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Abstract 
 
In sensory and mid-level regions of the brain, stimulus information is often topographically organized; 
functional responses are arranged in maps according to features such as retinal coordinates, auditory 
pitch, and object animacy or size. However, such organization is typically measured during stimulus 
input, e.g., when subjects are viewing gratings or images. Much less is known about the possible 
spatial organization of function during episodic recall of real-world events, which seems to drive higher-
order cortical regions in the default mode network, particularly in posterior midline areas. Prior studies 
have shown that when multiple people remember a common experience, event-specific activity patterns 
in the posterior medial cortex are similar across individuals. This indicates that spatially organized 
functional responses underlying episodic recall do exist. In this paper we leverage fMRI data collected 
during recall of naturalistic movies to identify a core set of neural states in the posterior medial cortex. 
These states are stimulus-locked, reactivated during recall, and have a shared spatial organization 
across brains. We show that a surprisingly small number of these states (16 states across 
hemispheres) is sufficient to achieve the same levels of reactivation in the posterior medial cortex as 
when using the standard methods of the field. Furthermore, these states are significantly related to 
actions and social-affective features of events in the movies. Together, these findings elucidate the 
properties of a spatially organized code within the posterior default mode network which appears during 
natural recollection of memories. 
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Introduction 
 
While spatial organization of functional responses according to stimulus features is a common motif 
across much of sensory and mid-level mammalian cortex, little is known about how function is spatially 
organized during episodic recall of real-world events—a task which typically engages higher-order 
cortical regions. In low-level sensory processing areas, studies using fMRI have shown the presence of 
retinotopic maps in human early visual cortex (Engel et al., 1997; Sereno et al., 1995; Wandell & 
Winawer, 2011), and analogous tonotopic maps have been observed in early auditory cortex 
(Formisano et al., 2003; Talavage et al., 2004). Further downstream in ventral temporal cortex, neural 
responses are selective to specific object categories such as faces and objects, with representational 
features such as animacy and real-world object size varying regularly across the cortical surface (for 
review, see Grill-Spector & Weiner, 2014). However, such functional organization is typically assessed 
during the presence of external stimulation, such as when subjects are viewing gratings or images or 
listening to sounds. In the default mode network (DMN; Greicius et al., 2003; Raichle, 2015), which 
occupies an apex position atop the brain’s cortical hierarchy, input from multiple sensory modalities is 
thought to be merged into more abstract, highly invariant representations (Margulies et al., 2016). DMN 
responses to naturalistic visual and auditory narrative stimuli are locked to semantic content and 
relatively insensitive to differences in input modality (Nguyen et al., 2019; Regev et al., 2013) or 
language (Honey et al., 2012). Furthermore, the DMN overlaps substantially with regions in which 
stimulus information is “reactivated” during retrieval of prior episodes (Ranganath & Ritchey, 2012; 
Rugg & Vilberg, 2013), even when no stimulus is available at the time of test. To what extent are these 
invariant, abstract, internally-driven representations in the DMN spatially organized, and how? 

A number of recent studies provide evidence that spatially organized functional responses in 
DMN areas are likely to exist. Drawing on Event Segmentation Theory (EST; Zacks et al., 2007), these 
studies model a continuous audiovisual movie as a series of discrete “events”, where “event 
boundaries” are defined by human judgments of when major perceptual or conceptual changes occur in 
the depicted scenario (e.g., moving to a new location; switching to a new topic of conversation). 
Converging results show that DMN spatial activity patterns for a given event are correlated across 
different individuals when they view a common movie stimulus (Baldassano et al., 2018; Chen et al., 
2017; Koch et al., 2020; H. Lee & Chen, 2022b; Zadbood et al., 2017); a stable spatial pattern of brain 
activity (a neural state) is thought to persist across the duration of a perceived event (Baldassano et al., 
2017; Geerligs et al., 2021) and is similar across individuals. A few studies also suggest the presence 
of spatially organized brain responses during recollection. DMN patterns were correlated across people 
as they verbally recounted their memories of a recently-viewed movie, event-by-event (Chen et al., 
2017; Zadbood et al., 2017). Another study showed that activity pattern templates, generated by 
averaging movie-viewing data across subjects, could be used to identify reinstated event-specific 
patterns for each subject during spoken recall (Masís-Obando et al., 2022). In these prior studies, 
posterior midline areas exhibited the strongest cross-subject reinstatement effects; at the same time, 
another study revealed that anterior midline DMN areas (e.g., mPFC) show relatively idiosyncratic 
activity during movie-viewing, indicated by low spatial correlations across individuals (Chang et al., 
2021). Thus, the existence of spatially organized DMN responses is supported by observations that 
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activity patterns are correlated across different individuals when they view or remember a common 
event, with stronger cross-subject consistency observed in posterior than anterior midline aspects of 
the DMN. However, it remains unknown which features of episodic memories control this spatial 
organization of their concomitant neural responses. 

For early sensory cortices, functional mapping typically relies on presenting tightly controlled 
stimuli which parametrically sweep feature space. For example, retinotopic maps in visual cortex are 
generated using expanding rings and rotating wedges, while tonotopic maps in auditory cortex are 
generated using ascending and descending tone patterns. How can we identify spatially organized 
responses in the posterior midline DMN which support the invariant representations underlying 
remembering, without knowing the relevant feature dimensions? One approach is to present a wide 
variety of complex stimuli, eliciting a wide variety of recollected content, and use data discovery 
methods to extract regularities in the resulting brain responses. Given the body of work showing that 
midline DMN neural representations are intimately linked to event and situation information (Stawarczyk 
et al., 2021), it is crucial that both the encoding stimuli and the behavior at recollection encompass such 
content as well. With these data in hand, we can then search for neural activity patterns with certain 
properties that would be expected of spatially organized functional responses relevant to episodic 
recollection.  

First, neural activity patterns should be stable across individuals, indicating a consistent physical 
organization in the brain; second, they should be linked between encoding and recall, indicating 
relevance for remembering; and third, they should occur repeatedly across the data recording session, 
as repetition enables the prediction of neural states from recurring features in the stimulus or behavior, 
while non-repeating states cannot be modeled in this way and are more difficult to distinguish from 
noise. Interestingly, inspection of group-averaged posterior medial DMN data during naturalistic movie-
viewing suggests that indeed, subject-shared activity patterns appear to repeat across events; they also 
seem to fluctuate at timescales shorter than an event (Fig. 1a-b). These observations are not mutually 
exclusive with the notion of treating events as largely stable activity patterns (Baldassano et al., 2017; 
Geerligs et al., 2021), but they do suggest that spatially-organized responses in the posterior medial 
DMN are not limited to a single state per event during movie-viewing, nor during recollection of such 
material.  
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Fig. 1 Group-averaged time-time correlation matrix during movie-viewing and neural state identification 
using k-means clustering. a We plotted a similarity matrix in which the correlation between pairs of multi-voxel 
patterns is illustrated over time, using group-averaged brain data from the left PMC during movie-viewing. Visual 
inspection indicates that subject-shared activity patterns associated with human-identified events are neither 
unique or entirely stable within an event. The yellow blobs in the off-diagonal sections of the matrix indicate that 
multi-voxel patterns are highly similar between pairs of time points (TRs) from distinct events as well as different 
movies. The data from all time points are shown in the matrix, totaling 1,907 TRs from two movie-viewing runs. b 
The similarity matrix for the right PMC is illustrated. c Individual time points from the group-average movie-viewing 
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brain data were labeled by neural states. The BOLD time series in each graph was generated by averaging the 
activity across voxels in the group-average movie-viewing data. Neural states were identified based on the 
similarity of multi-voxel patterns at individual time points using k-means clustering. Each subject’s movie-viewing 
brain data was initially normalized (i.e., z-scored) across time within each functional run and then concatenated 
across the two movie-viewing runs. Colored dots indicate the cluster (i.e., neural state) membership of movie-
viewing time points after applying k-means clustering. Gray dashed vertical lines indicate the onset of the first 
actual movie event for each movie, following its title scene. Results for k = 10 are shown for illustrative purposes 
for the left PMC data. d Neural states identified for the right PMC, with results for k = 6 shown for illustrative 
purposes. 
 

In this study, we sought to elucidate the spatial organization of posterior midline DMN 
responses during episodic memory encoding and recall. We use a data-driven approach to discover a 
core set of neural states with three key features: 1) spatially aligned across individuals; 2) associated 
with reinstatement of naturalistic event information; and 3) repeated appearance across a wide variety 
of stimuli. We focus primarily on the posterior medial cortex (PMC), a key hub of the DMN which 
evinces robust reinstatement (i.e., reactivation) effects across numerous studies (Bird et al., 2015; 
Chen et al., 2017; H. Lee et al., 2019; Oedekoven et al., 2017; Reagh & Ranganath, 2023; Stawarczyk 
et al., 2020; Zadbood et al., 2017), and which is thought to carry high-level information about complex 
events and situations (Ranganath & Ritchey, 2012; Stawarczyk et al., 2021). Analyses were performed 
on an open neuroimaging dataset (H. Lee & Chen, 2022b) collected while subjects watched 10 short 
movies with widely varying plots, affective range, and visual styles, then recalled extensive details of 
the movies aloud from memory. In order to isolate signals with a common spatial organization across 
individuals, we averaged the movie-viewing data across brains; neural states were identified in these 
shared activity patterns via k-means clustering of time points. We then specifically selected neural 
states which re-appeared during recollection: we performed a modified reinstatement analysis in which 
movie-viewing time points were replaced with neural state patterns, and compared these to individual 
subjects’ recall data event-by-event. The analysis revealed that 16 neural states were sufficient to 
achieve memory reinstatement effects in PMC comparable to those reported using the established 
methods of the field. Consistent with prior studies, individual movie events tended to be dominated by a 
single neural state, though with substantial time also spent in other states. Stimulus-based models 
showed that the neural states were associated with actions and social-affective features in the movies. 
Overall, these findings enhance our understanding of the spatially organized functional responses 
within the posterior midline DMN which code for abstract event information during naturalistic encoding 
and recall. 
 
Results 
 
We aimed to elucidate the structure of spatial response patterns underlying episodic recall of real-world 
events. Thus, we focused on the posterior medial portion of the DMN, which has been proposed to play 
a central role in representing situation models: internal mental models of entities, spatial context, 
actions and their relationships (Radvansky & Zacks, 2017; Ranganath & Ritchey, 2012). 
Representations of situation models are thought to be reactivated during recollection of real-world or 
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narrative events, a notion supported by studies showing that activity patterns in PMC are significantly 
similar between encoding and recall of such events (Bird et al., 2015; Chen et al., 2017; H. Lee & Chen, 
2022b; Masís-Obando et al., 2022; Oedekoven et al., 2017; Reagh & Ranganath, 2023). In other 
words, neural states during encoding are reinstated during remembering.  
 
DMN cortical areas, including posterior medial cortex, exhibited reactivation during spoken 
recall  
Subjects (N = 15) viewed ten audiovisual movies, then described the movie events aloud from memory 
during fMRI scanning (a publicly available dataset from Lee & Chen, 2022b). To confirm that posterior 
midline DMN areas exhibited reactivation while subjects verbally recalled the movie events, we first 
conducted a whole-brain reinstatement analysis following previously established protocols for 
naturalistic movie-viewing and recall data (e.g., Baldassano et al., 2018; Chen et al., 2017; Masís-
Obando et al., 2022; Zadbood et al., 2017, 2022). For both encoding (movie-viewing) and spoken recall 
data, events were defined according to human judgment (labels included with the fMRI dataset). Non-
movie periods were excluded, leaving 190 events (see Event segmentation in Methods for details). 
Next, time series of multi-voxel patterns were obtained for a total of 400 cortical parcels drawn from an 
atlas derived from resting-state functional connectivity patterns (Schaefer et al., 2018). Within-subject 
reinstatement (i.e., encoding-retrieval similarity) analysis was performed wherein each subject’s brain 
activity pattern for each movie and recall event (i.e., the event pattern) was computed by averaging 
multi-voxel patterns across the time points corresponding to the event, then correlations were 
calculated between matching movie and recall event patterns. To assess the significance of the 
observed reinstatement effects, we constructed a null distribution by repeatedly shuffling the labels of 
movie events and calculating the similarity between the activity patterns from the scrambled movie 
events and intact recall events for 10,000 times. A two-sided p-value for the actual reinstatement was 
then calculated from the constructed null distribution for each cortical parcel. As in prior studies (Chen 
et al., 2017; Masís-Obando et al., 2022; Zadbood et al., 2017), reactivation effects were observed 
throughout the DMN, and of particular interest for our study, in PMC (see Supplementary Fig. 1). For 
subsequent analyses, we defined the PMC ROIs as all parcels in the posterior medial portion of the 
DMN network, separately for the left and right hemispheres (see Supplementary Table 1 for ROI 
definition). 
 
Neural states were identified from movie-viewing data using a data-driven approach 
Our next goal was to identify a set of neural states during movie-viewing that would be reactivated 
during later recall, regardless of their correspondence to individual movie events. While prior work has 
modeled brain activity states during movie-viewing as persisting across the duration of each event 
(Baldassano et al., 2017), we wished to allow for neural states to be shorter than an event and to 
repeat across events. Thus, we used k-means clustering to group individual time points of the movie-
viewing brain data according to the similarity of their spatial patterns. We chose not to apply 
dimensionality reduction, such as PCA or ICA, in order to retain the original multi-voxel pattern 
information and maintain comparability to the event-averaging methods used by prior studies (Chen et 
al., 2017; H. Lee & Chen, 2022b; Zadbood et al., 2017). The movie-viewing data were first averaged 
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across all subjects to create a group-average voxel-by-time data matrix for PMC. Prior to clustering, the 
mean across the ROI was removed at every time point, so that the clusters would reflect the similarity 
of spatial patterns rather than the mean across voxels. To provide a range of clustering solutions which 
could later be compared to the recall data, k-means clustering was performed for k-values ranging from 
2 to 20, separately for each hemisphere. Fig. 1c shows the outcome of k-means clustering applied to 
the left PMC data when k-value was 10 (see Fig. 1d for the left PMC data when k = 6). Note that the 
cluster numbers (i.e., labels) initially assigned by the k-means algorithm are random across iterations. 
Therefore, we reassigned cluster labels ordered by the magnitude of the average BOLD signal within 
each cluster after k-means clustering. For example, we labeled the cluster with the highest mean BOLD 
signal as cluster number 1 (Supplementary Fig. 2).  
 
How many neural states are needed to replicate standard reinstatement effects? 
In order to determine how many neural states were needed to replicate standard reinstatement effects 
in PMC, we performed a modified version of a standard reinstatement analysis, wherein the original 
multi-voxel patterns from individual movie time points were replaced with neural state data from k-
means clustering and then compared to recall data (Fig. 2a; see Modified reinstatement analysis in 
Methods for details). Specifically, for each value of k (2 to 20), a cluster pattern was created for every k-
means-derived group of time points by averaging across all time points assigned to that cluster. For 
example, when k = 6, there were 6 different cluster patterns. Each time point in the movie data was 
replaced with the cluster pattern matching its cluster group. If time point 100 was assigned to cluster 5, 
time point 100 was replaced with cluster pattern 5 (the average of all time points identified as cluster 5). 
Importantly, no alterations were made to the recall data. The brain activity pattern for each movie and 
recall event was computed by averaging multi-voxel patterns across the time points corresponding to 
the event, and then correlations were calculated between matching movie and recall event patterns. 
Note that movie event patterns were calculated using cluster patterns obtained from group-average 
data (Fig. 2a, right), whereas recall event patterns were computed from each subject’s own spoken 
recall data. In other words, the calculation of recall event patterns remained identical between the 
standard and the modified version of the reinstatement analyses. These procedures of the modified 
reinstatement analysis were repeated 10 times (performing k-means clustering anew each iteration).  

We found that, in the left PMC, 10 neural states were sufficient to achieve 95% of the 
reinstatement value from the original (standard) analysis, based on results averaged across iterations 
(Fig. 2b). In the right PMC, 6 neural states were sufficient (Fig. 2c; see Supplementary Fig. 3 for the 
results of the early auditory and early visual cortical areas for comparison). Individual events were 
composed of multiple neural states, and individual neural states were found in multiple movies. Thus, 
despite the inherent variability in individual’s recall utterances and descriptions, memory reactivation 
was explained by a relatively small number of neural states identified at the group level. Fig. 2d shows 
the cluster patterns of 6 neural states identified in the right PMC. The results reported in the following 
sections make use of only one (of the 10) k-means clustering solutions. Supplementary Fig. 4 illustrates 
the cluster patterns identified in the left PMC when k = 10. 
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See Supplementary Fig. 5 for similar analyses in the angular gyrus. Even with 20 states in the 
left angular gyrus, 95% of the standard reinstatement effects were not reliably achieved. As in PMC, 
fewer neural states (11 states) were sufficient for the right angular gyrus. 
 

 
Fig. 2 Memory reinstatement effects achieved by PMC component neural states. a A modified version of a 
reinstatement analysis was performed. The analysis procedures are illustrated for k = 6. 6 neural states were 
identified based on the similarity of spatial patterns of activity across individual time points in the group-average 
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movie data (see Fig. 1c and Fig. 1d for the actual k-means clustering outcome). A cluster pattern, reflecting the 
typical activation pattern of each neural state, was created by averaging the activation patterns across time points 
labeled by the same neural state. Movie-viewing data were re-generated by replacing the activity patterns at each 
time point of the original movie brain data with the corresponding cluster pattern. Movie event patterns, defined as 
the spatial patterns of activity averaged across the duration of a movie event, were calculated using the newly 
generated movie-viewing data. b-c In each plot, the red dashed line illustrates 95% of the standard reinstatement 
effects observed in each region; 10.65 × 10-2 for left PMC and 10.50 × 10-2 for right PMC. Based on results 
averaged across iterations (indicated by the black bold line), we selected the minimum number of neural states 
required to achieve more than 95% of the standard reinstatement effects in the dataset for each region. As a 
result, 10 neural states were chosen for the left PMC and 6 neural states for the right PMC. The red arrow 
indicates the memory reinstatement strength value from the iteration-averaged curve for the selected number of 
neural states in each hemisphere (the achieved reinstatement strength: 10.66 × 10-2 for left PMC when k = 10 
and 11.39 × 10-2 for right PMC when k = 6). Gray shades show the results from each iteration (out of 10) of k-
means clustering. d The cluster patterns of 6 neural states identified in the right PMC are visualized on the 
cortical surface. The results from one iteration of k-means clustering are presented for visualization purposes (the 
same data shown in Fig. 1d). For visualization, the voxel values of each cluster pattern were z-scored within the 
ROI. 
 
Neural states identified during movie-viewing are also present during verbal recollection 
To determine whether the neural states identified during movie-viewing reappear during recall, we 
applied k-means clustering to each subject’s recall data, grouping time points to generate recall cluster 
patterns. We then identified labels for each subject’s recall cluster patterns that best matched the 
previously identified movie cluster patterns, based on maximizing the average diagonal of the movie-
by-recall cluster correlation matrix (see Identification of neural states: Recall in Methods for details). 
This was achieved by reordering each subject’s recall cluster patterns while keeping the movie cluster 
patterns in their original order. After the best match procedures, we obtained the group-average 
correlation matrix by averaging across individuals. We evaluated the significance of the best match 
between the recall and movie cluster patterns in the group-average matrix using a permutation test 
metric, wherein the order of recall cluster patterns was randomly selected for each subject before 
calculating a group-average correlation matrix.  

Fig. 3 illustrates the group-average correlation matrix of the best correspondence of movie and 
recall cluster patterns (the average diagonal = 0.54, the average off-diagonal = -0.06 in left PMC; the 
average diagonal = 0.56, the average off-diagonal = -0.11 in right PMC). The analysis was performed 
for k = 10 (left PMC) and k = 6 (right PMC), selected in the prior analysis (see Results: How many 
neural states are needed to replicate standard reinstatement effects?). The observed average diagonal 
in the group correlation matrix was significantly different from the null distribution (a two-sided test; the 
mean of the null distribution of the average diagonal = -1.27 × 10-4, p < .0001 in the left PMC; the mean 
of the null distribution of the average diagonal = -3.89 × 10-4, p < .0001 in the right PMC; 
Supplementary Fig. 6). The results suggest that a similar set of cluster patterns (i.e., neural states) is 
shared between the stimulus-driven (i.e., movie-viewing) and internally driven (i.e., verbal recall) 
processes.  
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Fig. 3 Correspondence of movie cluster patterns with recall cluster patterns in the left and right PMC. a In 
addition to the 10 “movie” cluster patterns identified for the left PMC, we performed k-means clustering on each 
subject’s free spoken recall data to obtain 10 “recall” cluster patterns from individuals. For each subject, we first 
identified the best correspondence matrix by reordering the labels of an individual’s recall cluster patterns to 
maximize the average diagonal of the movie-recall cluster-cluster correlation matrix in all possible cases. The 
matrix shown here illustrates the group-average of individuals’ best match matrices. b The same analysis was 
performed for the right PMC. 6 recall cluster patterns were identified for the right PMC. 
 
Separation, distribution, and duration of the neural states 
Previously, we observed that neural states repeatedly occurred across movies from k-means clustering 
with visual inspection (Fig. 1). Interestingly, the duration of neural states tended to be shorter than the 
human-defined movie events, and were distributed across different movies, as well as across different 
events within a single movie. Next, we aimed to characterize the properties of the PMC neural states 
we identified. As an overview, we observed that 1) similar spatial patterns of brain activity were evoked 
by movie scenes with different content, and 2) despite the presence of transient neural states, 
individual movie events tended to be dominated by a single PMC neural state, with different events 
dominated by different states.  

Cluster separation. To what extent were the PMC individual time point multi-voxel patterns 
similar to each other within a cluster, and different between clusters? Previously, we constructed a 
time-by-time matrix of correlations between multi-voxel patterns for every pair of time points in the 
group-average movie-viewing data (Fig. 1a-b). This similarity matrix was sorted according to the 
clusters rather than the chronological order (Fig. 4a-b). Average correlations were calculated for TRs 
within and across clusters. Individual time point multi-voxel patterns were positively correlated within 
clusters and less correlated between clusters, as expected given the k-means clustering procedure 
(within-cluster similarity averaged across clusters = .38, between-cluster similarity averaged across 
cluster pairs = -.04 in left PMC; within-cluster similarity averaged across clusters = .33, between-cluster 
similarity averaged across cluster pairs = -.05 in right PMC). Self-correlations (i.e., multi-voxel pattern 
correlations of the same TR, which should equal 1) were excluded from the calculation of average 
within-cluster similarity by considering only the upper triangle of each sorted matrix. Visual inspection 
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shows that the clusters were not completely uncorrelated, which is unsurprising given that orthogonality 
is not a requirement of k-means clustering. 

Distribution of neural states across movies. Did the time points assigned to a given cluster tend 
to correspond to a single movie, or were they distributed across movies? We calculated the number of 
TRs in each cluster that appeared across ten movies (i.e., their occurrences). For the left PMC, 8 of the 
10 neural states occurred at least once in all ten movies; for the right PMC, 6 of the 6 neural states 
occurred at least once in all ten movies. Supplementary Figs. 7-8 illustrates the occurrences of each 
neural state in each movie. 

Duration of neural states. In prior studies, individual events were modeled as having a stable, 
persistent activity pattern across the duration of the event (Baldassano et al., 2017). Thus, we 
examined to what extent this was true for the current PMC neural states. We defined a “cluster 
segment” as any consecutive series of time points assigned to the same cluster in the group-average 
movie-viewing data; “dwell time” was defined as the duration of individual cluster segments. Fig. 4c 
illustrates the distribution of dwell times in the left PMC; dwell time ranged from 1 to 18 TRs (1.5 – 27 
sec) and peaked at a duration of 1 TR. In the right PMC (Fig. 4d), dwell time ranged from 1 TR to 31 
TRs (1.5 – 46.5 sec) and peaked at 1 TR. We observed a cluster segment in the right PMC with a dwell 
time of 31 TRs at the beginning of Movie 5 (“Keith Reynolds”); this was the only cluster segment in the 
dataset that persisted longer than the movie event with the longest duration (41 sec). Thus, the dwell 
times of neural states were mostly transient, and shorter than the duration of human-labeled events, but 
occasionally were as long as movie events (mean movie event duration across the 10 movies ranged 
from 9.4 to 18.4 sec). 
 Individual movie events were mostly dominated by a single neural state. Based on prior studies 
that revealed stable multi-voxel patterns during the duration of movie events in the DMN (Baldassano et 
al., 2017; Geerligs et al., 2021), we predicted that any given individual movie event would be largely 
composed of one neural state, despite the fact that neural states were distributed across different 
movies. For each movie event, we calculated the percentage of time points assigned to each cluster, 
and then identified the dominant neural state (the one with the largest percentage, regardless of 
contiguity). For both the left and the right PMC, we found that the dominant neural state was present for 
more than half the event duration, on average, across events for the k-values selected by the preceding 
modified reinstatement analysis (56.46% for left PMC when k = 10; 66.58% for right PMC when k = 6). 
This observation is compatible with prior characterizations that stable PMC states are associated with 
individual movie events, though it suggests that each event is also composed of multiple transient 
neural states.  
 Reinstatement analysis using dominant clusters alone. Having observed a dominant neural 
state that composes movie events, we then performed another version of the modified reinstatement 
analysis, primarily using the dominant neural states for movie event patterns. For each movie event, the 
event pattern was replaced by its corresponding dominant neural state (i.e., cluster pattern), while each 
subject’s own recall event patterns remained unchanged. The analysis was performed using the 
previously selected k-values (i.e., 10 cluster patterns for left PMC and 6 cluster patterns in right PMC). 
The observed reinstatement strength was below 95% of the standard reinstatement effects (left PMC: 
8.91 × 10-2, 79.5% of its standard effects; right PMC: 9.12 × 10-2, 82.5% of its standard effects), 
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contrasting with the results in Fig. 2b-c, in which the entire set of cluster patterns was used. The results 
indicate that a dominant cluster alone was not sufficient to achieve the standard reinstatement effects. 
 

 
Fig 4. Cluster separation and the duration of neural states during movie viewing. The time-time correlation 
matrix for movie-viewing data was sorted by clusters. Yellow blobs, indicating high similarity between pairs of 
TRs, show TRs grouped into the same cluster (i.e., neural state); 1 TR = 1.5 sec. a For the left PMC, k = 10 was 
selected in the preceding modified version of the reinstatement analysis. The first yellow blob in the upper-left 
corner corresponds to cluster 1, while the blob in the bottom-right corner shows cluster 10. b Similarly, clusters 
appear along the diagonal, from the top left (cluster 1) to the bottom right (cluster 6), for the selected k-value (k = 
6) in the right PMC. We also plotted a histogram of dwell time of the neural states: c Left PMC and d Right PMC. 
 
Neural states were associated with actions and social-affective features in the movies 
Memory reactivation in cortical areas has been suggested to reflect the retrieval of information from 
past experiences (Baldassano et al., 2017; Chen et al., 2017; Johnson et al., 2009; Kuhl et al., 2011; 
Polyn et al., 2005; Xue et al., 2010). What type of information is associated with the PMC neural states 
we identified? To address this question, we performed a voxel-wise encoding model analysis (Huth et 
al., 2016; Naselaris et al., 2009) to test whether a set of neural states could be predicted from movie 
features. We constructed three models from movie features: 1) an “action” model, as research has 
shown that perceiving physical changes in actions is critical for event boundary judgments in videos of 
everyday activities (Hard et al., 2006, 2011), and the retrieval of autobiographical memories is 
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facilitated by knowledge of stereotyped sequences of actions in events (Reiser et al., 1985); 2) a 
“social-affective” model, as it has been shown that social-affective features of actions in naturalistic 
scenes are processed at relatively late stages during cortical temporal processing (Dima et al., 2022); 
and 3) a full model that includes both actions and social-affective features as predictors. Action labels 
were obtained from 309 online participants who watched the movies and generated text descriptions of 
the actions, then converted to word embedding vectors for analysis. The same participants rated social-
affective properties (sociality, valence and arousal) at each time point of the movie (see Actions and 
social-affective features in Methods). Model prediction performance was evaluated using leave-one-TR-
out cross-validation. We examined whether the spatial activation pattern predicted by a model at a 
given TR was most similar to the cluster pattern corresponding to the held-out TR. Cluster patterns 
were newly calculated in each iteration, excluding the held-out TR (see Voxel-wise encoding model 
estimation and validation in Methods for details).  

We found that all the three models predicted PMC cluster patterns above chance for the chosen 
number of neural states in the preceding modified version of the reinstatement analysis (left PMC: 
action model accuracy = .113, social-affective model accuracy = .115, full model accuracy = .112; right 
PMC: action model accuracy = 0.197, social-affective model accuracy = .218, full model accuracy 
= .212; Fig. 5). The accuracy was numerically higher for the social-affective model compared to the 
action model. Additionally, we observed that the accuracy of the full model was lower than that of either 
the social-affective model or both the social-affective and the action models. This is likely due to the 
high correlation between actions and social-affective features, as the action verbs generated by online 
participants often included actions associated with social-affective features, such as sociality (e.g., 
greet and converse), rather than being confined to physical motions (e.g., walk and throw).  
 

 
Fig. 5 Encoding model analysis results. All three models showed above-chance predictions for both 
hemispheres. a For the left PMC, the chance level was .1 (1/10), as there were 10 neural states that each model 
was required to predict from movie features for the chosen k = 10. b For the right PMC, the chance level was .167 
(1/6), when k = 6. The gray-shaded bars correspond to the different encoding models we constructed. 
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Some neural states were strongly correlated with a previously reported generalized boundary 
pattern 
Next, we investigated whether any of the PMC neural states identified in our analyses corresponded to 
a previously reported “generalized boundary pattern” seen at major context boundaries, i.e., between 
movies during both encoding and recall (H. Lee & Chen, 2022a). We examined the frequency of each 
PMC neural state during movie transition periods. Movie transition periods were defined as the 15 
seconds (10 TRs) immediately following the end of the last event in each movie. As illustrated in Fig. 6, 
we found a specific neural state that appeared predominantly during movie offset periods (cluster 6 in 
the left PMC and cluster 5 in the right PMC).  

We further examined whether the cluster patterns were most strongly correlated with a spatial 
activation pattern at movie boundaries during recall. We calculated a group-average recall boundary 
pattern by averaging recall boundary patterns across subjects. For each subject, a recall boundary 
pattern was calculated by first averaging the multi-voxel patterns during the 15 seconds (10 TRs) 
following the completion of the recall of a previous movie, and then averaging these patterns across all 
movie recall transitions. As expected, cluster pattern 6 (from the movie data) was most strongly 
correlated with the group-average recall boundary pattern in the left PMC (r = .91), whereas the 
strongest correlation between cluster pattern 5 (from the movie data) and the group-average recall 
boundary pattern was found in the right PMC (r = .95); see Supplementary Fig. 4 for the visualization of 
cluster pattern 6 in the left PMC and Fig. 2d for cluster pattern 5 in the right PMC. We additionally 
performed an analysis in which cluster patterns were calculated using each individual subject’s movie-
viewing data (using the clustering solution and cluster labels from the group data). As in the preceding 
analysis, wherein group-average movie-data were used, the strongest correlation was found for cluster 
pattern 6 in the left PMC (r = .72) and for cluster pattern 5 in the right PMC (r = .78), averaged across 
subjects. Together, these results show that two of the PMC neural states, one in each hemisphere, 
were strongly associated with movie transitions during both encoding and recall; these may reflect a 
cognitive state of mental context flushing, as proposed by prior research (H. Lee & Chen, 2022a). 

 
 

 
Fig. 6 Neural states that most frequently appeared during movie transitions in the left and right PMC. The 
figure shows the occurrences of each neural state during movie transitions. Due to the limited number of available 
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time points, the last movie in each movie-viewing run was excluded, resulting in a total of 80 TRs from eight 
movies. The cluster labels are based on one iteration of the k-means clustering outcome used for other figures in 
this paper. Across iterations, there was consistently one neural state that appeared most frequently during movie 
transition periods. For example, in the left PMC, cluster 6 appeared most frequently in three out of 10 iterations. It 
is important to note that the initial cluster labels assigned by the algorithm do not follow any organizational 
principle. Instead, we organized the labels based on the within-cluster averaged BOLD signals. a Left PMC. b 
Right PMC. 
 
Discussion 
 
In this study, we identified a core set of neural states in PMC that underlie reinstatement of naturalistic 
event memories during spoken recollection. These neural states were first derived from group-level 
movie-viewing data, capturing stimulus-locked brain signals reliably evoked by 10 different movies  
across subjects. We found that only a small number of states was needed in order to achieve the same 
level of movie-recall reinstatement effects in PMC (k = 10 in the left PMC and k = 6 in the right PMC) 
that are commonly reported in the literature. We further demonstrated that the neural states extracted 
during movie-viewing could also be identified in each individual subject’s recall data. These results 
provide evidence for the existence of a spatially organized neural code in PMC that is shared across 
individuals and evoked during recall of complex, naturalistic experiences. Additionally, we characterized 
several properties of these neural states. While individual movie events were associated with multiple 
neural states, one state tended to dominate each event, with the dominant state varying across events. 
Moreover, these neural states were predicted by actions and social-affective features in cinematic 
movies, as determined by human raters. Finally, one of the identified neural states corresponded well to 
a previously reported pattern observed at moments of major transitions between movies and during 
recall of movies (H. Lee & Chen, 2022a). In summary, these results support the idea that 
representations of remembered naturalistic events in PMC may be composed of a surprisingly small set 
of spatially consistent neural states. 

To our knowledge, this is the first study to characterize the properties of spatially organized 
neural states underlying naturalistic spoken recall. However, several prior studies have investigated 
whether brain signals evoked during naturalistic movie viewing can be characterized in a low-
dimensional space. At the whole-brain level, large-scale neural dynamics can be characterized within a 
low-dimensional latent state space, derived from patterns of activity and covariance across brain areas. 
These latent states are associated with attentional engagement during movie-viewing (Song et al., 
2023). Another study identified neural states simultaneously from resting-state and movie-viewing data, 
based on whole-brain patterns of activation across brain networks. These neural states covaried with 
physiological changes, such as heart rates and pupil dilation, and were linked to certain movie features 
(van der Meer et al., 2020). Furthermore, large-scale functional organization of the DMN includes 
specialization of subregions; for example, multi-voxel patterns in the posterior midline DMN are similar 
for events encoded in the same spatial context, while patterns in the anterior DMN are similar for 
events involving the same agent (Reagh & Ranganath, 2023). Focusing in further on the posterior 
medial aspect of the DMN, one study found that brain activation in the medial parietal cortex is 
topographically organized by information types in memory, such as how familiar subjects thought the 
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scenes in the videos were when watching a video of their own memories (Bainbridge & Baker, 2022). 
Another study, the only one to our knowledge that incorporates data from recall in the absence of 
stimuli, estimated that fewer than 20 dimensions of information were encoded in PMC event patterns 
shared across subjects during movie-viewing and recall (Chen et al., 2017), though these were not 
constrained to be spatially conserved across individuals. More work is needed to more fully understand 
the dimensionality and topography of DMN signals during recollection. 

Our results raise the possibility that distinct subnetworks within the DMN cooperatively 
contribute to the spatial and functional organization of PMC signals involved in naturalistic event 
memory encoding and retrieval. Prior work has revealed functionally distinct and spatially separate 
subnetworks within the canonical DMN by parcellating brain areas based on intrinsic functional 
connectivity. For example, studies have identified two interdigitated subnetworks, network A and 
network B, within the DMN at the individual level (Braga & Buckner, 2017). Network A, connected to the 
parahippocampal cortex, is primarily involved in episodic projections, whereas network B, linked to the 
temporoparietal junction, is strongly engaged in theory-of-mind tasks (DiNicola et al., 2020). The DMN 
has also been segmented into three interconnected subnetworks focused on cortico-hippocampal 
interactions: the posterior medial (PM), anterior temporal (AT), and medial prefrontal (MP) networks 
(Barnett et al., 2021). In an earlier framework (Ranganath & Ritchey, 2012), the PM network was 
proposed to play a crucial role in episodic tasks, such as remembering or imagining episodes (i.e., 
constructing mental models about “what is happening”; situation models). Recent work has further 
suggested heterogeneity within the PM network (Cooper et al., 2021; Ritchey & Cooper, 2020). In this 
study, we focused on the posterior midline DMN, also referred to as the PM network. Specifically, we 
explored spatially organized brain activity patterns that serve as the “basis” for event memory 
reinstatement in PMC. PMC has been suggested as a core hub within the posterior midline DMN, 
consistently showing strong memory reinstatement effects in numerous prior empirical studies using a 
constrained or a naturalistic stimulus (Bird et al., 2015; Chen et al., 2017; H. Lee et al., 2019; 
Oedekoven et al., 2017; Reagh & Ranganath, 2023; Stawarczyk et al., 2020; Zadbood et al., 2017). 
One interesting observation from our study was that some PMC neural states showed a topographically 
opposite pattern of activation (e.g., cluster 1 and cluster 6 in the right PMC) as illustrated in Fig. 2d. 
Similar results were found for the neural states identified in the left PMC, as shown in Supplementary 
Fig. 4. In our study, the defined PMC ROI encompassed anatomical locations likely corresponding to 
the two distinct subnetworks, network A and network B, within the DMN. An intriguing possibility is that 
the topographic differences observed between these neural states reflect differential contributions of 
these two subnetworks during the encoding of naturalistic events. Future work could explore whether 
the PMC neural states we identified are associated with processing biased toward either episodic 
details or the inference of movie characters' intentions, as well as the relative contributions of the two 
subnetworks to these biases. 

While the overall duration of neural states (i.e., dwell time) was generally short, we found that 
movie events were predominantly associated with a single PMC neural state, though the dominant 
state varied across events. In other words, the presence of rapidly changing PMC neural states does 
not necessarily contradict the established claim in the field that multi-voxel patterns are stable within an 
event (Baldassano et al., 2017). Prior studies have consistently demonstrated that spatial patterns of 
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activation in DMN areas are relatively stable over time within an event and transiently change at 
moments corresponding to event boundaries. This has been shown in numerous studies through the 
application of latent state-detecting computational models to movie-viewing data in a data-driven 
manner (Baldassano et al., 2017; Geerligs et al., 2021; C. S. Lee et al., 2021; Masís-Obando et al., 
2022; Sava-Segal et al., 2023), as well as by directly measuring the magnitude of voxel pattern shifts 
according to event boundary strength using a sliding window approach anchored to human-identified 
event boundaries (Y. Lee & Chen, 2024). Based on our observations, PMC appears to represent movie 
events by integrating different sets of neural states, although the underlying rules remain unknown. 
Future studies could investigate the specific computations within PMC that generate event patterns with 
this small set of neural states. 

The core PMC neural states investigated here could be intriguing in contexts beyond event 
memory. In addition to serving as building blocks for episodic representations in these high-level 
cortical areas, one interesting possibility is that they may be utilized in verbal communication between 
individuals. A clue comes from prior empirical research, which found that multi-voxel patterns in the 
DMN are similar across three groups of subjects: 1) a group watching a cinematic movie, 2) another 
group listening to audio of someone verbally recalling the movie, and 3) one subject recalling the movie 
themselves (Zadbood et al., 2017). These results suggest that DMN neural codes not only support 
construction of episodic representations from memory, they can also be transmitted to other individuals 
via language. A recent review paper proposed that the DMN can be understood as a sense-making 
brain network that integrates extrinsic (i.e., sensory input driven) and intrinsic (e.g., long-term memories 
or beliefs) information (Yeshurun et al., 2021). Given that subject-shared responses in the DMN are 
associated with behaviorally measured shared interpretations and shared meanings of experimental 
stimuli (Leong et al., 2020; Nguyen et al., 2019; Stephens et al., 2010; Yeshurun et al., 2017), the PMC 
neural states reported in this paper may support not only event memory but also verbal communication 
between individuals (see these papers discussing the intimate link between memory and 
communication; Mahr & Csibra, 2018; Mar, 2004; Schank & Abelson, 1995).  

In summary, we demonstrated that brain responses in high-level DMN areas can be effectively 
modeled as relatively low-dimensional, spatially organized activity patterns using a data-driven 
approach. Importantly, the spatial organization (i.e., neural states) we uncovered was shared across 
individuals, was sufficient for standard event memory reinstatement analyses, and was present during 
both naturalistic stimulus presentation (movie-viewing) and an internally oriented memory task in the 
absence of a stimulus. Additionally, we observed an association between the neural states and the 
information carried by the stimulus, specifically actions and social-affective features in movies. These 
findings highlight that spatially organized brain signals underlying event memory encoding and retrieval 
can be uncovered in the posterior midline DMN, despite the inherent complexity of real-world, 
naturalistic experiences. 
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Methods 
 
fMRI data source 
We analyzed a publicly available dataset (H. Lee & Chen, 2022b) in which 15 subjects (male = 5) 
watched 10 short films, then verbally recounted their memories of the movies, all during fMRI scanning. 
Informed written consent was provided by all subjects in accordance with procedures approved by the 
Princeton University Institutional Review Board.  
  
Stimuli 
The experimental stimuli consisted of 10 short audiovisual movies (on average 4.54 minutes long, 
range 2.15 – 7.75 minutes). The movies varied widely in their content, narrative structures, emotion, 
visual styles and formats. For example, three of them were cartoons, whereas others were live-action 
movies. Each movie, prepended with a 3-s to 6-s title screen, was presented only once; the movies 
were presented in two scanning runs (five movies per run, 24.9 minutes and 22.9 minutes). A 39-s 
introductory cartoon (“Let’s All Go to the Lobby”) was played at the beginning of each movie-viewing 
run.  
 
See the prior study (H. Lee & Chen, 2022b) for detailed information about stimuli and experimental 
procedures. 
 
Event segmentation 
We used timestamps provided by a prior study (H. Lee & Chen, 2022b). Movie title scenes and scenes 
from “Let’s All Go to the Lobby” were excluded, resulting in 202 events. For memory reinstatement 
analyses only, we further excluded 12 events which were recalled by fewer than five subjects, leaving a 
total of 190 events.  
 
Cortical parcellation and region of interest (ROI) definition 
We performed a whole-brain analysis using an atlas consisting 400 cortical parcels (200 parcels from 
each hemisphere) derived from the resting-state functional connectivity (17 networks; Schaefer et al., 
2018). Following the ROI definitions from prior studies (PMC and early visual cortex ROIs from Lee & 
Chen, 2022b; early auditory cortex ROI from Zuo et al., 2020), we performed the ROI analysis on the 
PMC and early sensory processing areas, specifically the early visual and auditory cortices, as control 
regions. Supplementary Table 1 lists the parcels used for the ROIs.  
 
Whole-brain within-subject “standard” reinstatement analysis 
A whole-brain reinstatement analysis was performed using each subject’s parcellated data, following 
established procedures for movie and recall data (e.g., Chen et al., 2017). Movie and recall event 
patterns were calculated for each parcel by averaging multi-voxel patterns across time for each event. 
To measure within-subject reinstatement strength, we computed a correlation between each matching 
pair of movie and recall event patterns, then averaged across event pairs and subjects, resulting in one 
group-average correlation value per parcel. To test which cortical areas were significantly involved in 
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memory reactivation, a permutation test was performed. A null distribution was constructed by shuffling 
movie event labels within each subject and recalculating the group-average correlation value 10,000 
times (Kriegeskorte et al., 2008). The group-average value was compared against the null distribution 
and FDR-corrected across parcels (q = .05, two-tailed).  
 
Identification of neural states: Movie-viewing  
Neural states in PMC were identified from group movie-viewing data using k-means clustering. We 
applied k-means clustering to all available time points, including periods corresponding to the movie 
title scenes and “Let’s All Go to the Lobby,” to identify distinct neural states. The k-means clustering 
algorithm partitioned data in an unsupervised manner into k clusters (i.e., k distinct neural states) based 
on the similarity of individual time-point multi-voxel patterns, measured as 1 - Euclidean distance. For 
example, if k = 10, the algorithm assigned each time point a cluster membership value between 1 and 
10 (inclusive). We first obtained a time series of multi-voxel patterns averaged across all subjects, in 
order to identify shared signals across individuals. The mean BOLD signal, averaged across voxels, 
was subtracted from every voxel at each time point to minimize univariate effects on clustering. 
Clustering was performed for k-values ranging from 2 to 20, with 100 random initializations of cluster 
centers for each k. For each k-value, a set of “cluster patterns” was then generated by averaging the 
spatial activation patterns across time points grouped into the same cluster, regardless of their event or 
movie correspondence. Note that the cluster numbers (labels) initially assigned by the k-means 
clustering algorithm lack any inherent organizational principle. We reorganized the clusters based on 
their within-cluster mean BOLD signal. 
 
Modified reinstatement analysis 
We performed a “modified” version of the standard reinstatement analysis, wherein movie event 
patterns were recalculated using “cluster patterns” derived from k-means clustering. For each time point 
in the group-average movie-viewing data, the original multi-voxel pattern at was replaced with the mean 
pattern of its assigned cluster (i.e., the cluster pattern). For example, if a time point was assigned to 
cluster 4 by the k-means clustering algorithm, the activity pattern at that time point was replaced with 
the mean pattern of cluster 4. A correlation matrix was then constructed for each subject by computing 
the correlation between a pair of recalculated movie event patterns and recall event patterns. These 
subject-level matrices were averaged to generate a group-average correlation matrix. In the group 
matrix, reinstatement strength was quantified as the average correlation of matching movie and recall 
event pairs (i.e., the diagonal of the matrix). This procedure was repeated for k-values ranging from 2 to 
20, with k-means clustering performed anew for each of 10 iterations. The average correlation of 
matching event pairs for each k-value was averaged across 10 iterations. This value was then 
compared to 95% of the reinstatement strength from the original group matrix (i.e., “standard” 
reinstatement effects). The original group matrix was derived by computing each subject’s movie-recall 
event correlations using the original group-average movie-viewing data. This analysis was conducted 
separately for the left and right PMC, early auditory cortex, and early visual cortex ROIs. 
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Identification of neural states: Recall 
We performed k-means clustering on each individual’s recall data and compared the resulting recall 
cluster patterns to the cluster patterns obtained from the group-average movie-viewing data. For four 
subjects who recalled the movie scenes across two scanning runs, the data were concatenated across 
runs prior to analysis. Similar to the procedures previously used for identifying neural states during 
movie-viewing, the BOLD signal, averaged across voxels, was removed at each time point before 
clustering. For each subject, we aimed to identify the recall cluster labels that best matched the labels 
of movie cluster patterns derived from the group-average movie-viewing data. Recall cluster labels for 
each subject were reordered to maximize the average diagonal value of that subject’s movie cluster-by-
recall cluster correlation matrix, while preserving the original order of movie clusters. Subsequently, the 
average diagonal value was calculated from a group-level matrix, created by averaging across 
individuals’ matrices. Statistical significance for this value was tested using a permutation test, in which 
the recall cluster order for each subject was randomly shuffled before generating a new group-average 
matrix. Note that the shuffling was performed after determining the recall cluster order that best 
matched the movie clusters. These procedures were repeated 10,000 times, constructing a null 
distribution for the average diagonal value of a group-average matrix from these permutations.  
  
Actions and social-affective features in movies 
Stimuli and Procedures. 314 online participants recruited from Prolific identified actions in a given 3-s 
movie clip, and rated its social-affective properties. To create the clips, 3-second segments were 
extracted from the original movies at every 1.5 seconds (1 TR), resulting in a total of 1,848 video clips 
without audio. The clips were then divided into 77 subsets, each containing 24 different clips that were 
randomly selected from the pool of 1,848 clips. During the online task, each participant was randomly 
assigned one subset. Within the subset, the clips were presented in a randomized order. Participants 
were allowed to play a clip as many times as they wished. 

Action labeling. For each clip, participants were asked to judge whether any character was 
present, including non-human animated characters or body parts, such as a hand or foot. This question 
was used (after data collection) to exclude participants who were not attending sufficiently. Next, 
participants were asked to list up to three actions that they observed in the clip (e.g., “walking”, “observi 
ng”, “searching”). 

Social-affective feature labeling. We chose three social-affective features (sociality, valence, 
and arousal) based on prior findings that these features of everyday actions observed in naturalistic 
videos are critical for explaining the behavior-based dissimilarity structure of actions. Additionally, 
social-affective features are known to be processed at later stages during cortical information 
processing (Dima et al., 2022). Participants provided social-affective ratings on a five-point scale in 
response to the following questions: “How social are the events in the video? (sociality; 1: not at all, 5: 
very social),” “How pleasant are the events in the video? (valence; 1: very unpleasant, 5: very 
pleasant),” “How intense are the events in the video? (arousal; 1: very calm, 5: very intense).” The 
order of the rating questions was randomized across participants.  

Data cleaning. We excluded data from six participants whose accuracy on the question about 
the presence of a character was lower than 90%, retaining data from 308 participants. For the action 
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label data, we excluded responses that identified an object (e.g., “camera”, “books”), a place (e.g., 
“office”), or characters (e.g., “a panel of contestants”, “lady in the car”) instead of an action. Additionally, 
we removed responses reflecting participants’ subjective judgments of the clip (e.g., “uniformity”, 
“stillness”, “kindness”) or emotions (e.g., “happy”, “looking concerned”). Adjectives describing specific 
facial expressions were excluded, while action verbs entailing facial expressions were retained. For 
example, the label “smile” was considered a valid action verb (e.g., people smile when they are happy), 
whereas the label “happy” was removed. When possible, we converted noun-based responses into 
action verbs; for instance, “discussion” was converted to “discuss.” 

In the valence data, one participant assigned the value 3 (neutral) to all of the given 24 clips. 
Since no other problems were apparent in that participant’s responses to other questions, we excluded 
only the valence ratings for that participant.  
 
Voxel-wise encoding model estimation and validation 
Three encoding models based on multiple linear regression were constructed: 1) an “action” model, 2) 
a “social-affective” model, and 3) a full model. During model estimation, each model was trained to 
predict PMC neural states (i.e., cluster patterns derived from group-average movie-viewing data) using 
actions, social-affective features, or both, separately for each hemisphere. For the “action” model, 
predictors were 50-dimensional GloVe word embedding vectors (Pennington et al., 2014) derived from 
action labels collected from online participants. For each time point (TR), embedding vectors of all 
action labels provided by participants for the two consecutive clips were averaged. Each time point was 
covered by two consecutive clips, as 3-s clips were generated every 1.5 s (1 TR) with a 1.5-s overlap 
between consecutive clips during the data collection of actions and social-affective ratings. Repeated 
labels were included when generating a single embedding vector for actions at each time point. For 
example, if two participants provided the label “walking,” the embedding vectors for both instances were 
included in the average, giving greater weight to actions reported by more participants. For the “social-
affective” model, predictors were ratings of sociality, valence, and arousal. These ratings were z-scored 
within each participant and then averaged across participants who watched the clips corresponding to 
that time point. Similar to the action model, each time point was covered by two successive 3-s clips, 
resulting in a three-dimensional vector capturing the three social-affective features. 
 A leave-one-TR-out cross-validation scheme was adopted to test each model’s prediction 
performance using a total of 1,786 TRs (i.e., 1,786 iterations), after excluding periods with no action 
labels provided by any participant, including movie title scenes. Each model’s performance was 
evaluated by determining whether the predicted multi-voxel pattern for a held-out TR was most strongly 
correlated with its true cluster pattern label compared to all other possible cluster patterns, which were 
newly generated for each iteration. To avoid potential autocorrelation issues, during each iteration, data 
from 5 TRs on either side of the held-out TR was excluded from the model estimation and cluster 
pattern calculations. Cluster patterns were recalculated for each iteration, excluding the held-out TR 
and the surrounding 5 TRs. 
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Data availability 
The action labels and the social-affective ratings data will be made available upon publication. 
 
Code availability 
Analysis scripts are available upon request to the corresponding author (Y.L.). 
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Supplementary Information 
 
Supplementary Table 1. ROI definition. 

Region of interest Hemisphere Schaefer 
parcel ID 

Schaefer parcel name 

Posterior medial cortex Left 154 17Networks_LH_DefaultA_pCunPCC_1 

  155 17Networks_LH_DefaultA_pCunPCC_2 

  156 17Networks_LH_DefaultA_pCunPCC_3 

  157 17Networks_LH_DefaultA_pCunPCC_4 

  158 17Networks_LH_DefaultA_pCunPCC_5 

  159 17Networks_LH_DefaultA_pCunPCC_6 

  160 17Networks_LH_DefaultA_pCunPCC_7 

 Right 363 17Networks_RH_DefaultA_pCunPCC_1 

  364 17Networks_RH_DefaultA_pCunPCC_2 

  365 17Networks_RH_DefaultA_pCunPCC_3 

  366 17Networks_RH_DefaultA_pCunPCC_4 

  367 17Networks_RH_DefaultA_pCunPCC_5 

Early visual cortex Left 7 17Networks_LH_VisCent_Striate_1 

  18 17Networks_LH_VisPeri_StriCal_1 

  19 17Networks_LH_VisPeri_StriCal_2 

  20 17Networks_LH_VisPeri_ExStrSup_1 

 Right 207 17Networks_RH_VisCent_Striate_1 

  218 17Networks_RH_VisPeri_StriCal_1 

  219 17Networks_RH_VisPeri_StriCal_2 

Early auditory cortex Left 44 17Networks_LH_SomMotB_Aud_1 

  45 17Networks_LH_SomMotB_Aud_2 

  46 17Networks_LH_SomMotB_Ins_1 

 Right 244 17Networks_RH_SomMotB_Aud_1 

  245 17Networks_RH_SomMotB_Aud_2 

  246 17Networks_RH_SomMotB_Ins_1 
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Supplementary Figure 1 | Parcel-wise within-subject standard memory reinstatement analysis 
results. We performed an analysis in which the correlation for the matching pairs of movie and recall 
event patterns, averaged across events (i.e., reinstatement strength), was calculated for each cortical 
parcel using each subject’s own data. The surface shows the reinstatement strength averaged across 
subjects at the parcel level after FDR correction at q = .05. Statistical significance was evaluated using a 
randomization test (shuffling of movie event labels; see Whole-brain within-subject “standard” 
reinstatement analysis in Methods). Robust reinstatement strength was observed in core DMN areas, 
such as in bilateral PMC, which is a key focus of our study, and the bilateral angular gyrus. 
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Supplementary Figure 2 | Clusters organized by BOLD signal levels. The distribution of BOLD 
signals at individual time points is shown for each cluster (i.e., neural state). Since the k-means clustering 
algorithm randomly assigned cluster numbers, we reorganized the clusters (without altering membership) 
to create a numbering scheme based on the average BOLD signal within each cluster. Specifically, 
cluster 1 represents the cluster with the highest BOLD signal, while cluster k represents the cluster with 
the lowest BOLD signal. The term “BOLD signal” refers to the group BOLD signal, which is the average 
activity across voxels in the group-averaged movie-viewing voxel-by-time data matrix, used for k-means 
clustering in the prior neural state identification. a. The BOLD signal distribution of the left PMC data, with 
results for k = 10 for illustrative purposes. Each violin plot includes dots representing data from individual 
time points. b. The results for k = 6 for the right PMC data. 
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Supplementary Figure 3 | Modified reinstatement analysis results for sensory processing areas. 
In each plot, the black bold line indicates the results averaged across 10 iterations. a-b. Early auditory 
cortex. c-d. Early visual cortex. 
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Supplementary Figure 4 | Cluster patterns identified in the left PMC when k = 10. These cluster 
patterns were generated from a single iteration of k-means clustering for visualization purposes. The 
same k-means clustering solution was used to create other figures related to the left PMC data. 
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Supplementary Figure 5 | Modified reinstatement analysis results for the angular gyrus (ANG). In 
each plot, the red dashed line indicates 95% of the standard reinstatement effects for each area, while 
the black bold line indicates results averaged across 10 iterations. a In the left ANG, the reinstatement 
effects were not reliably achieved over 10 iterations, even with 20 neural states. b In the right ANG, 11 
neural states were required to observe 95% of its standard effects. Interestingly, we observed the 
lateralization: a smaller number of neural states were needed in the right hemisphere to observe the 
effects, consistently across both the right PMC and the right ANG. 
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Supplementary Figure 6 | Null distribution constructed from a permutation test. In each plot, the 
red vertical line indicates the value of the average diagonal of group-average matrix observed after the 
best match procedures. In contrast, the distribution of permuted data is centered around zero. a Left 
PMC. b Right PMC. 
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Supplementary Figure 7 | Cluster occurrences in each movie for the left PMC when k = 10. Each 
bar shows the number of time points (TRs) corresponding to each cluster. Time points from the title 
scene periods were excluded when calculating neural state occurrences. 
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Supplementary Figure 8 | Cluster occurrences in each movie for the right PMC when k = 6. Each 
bar shows the number of time points (TRs) corresponding to each cluster. Time points from the title 
scene periods were excluded when calculating neural state occurrences. 
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