secretion are mediated through independent signaling pathways. First, mutation of M173 in

the cytosolic tail of CD28, a mutation that disrupts the ability of CD28 to recruit and

activate PI3K, results in a failure to recruit PKCh to the cSMAC, drive nuclear localization

of NF-jB, and enhance IL-2 transcription [56]. Disruption of this site also results in a loss

in Bcl-XL upregulation, a defect in the generation of graft-versus-host responses and an

alteration in T cell trafficking, but has little effect on overall cytokine expression [52–54,

57]. However, this mutation did not affect the ability of CD28 to promote IL-2 mRNA

stability and had little effect on the level of IL-2 protein secretion. Second, mutation of a

polyproline motif (PYAPARDF) disrupts the ability of CD28 to induce IL-2 mRNA sta-

bility (Wang X and Miller J, unpublished data). This element is associated with Lck and

Grb2 recruitment and mutation of the proline residues interferes with T regulatory cell

development and results in a general reduction in cytokine expression and humoral

responses [15, 60, 61, 79, 81–83, 144]. Importantly, the two pathways are independent.

Mutation of the YMNM motif blocked upregulation of IL-2 transcription without affecting

mRNA stability, whereas mutation of the PYAPARDF motif blocked the induction of

mRNA stability without affecting transcription. In addition, disruption of mRNA stability

had a greater effect on the levels of IL-2 secretion than did disruption of CD28-enhanced

IL-2 transcription. Understanding these pathways and the biochemical events associated

with signal transduction will provide important insight into how CD28 costimulation can

impact on so many aspects of T cell activation, differentiation, and tolerance.
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