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At the present time, imaging guided renal biopsy is used to provide diagnoses in most types of primary and secondary renal
diseases. It has been claimed that renal biopsy can provide a link between diagnosis of renal disease and its pathological conditions.
However, sometimes there is a considerable mismatch between patient renal outcome and pathological findings in renal biopsy.
This is the time to address some new diagnostic methods to resolve the insufficiency of conventional percutaneous guided renal
biopsy. Nanotechnology is still in its infancy in renal imaging; however, it seems that it is the next step in renal biopsy, providing
solutions to the limitations of conventional modalities.

1. Introduction

Current renal biopsy methods mostly involve automated
biopsy gun and real-time ultrasound-guided technique. The
diagnostic accuracy of renal biopsy depends on the different
parameters such as experience of the operator, mean number
of glomeruli in specimen, and extent of renal involvement
[1]. Unfortunately, the conventional renal biopsy method
often has several limitations that include the following. (1)
Imaging-guided biopsy is an invasive and operator procedure
dependent [2]. (2) There is a considerable risk of hematuria
and hematoma during and after biopsy procedure [1, 3]. (3)
Pathological examination of biopsy specimen is time con-
suming and can take several days to complete and need expert
renal pathologist [4]. (4) Either computed tomography (CT)
or ultrasound should be employed for guiding the biopsy
needle towards the kidney using real-time image acquisition.
CT-scan can determine the exact position of the biopsy

needle in relation to the renal position, but this imaging
technique exposes the patients to the considerable radiation.
In contrast, ultrasound guidance is a nonionizing technique
for needle guiding; however, some problems like poor needle
visibility, especially in obesity patients, has limited its use
[2]. (5) Kidney biopsy is associated with local pain in needle
penetration site and renal capsule. (6) It is important to
determine the optimal size of needle due to its effect on
specimen size. The mean diameter of a typical glomerulus
is 100 to 250𝜇m. Therefore, the needles with diameter more
than 600 um can collect high numbers of glomeruli [KIM],
while increasing the renal biopsy complications such as
hematuria andmerely leading to the renal loss [5]. In contrast,
the needles with diameter less than 400 𝜇m have a fewer
side effects, while are unable to collect a sufficient number
of glomerulus and the collected ones are usually fragmented
or lost [6]. (7) In practice, usually more than one biopsy pass
is required to obtain the desired result that increase the risk
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Table 1: The main milestones of the renal biopsy in last century.

Stage Year Reference(s)
First renal biopsy 1901 [2]
First radiography-guided percutaneous
renal biopsies 1944 [2]

Cutting needle 1954 [9]
Percutaneous renal biopsy under direct
radiology control 1962 [10]

Ultrasonic localization for renal biopsy 1974 [11]
Using the automated biopsy gun with
real-time ultrasound for native renal biopsy 1979 [12]

Spring-loaded, automated, cutting-needle
biopsy 1980s [1]

of biopsy [1]. (8) The recovery phases of renal biopsy consist
of an inpatient period of 1 to 3 days and the outpatient period
of about one week [3]. (9) Usually, renal involvement is not
homogeneous; therefore, small specimen cannot represent
the real condition of kidney and conventional renal biopsy
method is not always a reliable indicator for the overall
condition of the kidney [7]. As described, renal biopsy is
an invasive method and its use is limited by low diagnostic
accuracy due to local evaluation of the renal parenchyma.
Small number of glomeruli cannot be the representative of
one million nephrons. In other words, it seems that making
a medical decision based on renal biopsy results may be
misleading and can result in over- or undertreatment of the
patients. It has been established that “∼12% of the biopsies
did not shed light on the diagnosis and were unhelpful in
patient management, another ∼11% were nondiagnostic, and
an additional 1.5% failed to yield enough tissue for exami-
nation” [8]. In the recent years, several different practical
techniques have been proposed to improve the efficiency of
renal biopsy by using different guiding techniques and high-
performance needles.Themainmilestones of the renal biopsy
are summarized in Table 1.

This is the time to address some new diagnostic methods
to resolve the insufficiency of conventional percutaneous
guided renal biopsy. Several techniques have been proposed
for improving the needles visibility in ultrasound-guided
biopsy by increasing their echogenicity. These techniques
include the use of coating agents, dimpling the needle tip,
and texturing with different methods [13]. This improvement
could aid accurate localizing of the needle and decrease the
number of biopsy passes in order to reduce some renal biopsy
complications. Despite of these advancements, as described
earlier, conventional renal biopsy suffers from serious lim-
itations. As a result, in the last decades several attempts
have been made to enable clinicians to assess renal structure
and function in details and to avoid the need to collect
renal specimens. This can be partially accomplished either
through employing the modified version of conventional
imaging technologies such as pulsed ultrasonography (US),
micromagnetic resonance imaging (𝜇-MRI) and micro-CT
(𝜇-CT) or through using multimodal approaches such as
single-photon emission/CT (SPECT/CT), positron emission

tomography/CT (PET/CT), PET/MRI, and PET/optical [14].
In addition, development of different imaging contrast agents
improved the diagnosis accuracy of medical imaging tech-
niques [15]. Table 2 shows the main properties of the known
medical imaging modalities including the spatial/temporal
resolution of technique, operator dependency, and potential
hazards to the subjects (e.g., radiation).

1.1. High-Performance US. The image quality of ultrasonog-
raphy has dramatically improved in the last decades, but it
has been proven that “commercial ultrasound systems lack
sufficient resolution to differentiate exactly between tissue
planes” [21]. The resolution of US depends on the frequency
of the transducer, “frequencies between 30MHz and 50MHz
provide resolution to between 100 𝜇m and 60 𝜇m respectively”
[21]. In the recent years, high frequency transducer has been
introduced for pushing the resolution and contrast limits of
conventional ultrasonography. This method can provide an
imaging depth of 50mm with a spatial resolution down to
70 𝜇m [22, 23]. The high frequency transducer can be used
as a powerful tool for diagnosing of undetectable lesions
such as early detection of prostate cancer risk in rats [24].
Unfortunately, the penetration depth of high frequencies
transducer is limited, and deep organs cannot be studied in
their entirety [25]. To data, several studies have confirmed
the efficiency of renal contrast-enhanced ultrasonography
(CEUS), in early diagnosing of renal involvement [26–32].
However, CEUS is still used infrequently in clinical practice
[33, 34]. In thismethod, to increase the contrast of ultrasound
imaging in clinical practice, shelled, gas-filled microbubbles
are routinely injected intravenously to increase the mismatch
in acoustic impedance between tissues and thus help detect
and characterize focal lesions. Indeed, the first FDA approved
contrast agent in clinical use is the Gd3+ DTPA chelate
[35]. The first FDA approved contrast agent used in the
US was Albunex (since discontinued) in 1994, which was
only approved for echocardiology [36]. The timeline of
development of US-based contrast agents has been shown
in Figure 1. US contrast agents usually are air or gas filled
microbubbles or microspheres that are albumin, lipid, or
polymer coated [37]. In our knowledge, Definity�, a C3F8-
filled and lipid-coatedmicrobubble, is the first FDA-approved
contrast agent for renal imaging. Ultrasound contrast agents
can be divided into five different classes: (1) nonencapsulated
gas microbubbles, (2) stabilized gas microbubbles, (3) encap-
sulated gas microbubbles, (4) microparticle suspensions or
emulsions, and (5) gastrointestinal.

Tsuruoka et al. claimed that Sonazoid� can be used
as a safe efficient contrast agent in evaluation of dynamics
of renal microcirculation and early diagnosing of CKD.
These microbubles can improve the visualization of renal
vascular by improving the echogenicity of flowing blood
[38], Figure 2. These microbubbles usually have diameter
between 1 and 8 𝜇m [39]. As a result these particles could
not be excreted with kidney filtration.This property will help
physicians in better visualization of renal microvasculature
and early diagnosing of microvasculature diseases such as
small vessel vasculitis and thrombotic microangiopathy. As
seen in Figure 1, all of the newly developed microbubbles
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Table 2: Comparing the performances of different imaging modalities.

Sensitivity Spatial
resolution

Temporal
resolution

Acquisition
times speed

Soft tissues
contrast

Radiation
exposure

General
anesthesia

Operator
dependence Signal used

MRI Low [16] 25–100 𝜇m Minutes to
hours Very low High [17] No [18] Yes [19] No Radio waves

CT Low [16] 50–200 𝜇m Minutes Medium Low [20] Yes Yes No X-ray

US ∼1mm Second High High No No Yes Mechanical
wave

PET High [16] 1-2mm 10 seconds
to minutes Medium Yes No 𝛽/𝛾

SPECT High [16] 1-2mm Minutes Low Yes No Γ

First ultrasound contrast High echogenic and low stable
Enhancement (UCE) agent 1960 First commercial UCE UCE agents 1997–2001

Lumason 

2001

First gas containing
bubbles as UCE 1968–70 2001 2001 2007

Inner gas Air
Approved for renal imaging 
Outer shell Albumin Albumin Lipid Lipid Lipid

No Yes No NoNo

First high stable 
commercial UCE Optison 1997

SonazoidⓇImagentDefinity

SonovueⓇ
AlbunexⓇ 1984

C3F8 C3F8 SF6 C4F10

Figure 1: The timeline of development of US-based contrast agents.

M C

C: cortex
M: medulla

Figure 2: Improving the echogenicity of renal vascular employing
MPs.

are lipid coated. Besides improving the general contrast of
the imaging system, an ideal contrast agent needs to provide
additional information about molecular and cellular content
of lesion. Currently, researchers have begun to focus on the

development of contrast agents with specific binding capa-
bilities [40]. Infiltration of leukocytes in kidney parenchyma
can be a potential detector for type of renal involvement. It
has been established thatmicrobubble-leukocyte interactions
depend on microbubble shell composition [41]. Lipid-coated
microbubbles can interact with activated leukocytes better
than albumin-coated ones [42]. In our experience, this prop-
erty is not enough in its own right, since an ideal sonographic
contrast agent should have low affinity to tubular epithelial
cells and Mesangial cells.

1.2. High-Performance CT. CT is a high-resolution method,
which can characterize the mass as solid or cystic [43]. At
the present time, CT is one of the most commonly used
diagnostic tools in renal imaging. This method enjoys the
advantage of having higher penetration depth compared
to the US and, on the other hand, has higher resolution
[44]. Unfortunately, CT has limited utility in imaging soft
tissues such as fat/muscle, normal organ/tumors, or cor-
tex/medulla because of similar X-ray absorption among low-
density structures [20]. As a result, the contrast of CT-
based images will be very low making the interpretation
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of the image difficult [45]. In the last decades, several
attempts have been made to push the limits of CT and it
seems that “its potential is only starting to be explored” [46].
High-resolution X-ray Computed Tomography (HRXCT) or
microcomputed tomography (𝜇-CT) is one of the several X
ray-based imaging technologies [47]which can be considered
as a potential imagingmodality to overcome the limitations of
conventional CT.The𝜇-CTpermits noninvasive examination
of gastrointestinal tract, cardiovascular system, renal tract,
liver, lungs, bone, cartilage, tumorous tissue, and so forth
[48]. It has been shown that 𝜇CT can be used for accurate
studying ofmacro-to-microvascular changes during early-to-
late-stage progressive renal involvement [44]. It seems the
main drawback of this technique is that its resolution depends
on the scan time; “it took up to 30min to scan single maize
kernels at a resolution of 13.4mm, whereas a two hour scan
time was needed to obtain a 6mm resolution” [46]. However,
in medical imaging long scan time can be problematic due to
the following reasons: (1) the patients will be exposed to the
more dangerous high dose ionizing radiation for long time
and (2) minimal movement of the subject during the imaging
procedure will cause motion-blurring artifacts [49]. As a
result, some patients may need anesthesia for a 𝜇-CT scan,
but anesthesia is not always possible. In addition, formation
of destination image can take several hours because of large
data volumes. Nano-CT has been developed in order to
compensate the deficiencies of the conventional 𝜇-CT [50].
Scanning time has been decreased, samples sizes increased,
and resolution improved in nano-CT compared to 𝜇-CT [50].
In spite of these developments, none of these techniques
is ideal for monitoring ultrastructure of renal parenchyma
in itself because of the intrinsic and/or technical problems.
In the recent years, several efficient exogenous CT contrast
agents have been introduced for pushing back the limitations
of the previously described CT-based methods. These agents
usually are small iodinated molecules and barium sulfate
suspensions [51]. None of these are optimal [52]. Contrast-
related acute renal injury (CI-AKI) is a serious restriction
in using from small iodinated as imaging contrast agents
[53]. Barium sulfate suspensions are employed only for upper
gastrointestinal X-ray examinations [54]. Barium sulfate sus-
pensions are rapid renal excretion and also known to be renal-
toxic [52]. In addition iodinated agents suffer from short
blood-circulation time, nonspecificity in in vivo imaging,
and low contrast efficiency [52]. In the ideal situation, a
large dose at a high rate would be optimal. This, however,
must be weighed against safety, practicality, and cost. In the
last decades, NPs have attracted great interest in bioimaging
due to unique electronic, magnetic, optic, catalytic, and
thermodynamic characteristics [55]. It has been established
that the efficiency of each NP in CT imaging is dependent
on its density and atomic number [48]. The relationship [56]
between density (𝜌), atomic number (𝑍), atomicmass (𝐴), X-
ray energy (𝐸), and X-ray absorption coefficient (𝜇) of each
NP has been shown in

𝜇 ≈
𝜌𝑍4

𝐴𝐸3
. (1)

As it is clear, 𝜇 strongly depends on 𝑍 [56]. In other words,
NPs with high atomic number will produce more brighter
signal on CT images. However, an ideal contrast agent should
show high specificity toward target tissue for increasing the 𝜇
difference between the target tissue and surrounding tissue.
Fortunately, the surface of these NPs can be modified with
peptides, proteins, and antibodies, which make these NPs
target-specific.NPs containingAu, Bi, Ta, Yb, and so forth can
satisfy both of these requirements. Due to high 𝑍, metallic
NPs can provide better contrast compared to iodine NPs.
Currently, research efforts are focused on the development of
contrast agents that possess specific binding capabilities [40].

1.3. High Resolution MRI. MRI has the highest soft tissue
contrast resolution of the imaging between all methods in
use today [57]. Although MRI provides good anatomical
information with appropriate resolution, it suffers from low
sensitivity and temporal resolution. MRI inaccuracy results
from different artifacts such as incomplete fat suppression,
air bubbles in the bloodstream, and calcification [58]. This
drawback can be overcome by combining MRI with other
sensitive imagingmodalities, such as PET, SPECT, and optical
imaging [59–61]. In addition, fast MRI has been improved
the spatial and temporal resolution of MRI modality, which
enables the investigation of renal in detail. Ultra-high field
MRI (UHF-MRI) is one of the several MRI-based imaging
technologies which has been introduced as a potential tech-
nique to realize renal ideal imaging modality. Irazabal et al.
employed ultra-high field MRI for assessment of polycystic
kidney disease (PKD) in small rodent models of PKD [62].
One of the main advantages of the UHF-MRI is its use as
a potential tool for assisting the experts to early diagnose
some advanced kidney diseases such as medullary spongy
kidney, medullary cystic disease, kidneymalignancies in situ,
and autosomal dominant polycystic kidney disease (ADPKD)
[62]. ADPKD is the most common renal genetic disorder,
which may not be diagnosed until ages <20 years using
the conventional imaging modalities such as CT and US.
In another example, conventional imaging modalities such
as, CT, MRI, and PET cannot distinguish metastatic LN
involvement, because of poor sensitivity and/or specificity
and the inherent limits on size of nodal metastases that can
be detected [63]. It seems UHFMRI can be employed as a
powerful tool for the accurate diagnosis of ADPKD disease
in early stages. However, UHFMRI cannot provide detailed
information about the renal diseases in cellular levels and
“anothermuch-discussed aspect of ultra-high field imaging that
has been put forward as a possible obstacle to clinical use are
physiological side-effects of the magnetic field” [64]. In the
recent years, several attempts have been made to compensate
the drawbacks of UHFMRI. Despite these efforts, Saito et al.
claimed that the image ex vivo resolution of 𝜇-CT is higher
than that of UHFMRI [65]. In addition, scanning time of
𝜇-CT scanners is shorter than UHFMRI scanning systems
[65]. These findings are in line with other studies; “several
studies which compare the performance of X-ray 𝜇-CT against
other imaging techniques, that is, MRI, has revealed that X-
ray is less costly and more convenient” [46]. As explained
before, in comparison to the other imaging techniques, the



International Journal of Biomedical Imaging 5

main advantage of MRI is its excellent spatial resolution,
whereas it suffers from the limited sensitivity [66]. In a simple
word, conventionalMRI candetect large lesions easilywhile it
cannot detect smaller lesions due to lowSNR [67]. SNR can be
defined as the ratio of desired signal power to the background
noise power [68]. As the size of lesions decreased, the SNR
will be decreased due to low power desired signals. Magnetic
nanoparticles (MNPs) have been proposed as a potential
candidate for overcoming this limitation by increasing SNR.
Fortunately, in the last decades, several MRI contrast agents
have been introduced for improving the sensitivity of this
modality.Magnavist is the first FDA approved contrastmedia
forMRI [35].These agents can improve the sensitivity ofMRI
in the early diagnosing of renal involvement [69].

As shown in Table 3, most of the FDA-approved contrast
agents for MRI are gadolinium based [70]. Gadolinium itself
is toxic and should be coated with other chemicals [71]. This
property will help the researchers on the development of
contrast agentswith specific binding capabilities. Gadolinium
is highly paramagnetic substance [72]. Shokrollahi divided
the MRI contrast agents into two categories paramagnetic
compounds, including lanthanides like gadolinium, and
super-paramagnetic magnetic nanoparticles such as iron
oxides [66]. Unfortunately, gadolinium based contrast agents
cannot be used in patients with low glomerular filtration rate
(GFR) because of the risk of NSF [70]. Iron oxide MNPs
are FDA-approved contrast that are nontoxic at a low dose
[73]. It has been proven that NP-based MRI can be used
as a powerful tool in diagnosing acute renal failure (ARF)
[74] before the serum creatinine even begins to rise [75].
Gadolinium based contrast media are classified as T1 agents,
while ferromagnetic large iron oxide media are known as T2
agents [76]. SPIOs can penetrate cells. From the standpoint
of clinical diagnosis and cellular imaging, the image contrast
produced by such agents is far less desirable than that by
the T1 agents. Magnetic particle imaging (MPI), an emerging
tomographic imaging method, directly measures the magne-
tization of iron oxide nanoparticle tracers. The MPI signals
derived from the nonlinear remagnetization response of
super paramagnetic iron oxide nanoparticles (SPIONs) to an
oscillatingmagnetic field. Efforts to propelMPI forward as an
imaging method by improving its spatial resolution, imaging
speed, and sensitivity have expanded [16]. Magnetic particle
spectroscopy (MPS) has been developed in parallel with
the reconstruction of the MPI scanners to allow researchers
to evaluate, characterize, and optimize the properties of
tracers at a faster pace and lower costs, independent of
the confounding complexities of the hardware and software
technologies of a 3D MPI scanner.

1.4. Optical Imaging. Optical imaging is a potential tech-
nique, which allows physiological and pathological activities
to be studied in vivo. This modality has been introduced
as a potential tool for studying the renal involvement in
cellular level [102]. This method is widely used because it is
both high performance and cost effective [103]. Recent devel-
opment in optical imaging offers a myriad of procedures,
which are useful for studying the structure and function
of different organs such as kidney, brain, and colon [104].

For example, multiphoton microscopy (MPM) can provid
real-time movies of the renal function in vivo without dam-
aging tissue [105]. Despite of recent developments, optical
imaging modalities suffer from some limitations such as
low penetration depth. The process that limits the imaging
depth and contrast of NIR imaging is scattering rather than
absorption. In addition, the contrast resolution of modalities
will be degraded at higher depth due to light scattering
[106, 107]. In the recent years, several procedures have been
proposed to overcome the penetration depth limitation of
optical imaging. Wang et al. claimed that both the depth
and the contrast optical imaging can be enhanced by the
application of agents [108]. Higher concentration of agents
causes more water loss of skin tissue and a stronger optical
clearing effect. Taruttis et al. claimed that this problem
can “be overcome by adding ultrasound detection to optical
excitation in exploitation of the photoacoustic effect” [106].
Photoacoustic (PA) combines the high resolution of US with
the high contrast of optical imaging techniques. PA can
be used for molecular visualization of kidney due to its
high tissue penetration and appropriate spatial resolution
[100]. It has been established that endogenous contrast agents
(hemoglobin andmelanin) can improve the spatial resolution
of PA modality in deep tissues. However, in some cases, such
as solid tumors and lymphnodes, endogenous contrast agents
are not available, and exogenous contrast agents should be
used to overcome this problem. It has been established
that CNPs based PA can provide high resolution images
from in depth organs with adequate contrast. Besides this
feature, GNPs also have high scattering cross-section in
the red region of the spectrum. This property is crucial
for development of contrast agents for optical imaging in
living organisms because of light penetration depth in SPIE.
Natural nanoparticles are also widely used in PA, but they
have small size (<2 nm) and can distribute to a wide range
of tissue nonspecifically. As a result, these agents cannot
provide sufficient imaging contrast in the region of interest
against surrounding tissue [109]. In the last decades, carbon-
based nanocomposites are extensively used in PA imaging.
These NPs are strong NIR absorbance and in contrast to
gold NPs carbon-based NPs are nontoxic and photostable.
Based on the narrative summarized above, optical imaging
is still in its infancy and it seems that optical biopsy is the
next step in medical imaging, providing solutions to the
limitations of conventional modalities [110]. The advantages
and disadvantages of small numbers of available internal
imaging modalities have been summarized in Table 4.

2. Future Prospect: An Ideal Renal
Imaging Modality

As described in earlier sections, despite of the recent sig-
nificant advances in medical imaging technology, there are
still certain applications for which the conventional imaging
modalities are not the suitable solution and more devel-
opments are needed in the contrast, resolution, and the
penetration depth in the future [137]. Kidney is one of the key
organs, which plays an important role in regulating various
physiologic mechanisms. None of the conventional imaging
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Table 3: Different contrast agents.

Medical imaging types Modality FDA approved contrast agents Particle size Comment(s)

Structural MRI

AMI-25 (Feridex�) [77] ∼58 nm [78] T
2
-agent

Schering (Resovist�) [79] ∼21–46 nm [80]
OMP50 [81] ∼300 nm [82]
Feridex (FDA cleared) [71] ∼300 nm [82]

Ferumoxytol [83] ∼300 nm [82] Can be used in patients with
CKD stages I–V or ESD

AMI-121 (Ferumoxsil�) [81] ∼300 nm [84]
Gadolinium contrast agents [85]

Gadodiamide (Omniscan�) [86]
Linear nonionic, high

nephrogenic systemic sclerosis
(NSF) risk

Gadobenate (Multihance�) [86] Linear ionic
Gadopentetate (Magnavist�) [86] Linear ionic, high NSF risk
Gadoteridol (ProHance�) [86] Macrocyclic ionic
Gadofosveset (Ablavar�) [86] Linear ionic
Gadoversetamide (OptiMark�) [86] Linear nonionic
Gadobutrol (Gadovist�) [86] Macrocyclic ionic
Gadoterate (Dotarem�) [87] Macrocyclic ionic
Gadoxetate (Primovist�) [87] Linear ionic

Iron oxide MNPs [73]
Super paramagnetic iron oxides (SPIO)
[88]
Omniscan (FDA cleared) [71]
3He (under investigation) [89]
Manganese dipyridoxaldiphosphate
(Mn-DPDP) [90]
MnCl

2
[91]

Structural CT

Iopromide (Ultravist�) [92] ∼200 nm [93]
Iopamidol (Isovue 370) [94] Nonionic monomers
Iohexol (Omnipaque 350) [95] Nonionic monomers
Gold nanoparticles

Structural US

Albunex [36]

1–8 𝜇m [39]
Optison� [96]
Lumason� [96]
Definity [97]
Imagent� (formerly Imavist�) [98]

Structural Multiphoton
microscopy (MPM) Nanotubes [99]

Structural OCT To date, there are no FDA-approved
contrast agents for imaging with OCT.

Structural Photo acoustic
imaging [100] Clofazimine (CFZ)

Functional PET
Compound of 18F and natural
nanoparticles (lipoproteins, viruses and
ferritin) [101]

fMRI Gd-DTPA

Spectral Fluoresce

Indocyanine green
Fluorescein
Agent methylene blue
Demeclocycline
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Table 3: Continued.

Medical imaging types Modality FDA approved contrast agents Particle size Comment(s)

Spectral
Near infrared
absorption
spectroscopy

Indo Cyanine Green (ICG)

Spectral Hyperspectral
imaging

modalities are consistently effective in early diagnosing of
renal involvement.The kidney generally lies 5 to 10 cm under
the skin surface in nonobese people. With ease of access, the
kidney is an ideal organ in which low penetration imaging
modalities can be applied successfully. For researchers, the
ideal imaging technique should have the spatial resolution of
MRI, temporal resolution of ultrasound, and the sensitivity
of PET [16]. It can be claimed that an ideal noninvasive
renal imaging technique should have the following properties
[138]: (1) it should be a safe, nontoxic, and low ionization
imaging technique; (2) be able to obtain dynamic images with
high resolution and rich contrast for assessment of single
nephron function; (3) be able to provide centimeters pene-
tration depth into biological tissue; and (4) be of acceptable
cost and offer 3D fast-imaging in living subjects. In the recent
decades, several attempts have been done for realization of
ideal diagnostic imaging modality by promoting the MRI,
CT, and US imaging techniques. However, because of the
technical complexity and/or intrinsic limitations, most of
the efforts were limited to the construction of advanced
animals living imaging tools [65]. Fortunately, in the recent
years several methods have been proposed for improving the
acquisition time of new optical imaging modalities [139].The
safety is one of the primary requirements of any imaging
modality. Optical, acoustic, magnetic, and low-exposure X-
ray based imaging modalities are safe when compared to
other techniques such as multiexposure X-ray and nuclear
medicine based imaging. Nevertheless, in spite of safety of
these modalities, low imaging depth of penetration and/or
poor resolution limits their applications. Theoretically, there
is a tradeoff between imaging depth of penetration and spatial
resolution inmechanical [140] or electromagnetic [141] based
imaging modalities. In other words, the resolution of optical
imaging modalities will be degraded at higher depth due
to light scattering [106, 107]. Therefore, beside high spatial
resolution, an ideal imaging modality should have the suf-
ficient imaging penetration depth in tissue. It seems under-
standing the wavelength, refractive index, Brownian motion,
orientation, and size and phase function of tissue scatters can
result in modern powerful medical imaging modality [120].
The penetration depth of ∼10 centimeters allows complete
investigation of organs such as liver, pancreas, and kidney
in nonobese ones. This can be achieved in five ways. (1)
It seems improving the conventional imaging technologies
can help provide better understanding of internal organs. (2)
Using semi-invasive methods such as optical biopsy [142],
intraoperative laparoscopic ultrasound (usually 4–20MHz),
rigid or flexible probe, [143, 144], microultrasound probe
[24], endoluminal US (usually 12–40MHz) [145], and so

forth can be helpful in accurate evaluation of internal organs
such as kidney. As cleared earlier, renal involvement is not
homogeneous. Therefore, some regions within the kidney
can be identified as suspicious for renal involvement based
on this technique and biopsy can be done to these regions.
(3) The development of hybrid imaging methods such as
optic/ultrasound provides greater imaging depth penetration
in biological tissues and allows obtaining high resolution
3D images from internal organs [8, 146]. (4) In our knowl-
edge, depth of penetration can be considered as a common
limiting factor in almost all of high resolution mechanical
and electromagnetic based imagingmodalities. Metamaterial
lenses makes the internal organs appear closer than they
actually are. This method makes in-depth imaging possible,
while maintaining the high depth-to-resolution ratio. The
resolution of this technique in tissue imaging was three
times better than diffraction limits [147]. (5) Development of
new computer algorithms will definitely help to improve the
performances of different medical imaging modalities in the
future [148].

As cleared, despite recent significant advances in medical
imaging technologies, nonmodality has an optimal resolution
and penetration depth. Despite of continuous development,
most of the medical imaging theories are a vision of the
future and considerable effort should be dedicated to make
them true. The purpose of this paper is to introduce a
strategy to guide current and future activities to achieve this
vision. We hypothesise that one of the potential application
areas of future imaging technologies could be in assessing
kidney where imaging depth of ∼10 centimeter is sufficient to
evaluate early renal involvement. Based on these evidences, it
can be predicted that a safe high-resolution depth imaging
modalities can potentially be employed for the monitor-
ing and diagnosing of early renal involvement [110]. This
technology will decrease the need for renal biopsy and as
a result can remove any side effects of the conventional
renal biopsy and enabling overcoming the limitation of the
conventional methods. Achieving this target will involve
several phases and may require new procedures. However,
any improvement in this area will benefit the performances
of the conventional medical imaging modalities. The first
benefit of this new nonionization modality will be the
medium-resolution high depth capability to determine the
exact position of the biopsy needle in relation to the renal
position, allowing for minimization of the number of biopsy
passes and consequently reducing the recovery period.More-
over, high-resolution medium depth modality will allow
complete and accurate investigation of internal organs such
as transplant kidney, liver, and pancreas in nonobese ones.
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Ultrasound 1950 SPECT 1963 PET 1974 NIR optical tomography 1981 MPM in kidney 2001

Geiger Müller tube Gamma camera 1954 MRI 1979 Two-photon microscope 1996 In vivo serial MPM
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1895 2016NPs in medical imaging

Figure 3: Development of NPs as medical imaging contrast agents over the past decade.

Finally, a high-resolution high depth imaging modality can
make a revolution in renal disease study. Advanced imaging
techniques are just one of the several methods that can be
used for early diagnosis of kidney involvement. It has been
claimed that accurate analysis of salivary urea can be used
as a proper tool in diagnosing of chronic kidney disease
[149]. In addition, development of different imaging contrast
agents improved the diagnosis accuracy of medical imaging
techniques [15]. It can be claimed that the key to further
developing the convectional medical imaging modalities, as
well as developing entirely new methods, lies in the use of
contrast agents. Magnetic particle imaging (MPI) is an new
modality in biomedicine that is designed to image the amount
and location of super paramagnetic nanoparticles in animals
or humans with high spatial and temporal resolution [150].
MPI’s decreased image acquisition times foster the making
of tomographic images with high spatial and temporal res-
olution. In addition, the contrast and sensitivity of MPI are
improved significantly in compared to other convectional
medical imaging modalities, such as MRI, X-ray scans, US,
CT, PET, and SPECT [15]. The timeline of development of
contrast agents as medical imaging media has been shown in
Figure 3.
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