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Ferroptosis-related genes regulating an iron- and lipid reactive oxygen species (ROS)-dependent form of programmed cell death
suggest critical roles for ferroptosis in cancers. However, the prognostic value of ferroptosis-related epigenetic features such as
DNA methylation in lung squamous cell carcinoma (LUSC) needs to be studied. Ferroptosis-related genes are collected from the
FerrDb database, and the methylation data of these related genes in LUSC methylation data downloaded from the TCGA are
retrieved. 0e DNA methylation data (362 LUSC samples) were analyzed to screen prognostic ferroptosis-related methylation
sites. After patients with complete overall survival (OS) information were randomly separated into training cohort (n = 200) and
validation cohort (n = 162), the least absolute shrinkage and selection operator (LASSO) and the Cox regression were used to
establish and validate the prognostic signature. 0e time-dependent receiver operating characteristic (ROC) and Kaplan–Meier
survival curve analyses, Harrell’s concordance index (C-index), calibration analysis, and decision curve analysis (DCA) were
performed to evaluate the risk signature and related nomogram. A series of other bioinformatics approaches such as mexpress,
cbioportal, maftools, string, metascape, TIMER, and Kaplan–Meier survival curve analysis were also used to determine the
methylation, mutation status, protein interaction network or functional enrichment, effects on immune cell infiltration, or
expression level prognosis of those signature-related genes. A total of 137 DNA methylation sites were identified as prognostic
predictors corresponding to 109 ferroptosis-related genes (FRGs). 0e methylation signature containing 31 methylation sites
proved to be superior predictive efficiency in predicting the 1-, 3-, 5-, and 10-year OS. 8 out of 28 signature-related genes were
significantly related to OS time or OS state in patients with LUSC. In addition, DUSP1, ZFN36, and ALOX5 methylation status
also correlated with pathologicalM and ALOX5 methylation correlated with pathological N. 0e prognostic prediction efficiency
of T, N, M, and the stage was inferior to that of the DNA methylation signature. LUSC patients in the high-risk group own
a significantly larger number of variants of FRGs than those in the low-risk group. In addition, negative or positive correlation
patterns were presented among the different infiltrating immune cells with risk scores or signature-related genes in patients with
LUSC. 0e expression level of 15 signature-related genes showed a significant relationship with OS of LUSC patients. A novel
prognostic nomogram survival model containing 4 factors including age, pathologic T, stage, and risk group was constructed and
validated, AndC-index, decision curve analysis (DCA), and calibration analysis demonstrated its excellent predictive perfor-
mance. 0e FRG DNA methylation data-based prognostic model acts as a powerful prognostic prediction indicator in LUSC
patients and is advantageous over the traditional model based on T, N, M, and stage.
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1. Introduction

Lung cancer is a common malignancy worldwide with high
morbidity and mortality [1]. Non-small-cell lung cancer
(NSCLC) accounts for approximately 85% of all lung cancer
patients, and LUSC accounts for 20–30% of NSCLC cases
[2, 3]. 0e 5-year OS was only 4–17%, which was associated
with late diagnosis, a high rate of postoperative recurrence,
and resistance to the multimodal intervention including
chemotherapy, radiation therapy, and targeted therapy [4].
0e median survival time of LUSC patients was approxi-
mately 30% shorter than nonsquamous NSCLC [5]. 0e
specific clinicopathologic characteristics of LUSC, such as
advanced stage at diagnosis, older age, central tumor lo-
cation, and comorbidities, contribute to the poorer prog-
nosis [6]. 0ere are limited options and benefit in the
treatment for patients with LUSC in comparison with the
successful advance of the targeted therapy in lung adeno-
carcinoma. To screen out the LUSC patients with the higher
risk for poor prognosis and then to analyze the high-risk
factors or gene-phenotype may be helpful to develop new
powerful targeted therapy for LUSC cases. However, the
traditional prognostic prediction depends mainly on the
histopathologic type and tumor/node/metastasis (TNM)
staging system and is not effective for accurately predicting
the outcomes of LUSC patients. 0erefore, it is urgent to
establish a precise prognosis predictive model to distinguish
high-risk groups of cancer-related death in LUSC.

Ferroptosis is a newly recognized type of programmed
cell death characterized by the accumulation of iron-
dependent lipid hydroperoxides [7]. Ferroptosis has been
confirmed to inhibit tumor progression and plays an im-
portant role in various human cancers including lung cancer
[8–10]. A series of strategies including FDA-approved drugs,
chemical compounds, and genes have been developed to
induce ferroptosis of cancer cells, prefiguring that targeting
ferroptosis may become a novel promising antitumor
treatment [8]. Many FRGs are expressed at an abnormal
level in tumors. However, the role of ferroptosis and FRGs
are still not fully studied in LUSC. Recently, genes identified
from FRGs were applied to construct various gene signatures
that predict the prognosis of hepatocellular carcinoma, lung
adenocarcinoma, and bladder cancer patients in the cancer
genome atlas (TCGA) cohort [11–13]. Although Diao et al.
constructed a LUSC prognostic model with 16 FRGs, the
maximum value of roc was only 0.71 for OS prediction [14].
0us, it is necessary to find a more accurate prognostic
model based on FRGs. LUSC with a poor prognosis is more
common in smokers and elderly people, which affects DNA
methylation. DNA methylation is an important epigenetic
change involved in the regulation of gene expression without
any changes in the basic nucleotide sequence in numerous
biological processes [15]. Abnormal DNA methylation oc-
curs in tumorigenesis, and several methylation biomarkers
have been used to predict prognosis in LUSC [16–18]. DNA
methylation-based signatures can provide an effective
prognosis and identify potential cancer treatments. At the
International Association for the Study of Lung Cancer
(IASLC) 2021 World Conference on Lung Cancer (WCLC),

we reported the preliminary result as a format of abstract,
which suggested a prognostic model based on FRGs
methylation sites had a more accurate prediction of OS. In
this study, we intend to publish detailed and further data
about our model contributing to researchers a more sys-
tematic and comprehensive understanding of our
prognostic model.

2. Materials and Methods

2.1. Data of LUSC Cases from TCGA. 0e DNA methylation
data of LUSC based on the Illumina Human Methylation 27
platform were downloaded from the TCGA database
(https://cancergenome.nih.gov/) according to the following
criteria: (i) available histological data that could determine
squamous cell carcinoma; (ii) each case had complete
prognosis information; and iii) other clinical information
needed was available. A total of 362 LUSC cases with
complete OS information, RNA sequencing data, and
methylation data from TCGA were selected for further
analysis. We also downloaded the raw RNA-seq data,
prognostic data, clinical features, and information about
aberrantly methylated sites. 0e 258 genes related to fer-
roptosis, including drivers, suppressors, and markers, were
collected from the FerrDb database (https://www.zhounan.
org/ferrdb/) in Legacy version [19]. 0e quality control
of the intensity data and aberrantly methylated sites of
FRGs were calculated by “ChAMP” package (https://www.
bioconductor.org/packages/release/bioc/html/ChAMP.html).
0e genomic coordinates of themethylation site of FRGs were
gained depending on GRCh38. R version 4.03 was applied to
data analysis.

2.2. Prognostic FRG Methylation Site Identification and FRG
Signature Construction. Prognostic methylation sites were
firstly screened by univariate proportional hazard analysis
for FRGsmethylation sites, with a p-value of less than 0.05 as
a significant difference cut off value based on the methyl-
ation data of 362 LUSC samples. 0en, the LUSC cases were
randomly separated into a training cohort (n = 200) and
a validation cohort (n = 162) by “caret” package. Lasso
regression was performed for the training cohort by the
“glmnet” R package to eliminate collinear or correlated
methylation sites and the qualified sites were selected based
on the minimum mean cross-validated error. In addition,
the risk score was calculated according to the following
formula (n represents the number of signature-related
methylation sites, Methi represents the methylation β
value of each gene, and βi represents the coefficient index,
respectively):

Riskscore � 
n

i�1
Methi ∗ βi( . (1)

2.3. Identification Prognostic Methylation Sites of FRGs.
0e methylation sites of FRGs were grouped into the low-
and high-risk scores by the survminer package as described
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before [20]. Kaplan–Meier survival analysis was further
established to analyze the OS difference between the
hypermethylated and hypomethylated groups of each
model-associated methylation site. Moreover, MEXPRESS
was utilized for presenting the expression, DNA methyla-
tion, and clinical parameters of those model-related genes
(https://mexpress.be) [21].

2.4. Gene Functional Enrichment Analysis and PPI Network
Analysis of Core FRGs. Metascape (https://metascape.org)
[22] was employed to gain insights into the biological
functions of 28 prognostic model-related FRGs. By filtering
with the criterion of a p value <0.01, minimum count of 3,
and an enrichment factor >1.5, the target genes of these
FRGs were selected and classified into clusters depended on
their biological functional similarities. 0e interrelation of
28 FRGs was analyzed by the Search Tool for the Retrieval of
Interacting Genes (STRING) database (https://string-db.
org) [23] to conduct the protein-protein interaction (PPI)
enrichment network with the confidence score of 0.4.

2.5. Prognosis and Mutations of Genes Involved in the FRGs
Signature. Oncoplot function in “maftools” R package was
applied to generate waterfall plots of FRGs mutation in
LUSC patients with a low- and high-risk score of FRG
methylation sites [24], respectively, which presented mu-
tation classification, mutation frequency, and single-
nucleotide variant (SNV) class frequency for LUSC sam-
ples. We also plotted the variant allele frequency (VAF)
distribution of FRGs. Kaplan–Meier (KM) survival analysis
with the log-rank test was utilized to analyze the OS dif-
ference among LUSC patients with unaltered model-related
FRGs using cBioPortal bioinformatics tools (https://www.
cbiop/ortal.org/). A univariate Cox regression analysis was
performed to compare the risk probability of FRGs mutation
between LUSC patients with a low- and high-risk score of
FRG methylation sites.

2.6. Immune Infiltration Analysis. 0e levels of infiltrating
immune cells such as T lymphocytes and natural killer(NK)
cells of LUSC were quantified by the CIBERSORT method
[25]. Finally, the Pearson correlation coefficient to analyze
the coefficient of correlation between FRGs-related prog-
nostic risk score and infiltrating immune cells was used.
0en, a heatmap was used to display these results.

2.7.ConstructionandTest of theNomogram. 0e LASSO Cox
regression analysis was used to further screen the prognostic
factors in the methylation risk score group with clinico-
pathological parameters (T, M, N, age, and stage). A no-
mogram was constructed by the “rms” R package [26] based
on the factors with p≤ 0.05 from multivariate Cox pro-
portional hazard analysis. 0e predictive and discriminative
ability of the nomogram for 1-, 3-, 5-, and 10-year OS was
weighed using ROC, Harrell’s concordance index (C-index)
via the “survival” R package, and calibration plots via
Hosmer–Lemeshow test. In addition, the nomogram was

tested by proportional hazard assumption to analyze that
whether the risk score included in our model was in-
dependent prognostic indicators. To evaluate the accuracy
and effectiveness of ourmodel, 7 prognostic models of LUSC
from published papers [17, 18, 27–31] were reviewed and
studied with a comparison. Net reclassification index (NRI)
and integrated discrimination improvement (IDI) are the
common algorithms used to assess the model in recent years
[32, 33]. 0erefore, we applied the NRI and IDI methods of
the “survIDINRI” package to compare our model with the
above model. 0e p value <0.05 was statistically significance.

2.8. Validation of the Multi-FRG Methylation Site-Related
Prognostic Signature and Nomogram. First, the Kaplan–
Meier curve with the log-rank test was performed to evaluate
the OS difference between the high-risk and low-risk groups
combined with the clinical stage. To evaluate the risk
model and the nomogram, we used “timeROC” [34],
“rmda”(https://mdbrown.github.io/rmda/), and “surv-
comp” [35] packages to conduct the ROC curve analysis, C-
index, calibration analysis, and decision curve analysis.

2.9. Statistical Analysis. 0e Kruskal–Wallis chi-squared
and independent t-test were used to compare the differ-
ence between two groups. R package “survival” was per-
formed to conduct univariate and multivariate Cox
regression analysis along with hazard ratios (HRs) and 95%
confidence intervals (CIs). 0e Pearson correlation co-
efficient was applied to analyze the coefficient of correlation
among variables. p< 0.05 or p< 0.001 was identified as
statistical significance according to specific requirements.

3. Result

3.1. Characterizing a Large Methylation Heterogeneity in
LUSC Tumor Tissues. 0e LUSC Illumina 450K DNA
methylation data of 412 samples from TCGA contain data
from 372 tumor samples and 40 paired tumor samples. 0e
chip analysis methylation pipeline (ChAMP), a Bio-
conductor R package, was used for the analysis of the
methylation data [36]. 0en, the density and multidimen-
sional scaling (MDS) of all LUSC normal and tumor or
normal and paired tumor methylation were analyzed. As
shown in Supplementary Figure 1, methylation levels of
tumor samples show more significant individual heteroge-
neity compared with normal samples in both the total
samples and paired samples (Supplementary Figures 1(a),
1(b), 1(d), and 1(e)). Sample clustering also differed between
the two groups, and normal samples have short cluster
distances (Supplementary Figures 1(c) and 1(f )). After
normalization, PCA on the methylation levels of 4365 FGR
methylation sites showed that these FGRs methylation sites
could mostly divide the samples into normal and tumor
groups (Supplementary Figures 1(g) and 1(h)).

3.2. Identification of DNA Methylation Signature of FRGs
Associated with Prognosis. Univariate Cox proportional
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hazards regression model was used to evaluate the effect of
the DNA methylation sites of FRGs on prognosis. 0e 137
DNA methylation sites were identified as prognostic pre-
dictors including 53 favorite and 84 harmful sites by uni-
variate Cox proportional hazards regression (Supplementary
Figure 2(a)). 0ese 137 prognostic predictors corresponded
to 109 FRGs. To further evaluate the prognostic value of the
OS significance-related methylation sites, LASSO Cox re-
gression analysis with 10-foldcross-validation was per-
formed. Finally, 31 methylation sites of 28 FRGs, including
cg24897291, cg11757894, cg00170343, cg06120945,
cg18287222, cg01015199, cg18245652, cg05618386,
cg17987505, cg27182551, cg13557397, cg25671164,
cg18879829, cg22341865, cg17149920, cg17197538,
cg00592510, cg15590007, cg00589914, cg20229027,
cg05834353, cg00738178, cg07051257, cg08719701,
cg23327734, cg12414653, cg03264601, cg06378498,
cg05170326, cg10356455, and cg15871766 related to OS with
nonzero coefficients were selected as a linear model can-
didate predictors (Supplementary Figures 2(b) and 2(c)).
After independent predictors were identified and their co-
efficients were determined, the risk score was developed as
the following formula: risk score � (−10.896 ∗ cg24897291 +
−19.955 ∗ cg11757894 + −22.108 ∗ cg00170343 + −1.335 ∗
cg06120945 + −2.4426 ∗ cg18287222 + 4.2699 ∗
cg01015199 + 9.9509 ∗ cg18245652 + −82.288 ∗
cg05618386 + 50.749 ∗ cg17987505 + −2.0942 ∗
cg27182551 + −3.0395 ∗ cg13557397 + 30.497 ∗
cg25671164 + −3.0011 ∗ cg18879829 + −158.35 ∗
cg22341865 + 95.053 ∗ cg17149920 + 3.1434 ∗ cg17197538
+ 2.8088 ∗ cg00592510 + −1.7002 ∗ cg15590007 + −74.871
∗ cg00589914 + −2.1974 ∗ cg20229027 + 8.2263 ∗
cg05834353 + 5.5045 ∗ cg00738178 + −15.809 ∗
cg07051257 + −1.9767 ∗ cg08719701 + −13.756 ∗
cg23327734 + 35.481 ∗ cg12414653 + −1.5625 ∗
cg03264601 + 5.7681 ∗ cg06378498 + −65.98 ∗ cg05170326
+ 24.237 ∗ cg10356455 + 0.66937 ∗ cg15871766). 0e risk
score was then used for stratifying LUSC patients into high-
risk and low-risk groups at the best separation cutoff of the
risk score, by the “Surv_cutpoint” function in “survminer”
package (Supplementary Figure 2(d)). 0ere was no dif-
ference in clinical characteristics between training and
validating set (p< 0.05) (Supplementary Table 1). 0e risk
score distribution and related OS information for those
training or validating group patients are shown in Figure 1.
As the risk score increased, the number of deaths gradually
increased and the survival time gradually decreased.0e risk
scores of patients were closely connected with the survival
rate. 63% of patients in the high-risk group died compared to
22% in the low-risk group in the total cohort (Figure 1(f)).
Heatmap of the methylation signature-related sites was
grouped by risk score as shown in Figure 1(g). Among these
31 methylation sites, there are 8 hypermethylated sites and
20 hypomethylated sites in lung squamous cell carcinoma.

0e survival analysis was performed in the training,
validating, and total cohorts to investigate the prognostic
significance of the DNA methylation signature of FRGs by
using the Kaplan–Meier method. As a result, patients in
high-risk groups presented a significantly shorter overall

survival than low-risk groups in the training cohort (HR
8.33, 95% CI 4.42–15.79, p< 0.001, Figure 2(a)). Meanwhile,
the same results were found in the validating cohort (HR
6.67, 95% CI 3.92–11.29, p< 0.001, Figure 2(b)) and the total
cohort (HR 7.24, 95% CI 4.83–10.78, p< 0.001, Figure 2(c)).
In the total cohort, the 1-, 3-, 5-, and 10- year survival rates
for the high-risk group were 74.2%, 35.0%, 17.2% and 0, and
for the low-risk group were 95.3%, 86.1%, 79.6% and 44.9%,
respectively. 0e ROC analysis was used to determine the
sensitivity and specificity for the DNAmethylation signature
of FRGs in predicting the 1-, 3-, 5-, and 10-year OS. 0e
AUC for 1-, 3-, 5-, and 10-year OS was 0.83, 0.84, 0.88, and
0.98 in the training cohort (Figure 2(d)), 0.77, 0.80, 0.87, and
0.88 in the validating cohort (Figure 2(e)), respectively, and
were all above 0.80 in the training and the total cohort
(Figure 2(f)) indicating that our FGRs-based methylation
signature had superior predictive efficiency.

3.3.Comparisonof thePrognostic PredictionEfficiency ofDNA
Methylation Signature with Clinical Predictors. 0e meth-
ylation level of 28 signature-related FRGs and the patho-
logical features of LUSC were evaluated by the MEXPRESS
website (https://mexpress.be/). Among 28 FRGs, the overall
DNA methylation status of dual-specificityphosphatase-1
(DUSP1), zinc finger protein 36(ZFP36), solute-carrier
family 2A3 (SLC2A3), high mobility group box 1
(HMGB1), signal transducer, and activator of transcription 3
(STAT3), metallothionein 3 (MT3), hypermethylated in
cancer-1 (HIC1), and arachidonate 5-lipoxygenases
(ALOX5) showed a significant relationship with overall
survival time or overall survival state in patients with LUSC
(Figure 3). Of these genes, DUSP1, ZFN36, and ALOX5
methylation status also have a significant relationship with
pathological M, and ALOX5 methylation is significantly
related to pathological N (Figures 3(a), 3(b) and 3(h)).

By the analysis of the TCGA total cohort, the high-risk
group showed a shorter survival time than low-risk groups
in the LUSC patients with the same T, N, M, and stage
(Figures 4(a)–4(d)). T, N, M, and stage have long been
recognized as prognostic predictive factors in LUSC pa-
tients. However, the prognostic prediction efficiency of these
clinicopathologic features was lower than that of the DNA
methylation signature. 0e AUC for 1-, 3-, 5-, and 10-year
OS of Twas 0.60, 0.60, 0.60, and 0.51 (Figure 4(e)) compared
to the AUC of DNA methylation signature in the total
cohort (0.80, 0.82, 0.87, and 0.94) (Figure 2(f )).

3.4. Identification of FRGs Signature Associated with
Prognosis. Survival analysis was performed in LUSC pa-
tients to investigate the prognostic significance of FRGs by
using the Kaplan–Meier method. 0e lower expression of
a transcription factor activating protein 2 gamma
(TFAP2C), multidrug resistance protein 1/MRP1 (ABCC1),
HMGB1, V-Ki-ras2 Kirsten rat sarcoma viral oncogene
homolog (KRAS), and mitogen-activated protein kinase
kinase kinase 5 (MAP3K5) and the higher expression of zinc
finger protein 36 (ZFP36), thioredoxin-interacting protein
(TXNIP), signal transducer and activator of transcription 3
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Figure 1: Continued.
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(STAT3), sequestosome 1 (SQSTM1), prominin 2 (PROM2),
BECN1, MT3, ALOX5, DUSP1, and HIC1 were significantly
correlated with poor overall survival in LUSC patients
(Figures 5(a)–5(o)). Furthermore, the forest plot was used to
show the hazard ratio (HR) for the high and low expression
groups of each signature-related FRG (Figure 5(p)).

3.5. Genomic Alterations of FRGs in CESC. 0ere were
27.84% of patients with mutations of these FRGs from
genetic alterations analysis in LUSC patients, and the
samples in the high-risk group own a significantly larger
number of variants (28.16%) than those in the low-risk
group (23.03%) (Figures 6(a) and 6(b)). 0e signature-
related genes with mutation rate amounted to 19 genes
containing RB1, SLC2A3, ABCC1, MAP3K5, ACVR1B,
ATG7, KRAS, ALOX5, UBC, PROM2, STAT3, SCP2,
BECN1, GCLC, IDH1, LPCAT3, PGD, SQSTM1, and
TFAP2C, of which RB1 was found with the highest mutation
rate in both high- and low-risk groups. 0e high-risk group
contained a higher mutation rate in RB1, STAT3, UBC,
ATG7, SCP2, KRAS, TFAP2C, and ABCC1, while a lower
mutation rate was observed in ACVR1B, SLC2A3, ABCC1,
MAP3K5, and so on. Among these mutations, the most
common type is a missense mutation (Figures 6(a) and 6(b)).
0e variant allele frequency (VAF) distribution of FRGs in
LUSC is shown in Figure 6(c). By Kaplan–Meier survival
analysis, mutations of some signature-related genes
(BECN1, DUSP1, LPCAT3, MAP3K5, PGD, SCP2,

SQSTM1, STAT3, TXNIP) can be certified to be significantly
associated with OS in LUSC patients compared with un-
altered patients (p< 0.05) (Figure 6(d)). Interestingly, the
two groups also had 21 significantly different mutation
frequencies, as shown in Figure 6(e). In addition, there are
a total of 6 FRGs with mutation rates exceeding 2%: RB1
(6.8%), SLC2A3 (2.68%), ABCC1 (2.27%), MAP3K5
(2.27%), ACVR1B (2.06%), and ATG7 (2.06%) (Figure 6(e)).
Moreover, the data of concomitant occurrence among FRGs
in NSCLC patients had no statistical significance
(Figure 6(f )).

3.6. Function Enrichment Analysis and PPI Network of FRGs.
Function enrichment analysis revealed that these 28 FRGs
enriched in biological pathways were closely related to
cancers, such as response to oxidative stress, apoptotic
signaling pathway, cellular responses to external stimuli,
regulation of cellular response to stress, autophagy-animal,
ferroptosis, reactive oxygen species metabolic process, and
response to oxygen levels (Figure 7(a)). Based on the
STRING database, the PPI network of the 28 FRGs indicated
that BECN1, ATG7, SQSTM1, HMGB1, and KRAS were the
core genes of these FRGs (Figure 7(b)). To better understand
the direct role relationship of these genes, we searched
through the STRING database to find the direct interaction
genes for TFAP2, MT3, ALOX5, SCD, LPCAT3, CISD1, and
PROM2 that have no or a less direct relationship with other
signature-related genes; the correlation between these FRGs

cg27182551
cg20229027
cg13557397
cg05834353
cg24897291
cg23327734
cg18287222
cg08719701
cg03264601
cg06378498
cg01015199
cg17197538
cg00738178
cg00170343
cg07051257
cg11757894
cg00589914
cg12414653
cg17987505
cg17149920
cg05618386
cg22341865
cg05170326
cg18245652
cg25671164
cg10356455
cg18879829
cg00592510
cg06120945
cg15590007
cg15871766

Matrix

0
0.5
1

−10

−5

0

5

(g)

Figure 1:0e prognostic risk score correlates OS for TCGA LUSC patients. (a)–(c)0e risk score distribution was sorted from the largest to
the smallest of the low-risk group and high-risk group in the training or validating or total group. Blue dots indicate the low-risk group and
red dots indicate the high-risk group. (d)–(f ) With increasing in the risk score, the number of dead patients increased in the training or
validating or total cohort. 0e percentage of alive (red) and dead (blue) is marked at the top right. (g) 0e heatmap of 31 risk signature-
related methylation sites’ methylation level.
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and their interactive genes in LUSC is presented in
Figure 7(c).

3.7. Immune Infiltration Analysis of FRGs. In addition,
negative or positive correlation patterns were presented
among the different infiltrating immune cells with risk
scores or signature-related genes in patients with LUSC
(Figure 8). FRGs-related risk score positively correlated with
the proportions of B-cell plasma, resting NK cells, and ac-
tivated myeloid dendritic cells, inversely correlated with
resting CD4+T-cell memory, CD8+Tcells, activated NK cells,
and macrophages (Figure 8(a)). All these FRGs also showed
a significant relationship with some immune infiltration
types (Figure 8(b)). Among these significant immune in-
fluence genes, ALOX5, SLC2A3, DUSP1, and HIC1 showed
the most positive correlations, while HMGB1, SQSTM1,
GOT1, PGD, KRAS, GCLC, SCD, and ABCC1 showed the
most negative correlations. 0e top 6 significant correlations
are shown in (Figures 8(c)–8(h)).

3.8. Development andValidation of the Prognostic Nomogram
Survival Model. We constructed the prognosis model

containing 31 sites (cg24897291, cg11757894, cg00170343,
cg06120945, cg18287222, cg01015199, cg18245652,
cg05618386, cg17987505, cg27182551, cg13557397,
cg25671164, cg18879829, cg22341865, cg17149920,
cg17197538, cg00592510, cg15590007, cg00589914,
cg20229027, cg05834353, cg00738178, cg07051257,
cg08719701, cg23327734, cg12414653, cg03264601,
cg06378498, cg05170326, cg10356455, and cg15871766). By
Multivariate Cox regression analysis, DNA methylation
sites-related risk score was an independent risk factor for the
prognosis of LUSC patients (Supplementary Figure 3(a)). A
LASSO regression analysis was established to select the
prognosis factors of OS in LUSC patients (Supplementary
Figures 3(b), 3(c)). According to the LASSO regression,
a nomogram containing 4 factors including age, pathologic
T, stage, and risk group was established for 1-, 3-,5-, and 10-
year survival probability estimates (Figure 9(g)). As shown
in Figures 9(a)–9(c), the AUC of 1-, 3-, 5-, and 10-year OS
predictions are all above 0.75 in the training, validating, and
total cohort. 0e C-index for the risk score and risk group is
all above these pathological statuses of LUSC (Figure 9(d)).
In Figure 9(f ), the calibration curves showed an optimal
accuracy between the nomogram predicted probability of 1-,
3-, 5-, and 10-year survival rates and actual data in LUSC
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Figure 2: Prognostic evaluation of FRGs signature in LUSC patients. 0e Kaplan–Meier survival curve of the high- and low-risk groups in
(a) the training cohort; (b) the validating cohort; (c) the total cohort. Time-dependent ROC analysis for predicting the 1-, 3-, 5-, and 10-year
overall survival of LUSC patients in (d) the training cohort; (e) the validating cohort; (f ) the total cohort.
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Figure 3: MEXPRESS applied to analyze the DNAmethylation level of 29 signature-related genes. 0e methylation level of the probes with
different clinicopathological features for those genes whose methylation level showed a significant relationship with overall survival time or
overall survival state in patients with LUSC is depicted: (a) DUSP1, (b) ZFP36, (c) SLC2A3, (d) HMGB1, (e) STAT3, (f ) MT3, (g) HIC1, and
(h) ALOX5.
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Figure 4: Kaplan–Meier survival analysis for OS in the high-risk and low-risk group compared with different clinical indicators of (a)
subgroups with T1, T2, T3, and T4. (b) Subgroups with N0, N1, N2, and Nx. (c) Subgroups stratified byM0, M1, andMX. (d) Subgroups are
stratified by stage I stage II, stage III, and stage IV. (e) ROC curve analysis of T, N, M, and stage according to the 1-, 3-, 5-, and 10-year
survival of the area under the AUC value in the total TCGA cohort.
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patients. Meanwhile, the DCA results showed that the no-
mogram was supreme beneficial compared with other
prognostic factors alone (Figure 9(e)). Moreover, the
comparison of FRGDNAmethylation signature with other 7

prognostic signatures of LUSC analyzed by survIDINRI
showed that our model was significantly more effective than
the 7 progonostic models of LUSC from published papers
(Supplementary Figure 4).
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Figure 5: Kaplan–Meier survival analysis showed that among these signature-related genes, the expression level of (a) ZFP36, (b) TFAP2C,
(c) TXNIP, (d) STAT3, (e) SQSTM1, (f ) PROM2, (g) BECN1, (h) MT3, (i) ABCC1, (j) ALOX5, (k) DUSP1, (l) HIC1, (m) HMGB1, (n)
KRAS, and (o) MAP3K5 showed a significant relationship with OS in LUSC patients. (p) 0e forest plot for the univariate Cox regression
analysis results for the high and low expression group of signature-related genes.
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Figure 6: Continued.
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4. Discussion

LUSC and lung adenocarcinoma (LUAD) are the two most
common histological subtypes of NSCLC [37]. Some pa-
tients with LUAD could benefit from the molecular targeted
therapy like tyrosine kinase inhibitors (TKIs) owing to the
genetic heterogeneities such as epidermal growth factor
receptor (EGFR) mutations, anaplastic lymphoma kinase
(ALK) rearrangements, ROS1 fusions, and BRAF mutations
[38]. Compared to LUAD, LUSC patients rarely has the
mutation of EGFR and ALK rearrangements and no other
effective driver genetic mutation, which postponed the
progress of targeted drugs.

It is an enormous challenge to explore effective in-
dividualized therapy for patients with LUSC. 0erefore, it is
necessary to discover powerful prognostic biomarkers,
which will contribute to developing novel and efficient
therapeutic targets for LUSC. Ferroptosis is one form of
regulated cell death (RCD) characterized by iron accumu-
lation and lipid peroxidation and plays a significant role in
cancer progression and treatment [7, 39]. 0e various FRGs
signatures have been identified as predictive prognosis
models in many cancers, such as glioma, breast cancer, lung
adenocarcinoma, renal cell carcinoma, and hepatocellular
carcinoma [11, 40–43]. In the latest research report,
a prognostic model was constructed for NSCLC patients
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Figure 6: Mutation data analysis of signature-related genes in LUSC.Waterfall plots mutation results that show frequently mutated genes in
the high-risk group (a) and the low-risk group (b). (c)0e variant allele frequency (VAF) distribution of FRGs in LUSC by plotVaf function
in “maftools” package. Each dot in the boxplot represents a variant. 0e total number of variants is listed on the top of each box. (d)
Kaplan–Meier survival analysis showed mutations of some signature-related genes (BECN1, DUSP1, LPCAT3, MAP3K5, PGD, SCP2,
SQSTM1, STAT3, and TXNIP) can be certified to be significantly associated with OS in LUSC patients compared with unaltered patients
(p< 0.05). (e) 0e high-risk and low-risk group had 21 significantly different mutation frequencies. (f ) Mutation type and domain of FRGs
with a mutation rate exceeding 2%.
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Figure 7: Function enrichment analysis and PPI network of FRGs. (a) GO and KEGG functional enrichment analysis by metascape revealed
the biological processes and molecular functions for the 28 signature-related genes. (b) 0e PPI networks of 28 FRGs in LUSC. (c) 0rough
the string database, the direct interact genes for TFAP2, MT3, ALOX5, SCD, LPCAT3, CISD1, and PROM2were added to better understand
the direct protein–protein interaction network of these signature-related genes.
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based on 21 FRGs [44]. And, the pathways enriched with
differentially expressed FRGs were related significantly to
immunosuppressive status [44]. 0ere are enormous dif-
ferences in gene-phenotype, therapeutic modalities, and
prognosis between patients with LUAD and LUSC. 0ere-
fore, it is necessary to construct an exclusive prediction
model based on FRGs to forecast the prognosis of the LUSC
cohort. Although the evidence was limited, the analysis of
TCGA data for LUSC showed that TP63 amplification could
enhance the glutathione metabolism pathway involved in
ferroptosis regulation [45]. However, our analysis indicated
that the prognostic prediction efficiency of FRGs was not
satisfactory for patients with LUSC. DNA methylation, as
a major epigenetic alteration, has been implicated in the
regulation of gene expression by DNA methyl-transferase
(DNMT) [15]. In addition, the critical role of DNA meth-
ylation has been certified in cancer initiation and progres-
sion [46]. Several methylation biomarkers have been used to
predict prognosis in LUSC [16–18]. 0e prognostic pre-
diction model based on the DNA methylation site showed
better prediction efficiency in LUSC [18, 47, 48]. However,
the DNA methylation signature of FRGs has not been in-
vestigated in the prognostic prediction of LUSC. Based on
the TCGA data, our study identified the genes and DNA
methylation sites of FRGs associated with the OS in LUSC.
0e 31 methylation sites from 28 ferroptosis-related genes
were revealed to be tightly correlated with the prognosis of
LUSC patients. 0e risk prognosis model based on 31
methylation sites of FRGs was superior to the model based
on clinicopathologic features in the prediction of 1-, 3-, 5-,
and 10-year OS in LUSC. In addition, the accuracy and
efficiency of this risk prognosis model were significantly
superior to other published models [17, 18, 27–31] for LUSC
patients.

Among 28 FRGs, the overall DNA methylation status of
DUSP1, ZFP36, SLC2A3, HMGB1, STAT3, MT3, HIC1, and
ALOX5 effectively influences the OS of patients with LUSC.
DUSP1, as a protein phosphatase, abnormally expressed in

various cancers, played a key role in tumor immunotherapy,
and was associated with prognosis [49]. 0e deficit of
DUSP1 in bone marrow-derived macrophages evaluated the
production of TNF-a and IL-10 by ZFP36 phosphorylation,
which leads to the immunomodulation functions [50, 51].
High expression of SLC2A3, also known as glucose trans-
porter 3(GLUT3), portends a poor prognosis of the patients
with most cancer types including lung squamous cell car-
cinoma [52]. SLC2A3 was also implicated in the immu-
noregulatory effects [53]. Cytoplasmic HMGB1 could
mediate antitumor immunity through regulating immu-
nogenic cell activity [54]. Targeting STAT3 had been
highlighted as an effective therapeutic approach in the
regulation of tumorigenesis and immune escape [55]. MT3
was a small cysteine-rich protein that played an important
role in tumor growth and immune escape [56]. HIC1 played
as a tumor suppressor by hypermethylation mediated
function loss [57]. A leukotriene-generating enzyme ALOX5
had been identified as a novel ELF3 target gene that is
implicated in the immune response modulation [58]. In
brief, DUSP1, ZFP36, SLC2A3, HMGB1, STAT3, MT3, and
ALOX5 were all FRGs that might be involved in cancer
development and immune regulation.

Most noteworthy, ferroptosis plays an emerging role in
the regulation of antitumor immunity through influencing
immune cells, tumor microenvironment (TME), and the
crosstalk between immune cells and tumor cells [59]. Im-
mune escape is a major contributing factor to the malignant
progression of cancer, which was regulated by the distur-
bance of cell immune function (e.g., decreased immuno-
logical activated cells and immunosuppressive cells), and
overexpression of immune checkpoint genes including
programmed cell death-1 (PD-1), cytotoxic T lymphocyte
antigen 4 (CTLA-4), and lymphocyte-activation gene 3
(LAG3) in TME [60, 61]. Immune checkpoint blockade was
already widely used as the most popular anticancer im-
munotherapy for patients with the advanced driver gene
negative NSCLC and could induce tumor cell ferroptosis
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Figure 8: Immune infiltration analysis. (a) FRG-related risk score correlated with the proportions of immune cells. (b) 0e relationship
between FRGs and immune infiltration types. (c)–(h) 0e relationship between FRGs and immune influence genes.
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through the activation of CD8+T cells [62]. Interestingly,
ferroptosis might affect various immune cells resulting in the
promotion of tumor immune evasion [59]. Importantly, the
inhibition of ferroptosis in CD8+ T cells not only restored
antitumor efficacy effectively but also enhanced the anti-
tumor activity of PD-1 blockade combination [63]. NSCLC
patients with features of mutations in the immune system
may benefit from immunotherapy. Despite the success of
immune checkpoint inhibitors for LUSC, only a small
portion of patients exerts an effective immune response,
which leads to cancer suppression.

Analysis of tumor-infiltrating lymphocytes (TILs)
showed that more CD4, CD8, neutrophil, macrophages,
and dendritic cells were detected in high prognostic risk
LUSC patients compared to low prognostic risk LUSC
patients [64]. Our result also revealed that FRGs-related
risk score was significantly correlated with TILs in pa-
tients with LUSC, such as B, NK, dendritic, CD4+, CD8+
cells, and macrophages. CD4+, CD8+, and NK cells, as
cytotoxic lymphocytes (CTL), can eliminate cancer cells
resulting in the inhibition of cancer development [65]. 0e
high FRG-related risk score we constructed negatively
correlated with the proportions of CD4+, CD8+ T cells,
and NK cells in patients with LUSC, which might be
a valuable contribution to the poor prognosis of high-risk
patients.

5. Conclusion

In summary, we studied the prognostic value of ferroptosis-
related epigenetic features such as DNA methylation in
LUSC. We screened ferroptosis-related genes from the
FerrDb database and the methylation data of these related
genes in LUSC methylation data from the TCGA database.
0e FRG DNA methylation data-based prognostic model
was conducted to act as a powerful prognostic prediction
indicator in LUSC patients and is advantageous over the
traditional model based on T, N, M, and stage.
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Supplementary Table 1 and Supplementary Figures 1–4 are
found in “Supplementary Materials.” Supplementary Table 1.
0e clinical features comparation between the training set and
the validating set. Supplementary Figure 1. Characterizing
a large methylation heterogeneity in LUSC tumor tissues.
Methylation levels density and multidimensional scaling
(MDS) showed tumor samples own high heterogeneity
compared with normal samples in both the total samples and
paired samples. (a, d) 0e methylation density plot in paired
and total samples; (b, e) the MDS plots of methylation level in
paired and total samples. (c, f) Sample methylation level
clustering in paired and total LUSC samples. (g, h) 0e PCA
on the methylation levels of 4365 FGR methylation sites in
paired and total samples. Supplementary Figure 2. Identifi-
cation of DNAmethylation signature of FRGs associated with
prognosis. (a) Univariate Cox proportional hazards re-
gression identified 137 prognostic DNA methylation sites of
FRGs. (b, c) DNA methylation signature constructed by
LASSO regression related to OS with nonzero coefficients. (d)
0e cutoff point of the risk score is derived from the
“Surv_cutpoint” function in “survminer.” Supplementary
Figure 3. 0e risk group is a prognosis factor for LUSC. (a)
Multivariate Cox proportional hazards regression showed
that risk group is an independent prognosis factor. (b, c) DNA
methylation signature constructed by LASSO related to OS
with nonzero coefficients. (d) LASSO regression identified the
prognosis factors for the nomogram. Supplementary Figure 4.
Clinical benefit evaluation by NRI and NRI analysis. “sur-
vIDINRI” package was used to analysis the IDI, continuous
NRI, and median improvement of LUSC FRG signature
compared with other seven published LUSC prediction sig-
natures. Empirical distribution function of the change in
estimated risk score for T0 ≤ t0 (thick solid line) and T0 > t0
(thin solid line). 0e difference between areas under two
curves is IDI and corresponding (1-alpha/2) confidence in-
terval. 0e distance between two black dots is continuous
-NRI and corresponding (1-alpha/2) confidence.0e distance
between two gray dots is median improvement in risk score
and corresponding (1-alpha/2) confidence. (Supplementary
Materials)
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