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ABSTRACT
Background. Sturnira is one of the most species-rich genera in the Neotropics, and it
is found from Mexico and the Lesser Antilles to Argentina. This genus forms a well-
supported monophyletic clade with at least twenty-one recognized species, as well as
several others under taxonomic review. Sturnira parvidens is a widespread frugivorous
bat of the deciduous forests of the Neotropics, is highly abundant, and is a major
component in fruit dispersal to regenerate ecosystems.
Methods. We used a technique based on Illumina paired-end sequencing of a library
highly enriched for microsatellite repeats to develop loci for S. parvidens. We analyzed
millions of resulting readswith specialized software to extract those reads that contained
di-, tri-, tetra-, penta-, and hexanucleotide microsatellites.
Results. We selected and tested 14 polymorphic (di, tri, and tetra) microsatellites.
All markers were genotyped on 26 different individuals from distinct locations of
the distributional area of S. parvidens. We observed medium—high genetic variation
across most loci, but only 12 were functionally polymorphic. Levels of expected
heterozygosity across all markers were high to medium (mean HE = 0.79, mean
HO = 0.72). We examined ascertainment bias in twelve bats of the genus, obtaining
null/monomorphic/polymorphic amplifications.
Discussion. The Illumina paired-end sequencing system is capable of identifying
massive numbers of microsatellite loci, while expending little time, reducing costs, and
providing a large amount of data. The described polymorphic loci for S. parvidens in
particular, and for the genus in general, could be suitable for further genetic analysis,
including taxonomic inconsistencies, parentage/relatedness analysis, and population
genetics assessments.

Subjects Ecology, Genetics, Molecular Biology, Zoology
Keywords Microsatellites, Sturnira parvidens, Pal_finder, Illumina

INTRODUCTION
The yellow-shouldered Mesoamerican bat (Sturnira parvidens) is primarily associated with
lower elevations (0 to 2,000 m), and is found mainly in tropical/subtropical habitats and
ecotones (Villalobos & Valerio, 2002). S. parvidens is found from the northern Mexican
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Pacific Slope and the northern Mexican Gulf Slope southward to Northern Costa Rica,
and including the Yucatan Peninsula (G Hernández-Canchola & L León-Paniagua, 2017,
unpublished data). S. parvidens has been caught in the understory and subcanopy of tropical
and subtropical forests, in xeric scrubs, and in secondary and temperate forests. They are
commonly found roosting in the foliage of forests of advanced successional stages, but
their home ranges includemature and secondary forest (Evelyn & Stiles, 2003). Theymainly
consume fruit from plants representing early stages of plant succession, like pioneer trees
(Cecropia peltata), pioneer herbs (Solanum americanum, S. torvun, S. ochraceo-ferrugineum,
Capsicum annuum), or pioneer shrubs (Piper hispidum, P. lapathifolium; Olea-Wagner et
al., 2007). This frugivorous species is an important seed disperser, carrying out an important
ecosystemic role in the restoration of secondary tropical forests. It is considered abundant
but, as fragmentation intensifies, the species is particularly vulnerable to local extinction
(Evelyn & Stiles, 2003).

Pleistocene climatic oscillations and the complex orogeny of its distributional area
shaped the phylogeography of this bat, generating two lowland lineages. The two genetic
lineages, one in the Western Slope region of Mexico, and the other in the Eastern Slope
region of Mexico and Central America, diverged into haplogroups around c. 0.423 Ma,
and demographic expansion was detected later, after the splitting event (G Hernández-
Canchola & L León-Paniagua, 2017, unpublished data). Sturnira is the most speciose genus
of frugivorous bats. Due to its ability to colonize new areas, it adapted to produce complex
groups showing different genetic lineages (Velazco & Patterson, 2013; Velazco & Patterson,
2014; G Hernández-Canchola & L León-Paniagua, 2017, unpublished data). The genus
Sturnira involves a highly diversified and complex group of species. This speciose group
of bats inhabits the entire Neotropic realm and includes three mountain basal species: S.
aratathomasi, S. bidens, and S. nana. Also, it has been described as a clade formed by species
that usually inhabit highland mountain forests: S. bogotensis, S. burtonlimi, S. erythromos,
S. hondurensis, S. koopmanhilli, S. ludovici, S.magna, S.mordax, S. oporaphilum, S. perla, S.
tildae and S. adrianae (Velazco & Patterson, 2013; Molinari et al., 2017). Lastly, it includes
a group of species that inhabit lowland tropical forests: S. angeli, S. bakeri, S. lilium, S. luisi,
S. new species 3, S. paulsoni, and S. parvidens (Velazco & Patterson, 2013).

No microsatellite molecular markers are known for Sturnira parvidens; our goal was
to isolate and characterize polymorphic microsatellite loci for the species by using Next-
Generation Sequencing. The development of these markers can be useful for understanding
the genetic structure of subpopulations in its distributional range. They can be used to
identify the impact of humans on the fragmentation of the populations and assess the
divergent lineages formed by genetic drift. They can also be used to evaluate movements of
individuals in the mosaic-fragmented landscapes, and discern the genetic component in the
social structure of the population by assessing relatedness and paternity. We showed cross-
species amplification in twelve species of the Sturnira genus, under the hypothesis of having
a positive ascertainment bias due to the phylogenetic relatedness among species (Crawford
et al., 1998; Li & Kimmel, 2013). Suitable cross-species amplification will facilitate studies
in Sturnira related bat populations of Middle and South America.
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MATERIALS AND METHODS
We obtained tissue samples from 26 distinct individuals of S. parvidens from different
localities in its distributional range in Mexico. Specimens were provided by Colección
de Mamíferos del Museo de Zoología ‘‘Alfonso L. Herrera’’, Facultad de Ciencias-Universidad
Nacional Autónoma de México. Tissue sampleswere stored individually in 95%ethanol until
analysis. We followed the guidelines set forth by the American Society of Mammalogists
for the use of wildlife (Gannon, Sikes & Animal Care and Use Committee of the American
Society of Mammalogists, 2007). Fieldwork was conducted with the permission of
SEMARNAT (Secretaría del Medio Ambiente y Recursos Naturales de Mexico—permit
FAUT-0307). Six samples were sent to the Savannah River Ecology Laboratory, for an
enrichment library process. The facility follows their own protocol and provides a database
of the resultingmicrosatellites.Meanwhile the rest of the specimenswere used to standardize
protocols and assess polymorphism in microsatellites.

DNA was extracted following the instructions of the Qiagen protocol (Blood and
Tissue Kit, Cat No. 69504; Qiagen, Hilden, Germany) for shotgun sequences, and we used
the Universal Salt Protocol to extract DNA from the remaining specimens (Aljanabi &
Martinez, 1997). An Illumina paired-end shotgun library was prepared by shearing 1l g
of tissue DNA using a Covaris S220 and following the standard protocol of the Illumina
TruSeqDNALibrary Kit. Fivemillion of the resulting reads were analyzed with the program
PAL_ FINDER_v0.02.03 (Castoe et al., 2012), in order to extract those reads that contained
di-, tri-, tetra-, penta-, and hexanucleotide microsatellites.

Once positive reads were identified in PAL_FINDER, they were batched to a local
installation of the program MSATCOMMANDER v 0.8.2 for primer design (Faircloth,
2008). We recovered 6,790 unique loci (48 hexa, 97 penta, 1,260 tetra, 1,097 tri and 4,288
dinucleotide—Fig. 1), but only 14 were chosen for PCR trials that were performed in a
MultiGeneTM Gradient Thermal Cycler (Labnet, Edison, NJ, USA). We directly labelled
forward primers (FAM) for each of the chosen loci. PCR reactions were performed in a 10
µl volume containing 30 ng of DNA, 0.2mMof dNTPs, 10mMof each primer, 1 Taq buffer
(Buffer PCR 10×), 0.3 µLMgCl2 (25 mM), and 1.0 U of FlexiTaq polymerase. PCR cycling
conditions were as follows: initial denaturation at 95 ◦C for 3 min; followed by 30 cycles of
95 ◦C for 3 min, gradient temperature (ranging from 56 to 60 ◦C) for 30 s, and 72 ◦C for 2
min; extension of 68 ◦C for 8 min; and final ending of 4 ◦C. Exact annealing temperatures
for each primer are given in Table 1. We visualized the PCR products by electrophoresis
on 1.5% agarose gels. Markers were tested for amplification success, polymorphism and
specificity in 26 individuals of S. parvidens.

The results of the microsatellite profiles were examined using GeneMarker R© v. 2.4.2
(SoftGenetics, State College, PA, USA) and peaks were scored by hand. We obtained the
number of homozygotes and heterozygotes by scoring data. We estimated the proportion
of polymorphic loci and the average number of alleles per locus by using the GDA software
(Lewis & Zaykin, 2001). We assessed the observed (HO) and the expected heterozygosity
(HE), linkage disequilibrium, and Hardy–Weinberg proportions by using Genepop
4.2 (Rousset, 2008), and corroborated with Arlequin 3.5 (Excoffier, Laval & Schneider,
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Dinucleotide Trinucleotide Tetranucleotide Pentanucleotide Hexanucleotide

Perfect 2279 612 619 42 20

Imperfect 1908 462 617 54 28

Compound 101 23 24 1 0
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Figure 1 Potentially amplifiable loci (PAL’s) with positive microsatellites found in the enriched li-
brary. Perfect, imperfect and compound loci separated out for dinucleotide to hexanucleotide microsatel-
lite forms.

Table 1 Primer sequences and characteristics of the 14 microsatellite loci isolated for Sturnira parvidens. Annealing temperature not obtained
(X).

Locus Primer (Forward) (5–3′) Primer (Reverse) (5–3′) Motif Annealing
T (◦C)

Spar01 6 FAM-TGCCCTGAAGAACTTTGAGC CCCATACTTCTCCCTCACAGC AAAG(92) 58
Spar02 6 FAM-AGAAAGAAAGGGAGGGCGG TTCTTTATGCCCTTTGCTCTAGG AAAG(104) 60
Spar05 6 FAM-TGCCTGCCTAGTCTGTCACC AAGCAGTTCCCATCACATGC ATC(33) 56
Spar06 6-FAM-CCTGGGATGAAGTTTCTGACG GAATAATGGGAATACCAGAATAAGACG TTC(30) ×

Spar07 6 FAM-CTCCCACGGACAATCAACG CCCAGATTGCTGCCTCTCC TGC(30) 56
Spar08 6 FAM-GGAGTCTCCTTCATTAAGTGCC GGATGTGTTGTGAAGATTGTGC ATT(30) 56
Spar09 6 FAM-AAGTCCATTTCAAGGCTGGG CCCATCATACCCTCCTTTGC AC(44) 60
Spar010 6 FAM-TCTGGCCTGAGGTATTTGGG ACTGTAGCCACTTCCCTGCC AC(44) 60
Spar011 6 FAM-AAGCCACTGCCTTGTGCC GACTCTCTGGACATTGGCCC TC(44) 60
Spar012 6 FAM-GGGAGTGAATGAGAAAGATAAAGTCC CTGTCATTGCATGGGTTGG AC(44) 60
Spar013 6 FAM-AAAGATTCCTGGAGATCATACCC TGAATGTATCCTAGGGCGAGC AC(42) 60
Spar014 6-FAM-TTTCTCTCACTGTCTAACTCTGCC AGTCCTGGCAGGTGTGTCC TC(32) ×

Spar030 6 FAM-AATGGCACCATATTATTCTACATAGG CCGTTCTAGGCTCAGTTTCC ATT(36) 60
Spar040 6 FAM-GACTGAGACAATTGCTTGAGATAGC GAGTTTCAGGGAGTATTTCAGTGC ATC(33) 60

2003). We used MICROCHECKER to screen null alleles in each locus (Van Oosterhout
et al., 2004). We measured polymorphic information content (PIC) with Cervus 3.0.7
(Kalinowski, Taper & Marshall, 2007).

We probed cross-species amplification in tissues of twelve species of the genus:
S. hondurensis, S. burtonlimi, S. oporaphilum, S. mordax, S. tildae, S. erythromos,
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Table 2 Diagnostic characteristics of selected microsatellites.Number of alleles, size range, polymorphic information (PI), observed heterozygos-
ity (HO), expected heterozygosity (HE), Hardy–Weinberg equilibrium (HWE), and null alleles.

Locus GenBank accession
number

No. alleles Size range (bp) PI HO HE HWE Null alleles

Spar01 KY645946 7 132–236 0.7098 0.941 0.761 0.08 ×

Spar02 KY645947 6 130–222 0.6455 0.765 0.692 0.08 ×

Spar05 KY645948 6 124–226 0.6069 0.412 0.699 0.05 X

Spar07 KY645949 10 121–226 0.8028 0.824 0.865 0.18 X

Spar08 KY645950 11 130–382 0.8052 0.800 0.860 0.13 ×

Spar09 KY645951 13 134–230 0.8864 0.875 0.933 0.11 ×

Spar010 KY645952 12 132–236 0.8698 0.882 0.919 0.08 ×

Spar011 KY645953 8 124–222 0.8125 0.588 0.863 0.12 ×

Spar012 KY645954 8 128–214 0.7068 0.750 0.772 0.08 ×

Spar013 KY645955 10 124–220 0.8577 0.500 0.867 0.05 X

Spar030 KY645957 6 133–169 0.7088 0.741 0.735 0.08 ×

Spar040 KY645958 6 124–190 0.6721 0.662 0.669 0.08 ×

S. bogotensis, S. magna, S. new species 3, S. luisi, S. lilium, and S. bakeri (Supplemental
Information 1). All polymorphic loci were tested in the mentioned species by using similar
PCR conditions. We followed the ascertainment bias hypothesis of broad amplification in
similar phylogenetic species (Schlötterer, 2000).

RESULTS
We obtained a total of 6,790 potentially amplifiable loci (PALs), containing perfect,
imperfect, and compound microsatellites (Fig. 1). Dinucleotide microsatellites were the
most abundant (4,288), followed by tetra (1,260); hexa microsatellites were the least
abundant in our readings (48). PCR reactions showed that of the 14 loci tested, two were
non-specific or monomorphic, and only 12 loci were polymorphic such that we were able
to get proper amplification (Table 1). Annealing temperature ranged from 56 to 60 ◦C.

We found moderate levels of allelic richness, with an average of 8.8 alleles per locus in
the representative selection from the wide area of the distribution of Sturnira parvidens.
Polymorphic information content (PIC) presented values above 0.5 showing a significant
content of alleles per locus. Allele frequencies showed a remarkable diversity of alleles per
locus, driving a superior number of valuable loci to be used in different genetic analyses
(Supplemental Information 2). No evidence of linkage disequilibrium was found on the
analyzed loci. We did not observe any loci out of Hardy–Weinberg equilibrium. Levels
of expected heterozygosity (HE) ranged from medium to high for all markers (mean
HE = 0.79, and meanHO= 0.72). In the majority, there was no evidence of null alleles, but
three loci (Spar05, Spar07, Spar013) showed significant frequencies of null alleles (above
15%–Table 2).

Cross-species amplification showed differences for the twelve related species (Table 3).
S. new species 3 presented the largest number of amplified microsatellites (8), followed by
S. bakeri (7). S. mordax had the lowest number of amplified loci (4).
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Table 3 Cross-species amplifications of the designed primers for S. parvidens. We followed same PCR conditions in the twelve related species.
(×) no positive amplification, (Xp) positive polymorphic amplification, (Xm) positive monomorphic amplification, (X*) polymorphism not
proven because PCR conditions were not standardized.

Locus S. hondurensis
(n= 3)

S. burtonlimi
(n= 3)

S. oporaphilum
(n= 1)

S. mordax
(n= 2)

Spar01 × Xp × ×

Spar02 Xp × X* ×

Spar05 Xp Xp X* X*
Spar07 × × × ×

Spar08 X* Xp X* Xp
Spar09 × Xp X* X*
Spar010 × X* X* ×

Spar011 X* Xp X* Xp
Spar012 Xm × X* ×

Spar013 × × X* ×

S. tildae
(n= 1)

S. erythromos
(n= 1)

S. magna
(n= 1)

S. bogotensis
(n= 1)

S. newspecies_3
(n= 3)

S. luisi
(n= 3)

S. lilium
(n= 3)

S. bakeri
(n= 2)

× × × × Xp × X* X*
× × X* × X* × × X*
X* × X* × X* X* X* ×

× × × × Xp × × Xp
X* X* × X* Xp X* X* Xp
X* X* × X* Xp X* X* Xp
X* X* X* X* Xp X* Xp Xp
X* X* X* X* X* Xp X* X*
X* X* X* X* × × × ×

X* X* X* X* × × × ×

DISCUSSION
Next Generation Sequencing allowed the project to obtain a large number of microsatellite
loci for Sturnira parvidens. This method has been probed for several bat species, and it
is becoming a standard method for acquiring specific molecular markers (McCulloch
& Stevens, 2011). Given the natural applicability of microsatellites to solve ecological
questions, thesemolecularmarkers have emerged as amultipurpose indicator for ecological
applications (Zane, Bargelloni & Patarnello, 2002; Selkoe & Toonen, 2006). Its applicability
spreads to different academic fields such as population genetics, behavioral ecology,
genomics, phylogenies, etc.

Our microsatellites conformed to the normal standard measures (Balloux & Lugon-
Moulin, 2002). These indicators provide a straightforward approach for describing genetic
variation due to the high level of existing alleles. Low allelic richness can affect accuracy
in estimating population genetic parameters, leading to significant errors in assessing
genetic diversity of target populations (Bashalkhanov, Pandey & Rajora, 2009). Here, we
present a novel set of microsatellite loci with the potential to estimate genetic diversity
in a non-model species. Standard measures for our microsatellites may have important
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implications in the evolutionary biology of the target species, because they can be used to
develop conservation strategies for Neotropical bats. Highly informative microsatellites
have been used to assess genetic diversity in a broad range of bat populations and to
propose measures for conservation (i.e., Rossiter et al., 2000; Romero-Nava, León-Paniagua
& Ortega, 2014; Korstian, Hale & Williams, 2015).

Amplified microsatellites for S. parvidens presented levels of polymorphism and
heterozygosity similar to those found in other bat species (i.e., Artibeus jamaicensis—
Ortega et al., 2002; Rhinolophus ferrumequinum—Dawson et al., 2004; Desmodus rotundus-
Piaggio, Johnston & Perkins, 2008; Corynorhinus spp.—Lee, Howell & Van Den Bussche,
2011;Myotis spp.—Jan et al., 2012; Carollia castanea—Cleary, Waits & Hohenlohe, 2016).

Microsatellite markers are widely used to infer levels of genetic diversity in natural
populations. Molecular markers are not always developed for the target species and the use
of microsatellite loci from related species can be accurate. Ascertainment bias limited the
microsatellite-based amplification due to the particular selection of polymorphic markers
in the target species, plus the reduced sensitivity of the markers due to the phylogenetic
constrictions of the particular evolutionary traits of each sister species (Crawford et al.,
1998; Schlötterer, 2000; Li & Kimmel, 2013). The bias leads to a lower average allele length
due to the phylogenetic restriction provided by the unique evolutionary history of each
species (Li & Kimmel, 2013). We tested the potential use of our markers in related species,
finding multilocus heterozygosities inside the Sturnira genus. This positive effect suggests
the use of the developed markers to extrapolate genetic diversity in future studies for this
highly speciose genus, in which the past demographic shared histories barely affect the
cross-species amplification consolidation.

CONCLUSIONS
We used Illumina Paired-Sequences to efficiently develop microsatellite loci for Sturnira
parvidens. We formed a genomic library to obtain 12 specific and polymorphic
microsatellites for this bat. Microsatellites showed high allelic richness per locus, showing
their effectiveness for further studies (i.e., population genetics, behavioral ecology, etc.).
Cross-species amplification was effective for the 12 related species, but with no positive
amplifications in several cases.
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