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ABSTRACT I have purified a high molecular weight actin filament gelation protein (GP-260) 
from Acanthamoeba castellanii, and found by immunological cross-reactivity that it is related 
to vertebrate spectrins, but not to two other high molecular weight actin-binding proteins, 
filamin or the microtubule-associated protein, MAP-2. GP-260 was purified by chromatography 
on DEAE-cellulose, selective precipitation with actin and myosin-II, chromatography on 
hydroxylapatite in 0.6 M KI, and selective precipitation at low ionic strength. The yield was 
1-2 #g/g cells. GP-260 had the same electrophoretic mobility in SDS as the 260,000-mol-wt 
alpha-chain of spectrin from pig erythrocytes and brain. Electron micrographs of GP-260 
shadowed on mica showed slender rod-shaped particles 80-110 nm long. GP-260 raised the 
low shear apparent viscosity of solutions of Acanthamoeba actin filaments and, at 100/~g/ml, 
formed a gel with a 8/~M actin. Purified antibodies to GP-260 reacted with both 260,000- and 
240,000-mol-wt polypeptides in samples of whole ameba proteins separated by gel electro- 
phoresis in SDS, but only the 260,000-mol-wt polypeptide was extracted from the cell with 
0.34 M sucrose and purified in this study. These antibodies to GP-260 also reacted with 
purified spectrin from pig brain and erythrocytes, and antibodies to human erythrocyte spectrin 
bound to GP-260 and the 240,000-mol-wt polypeptide present in the whole ameba. The 
antibodies to GP-260 did not bind to chicken gizzard filamin or pig brain MAP-2, but they did 
react with high molecular weight polypeptides from man, a marsupial, a fish, a clam, a 
myxomycete, and two other amebas. Fluorescent antibody staining with purified antibodies 
to GP-260 showed that it is concentrated near the plasma membrane in the ameba. 

Like many other cells, Acanthamoeba castellanii has a high 
molecular weight protein associated with actin filament gels 
(1) and actomyosin (2), but since this protein had not been 
purified, nothing was known about its properties. In particu- 
lar, there was no information concerning its relation to other 
high molecular weight actin-binding proteins that include the 
macrophage ABP/smooth muscle filamin class (3-7), eryth- 
rocyte and other spectrins (8-15), and the microtubule-asso- 
ciated protein, MAP-2 (16-18). 

Early efforts to purify the high molecular weight protein 
from Acanthamoeba actomyosin-II failed due to smearing of 
the protein during gel permeation chromatography (2), but 
several new steps now make it possible to obtain enough 
highly purified protein, and thus establish some of its prop- 
erties. Because it forms a gel with actin filaments, it will be 

called GP-260 (gelation protein with a 260,000-mol-wt sub- 
unit polypeptide). This ameba also has a smaller gelation 
protein called GP-85 (19). Antibodies to GP-260 have been 
used to localize the protein near the plasma membrane in the 
ameba and to show that it shares some immunological deter- 
minants with vertebrate spectrins. 

The existence of a spectrin-like protein in a highly motile 
cell with a well-characterized contractile protein system (20, 
21) will expand the scope of the work possible on the spectrin 
class of proteins. A brief account of some of these findings 
was presented in March 1983 at the University of North 
Carolina Conference on Actin-Membrane Interactions (22). 

MATERIALS AND METHODS 
Materials: Dr. Susan Hagen generously made the hydroxylapatite by 
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using the method of Bernardi (23). Other materials were from the following 
sources: Sigma Chemical Co., St. Louis, MO (ATP [grade 1], imidazole [grade 
III], dithiothreitol, yeast hexokinase, Triton X- 100 and NaNa); Fischer Scientific 
Co., Pittsburgh, PA (KI, D-glucose); Whatman Chemical Separation Inc., 
Clifton, NJ (DEAE-ceUulose [DE-52]); Schleicher and Schuell, Inc., Keene, NH 
(Nitrocellulose paper); Miles Laboratories Inc., Elkhart, IN ("Pentex" bovine 
albumin solution); Schwarz/Mann, Orangeburg, NY (ultra pure ammonium 
sulfate). 

Acanthamoeba actin was purified by a modification of the method of Gordon 
et al. (24). Pig erythrocyte spectrin, pig brain spectrin, and affinity-purified 
antibodies to human erythrocyte spectrin (25) were generous gifts from Vann 
Bennett and Jonathan Davis of The Johns Hopkins Medical School. Chicken 
gizzard filamin and an immunoglobulin fraction that contained antibodies to 
gizzard filamin (26) were kind gifts of Susan Craig of The Johns Hopkins 
Medical School. Pig brain microtubule protein was supplied by Stephen Roth- 
well of The Johns Hopkins Medical School. 

Cells: A. castellanii (Neff) was grown in aerated cultures (21) with half 
of the proteose peptose in the medium replaced by Difco yeast extract. 

Preparation of actomyosin-lh Cells were harvested, washed, lysed 
by N2 cavitation, centrifuged, and the extract chromatographed on DE-52 (see 
Fig. 2) as described by Pollard et al. (2). Fractions that contained myosin-I and 
-II were identified by ATPase assay (27) and the fractions that contained 
myosin-lI plus the leading edge of the actin peak were warmed to 25"C with 2 
mM MgCl2 to polymerize the actin, followed by l U/ml of hexokinase and 50 
mM D-glucose to precipitate actomyosin-II (2). 

Biochemical Methods: Protein concentrations were estimated by 
the Bradford method (28) using actin as the standard. UV absorption was 
measured with a Cary 219 spectrophotometer. The apparent viscosity at a low 
shear rate was measured with a miniature falling ball device (29). Actin 
polymerization was measured fluorometrically with a 5% pyrene-labeled actin 
(30). Gel electrophoresis was carried out in 10% polyacrylamide gels with SDS 
(27). Polypeptides in these gels were transferred electrophoretically to nitrocel- 
lulose paper in Tris-glycine buffer with 0. 1% SDS and 20% methanol. The gels 
were stained with Coomassie Brilliant Blue and the nitrocellulose with 0.15% 
amido black in 45% methanol, 9% acetic acid. 

Immunological Methods: Two large white New Zealand rabbits 
were immunized by injections ofS0 tzg of purified GP-260 in complete Freund's 
adjuvant at multiple sites. After 4 wk, the rabbits were boosted by injection of 
100 t~g GP-260 in incomplete Freund's adjuvant. Immune serum was collected 
8-19 d later. Antibodies were purified from l:10 dilutions of immune serum 
in STTAB buffer (150 mM NaC1, l0 mM Tris-Cl (pH 7.8), 1 mg/ml Triton X- 
100, 15 mM NaN3, 1 mg/ml bovine serum albumin [31]) by adsorption to 
electrophoretically purified GP-260 transferred to nitrocellulose paper (a mod- 
ification of the method of Olmsted [32]). The paper was washed successively 
with (a) 4 x 5 ml of STTAB, (b) 3 x 5 ml of 150 mM NaC1, 20 mM Tris-Cl 
(pH 8), (c) 3 x 5 ml of I M KCI, 20 mM Tris-C1 (pH 8), and (d) 3 x 5 ml of 
150 mM NaCl, 20 mM Tris-Cl (pH 8). Bound antibodies were eluted with 900 
ul of l M acetic acid for 10-20 min at 4"C. The eluate was neutralized 
immediately with 100 ~1 of 2 M Tris base that contained 5 mg of bovine serum 
albumin, and then dialyzed against 150 mM NaCl, 20 mM Tris-Cl (pH 8). The 
nitrocellulose with bound GP-260 was re-used successfully several times for 
antibody purification. Solid phase antibody binding assay and antibody staining 
of polypeptides on nitrocellulose were described by Tseng et al. (33). 

Fluorescent Antibody Staining: Antibodies to GP-260 that were 
purified from nitrocellulose blots were used to stain Acanthamoeba exactly as 
described by Tseng et al. (33). 

Electron Microscopy: Purified GP-260 was dialyzed against 0.5 M 
ammonium formate, mixed with an equal part of glycerol, sprayed and dried 
in vacuo on mica, and rotary-shadowed with platinum (34). The JEOL 100 
CX electron microscope was calibrated with skeletal muscle tropomyosin 
paracrystals. 

RESULTS 

Purification of Acanthamoeba GP-260 

For most of this work, I used gel electrophoresis in SDS 
(Fig. 1) to assay for the high molecular weight polypeptides 
that co-purify with Acanthamoeba myosin-II and actin (2), 
but the solid phase antibody-binding assay is more convenient 
now that antibodies are available. This immunological  assay 
is not strictly quantitative for crude samples due to interfer- 
ence by other proteins, but when proper dilutions are made, 
it can be used to identify which chromatographic fractions 

FIGURE 1 Analysis of the polypeptide composition of crude and 
purified Acanthamoeba GP-260 by electrophoresis in 10% polyac- 
rylamide with SDS. Stained with Coomassie Brilliant Blue. (Left) The 
mobilities of molecular weight x 10 -3 standards. (Filled arrows) The 
interface of the stacking and separating gels. (Open arrows) The 
positions of the 260,000-mol-wt pig erythrocyte spectrin band and 
the 175,000-mol-wt Acanthamoeba myosin-II band. (A) DEAE pool. 
(B) Actomyosin-II precipitate. (C) Buffer G extract of the acto- 
myosin-II. (D) Myosin-enriched actomyosin-II (the material insolu- 
ble in buffer G). (E) GP-260 pool from the hydroxylapatite column. 
(E) Material soluble in 10% sucrose. (G) Purified Acanthamoeba (GP- 
260. (H) Pig erythrocyte spectrin. (I) Mixture of G and H. (J-L} 
Comparison of Acanthamoeba GP-260 (J) with pig brain (K) and pig 
erythrocyte (L) spectrin on a 5% polyacrylamide gel. 

contain GP-260 (Figs. 2 and 3). 
GP-260 is purified from ~600  g of  cells by chromatography 

on DEAE (Fig. 2) and hydroxylapatite (Fig. 3) and two 
selective precipitation steps (Fig. 1). An additional fractional 
precipitation with ammonium sulfate is necessary for some 
preparations. The polypeptide composit ions at each step are 
shown in Fig. 1 and the yields in Table I. 

GP-260 is extracted from the cells in a sucrose buffer and 
chromatographed on DEAE-cellulose, a step that separates 
the ameba's contractile proteins into several groups. GP-260 
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FIGURE 2 Chromatography of a sucrose ex- 
tract of Acanthamoeba on a 5 × 45-cm column 
of DEAE-cellulose. Fraction size, 20 ml. (11) A29s. 
( ) KCI concentrations. (O) Solid phase an- 
t ibody binding assay for GP-260 using a 1:100 
dilution of column fractions and a 1:100 dilu- 
tion of an immune serum; units are  1251 counts 
per rain x 10 -3. 

FIGURE 3 Chromatography of a buffer G extract of actomyosin-II on a 1.5 x 7-cm column of hydroxylapatite equilibrated with 
0.6 M KI, 60 mM KPu 10 mM imidazole (pH 7.5), 1 mM dithiothreitol. The column sample was brought to approximately the 
same concentrations of KI and KPi immediately before loading. The sample was followed with -20  ml of equilibration buffer and 
then a 200-ml gradient of 60-300 mM KPi in equilibration buffer. (O) A290. ( ) KP~ concentration. (O) Solid-phase antibody 
binding assay for GP-260 using a 1:12,500 dilution of the fractions and 1:100 dilution of immune serum; units are thousands of 
1251 counts per min. The high molecular weight polypeptides are shown by SDS PAGE over the peak fractions. Actin runs near 
the dye front on these gels. 

elutes from DEAE-cellulose in a broad zone between 175 and 
275 mM KC1 that overlaps the peaks of myosin-II (175 mM), 
GP-85 (275 mM), capping protein (200 mM), and actin(200- 
300 mM) (Fig. 2). GP-260 is obtained as a by-product of 
myosin-II purification, so the fractions eluting between 160 
and 220 mM KC1 that contain myosin-II, GP-260, and the 
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leading part of the actin peak (Fig. 1, lane A) are pooled. After 
polymerization of the actin and removal of ATP with hexo- 
kinase and glucose, all of the myosin-II and much of the actin 
and GP-260 precipitate (Fig. 1, lane B) and are separated 
from the bulk (92%) of the protein by centrifugation. The 
actomyosin-II precipitate is homogenized in 50-100 ml of a 



TABLE I 

Purification of Acantharnoeba GP-260 

Step Vo lume Total prote in 

(mr) (rag) 
Cell extract 1,200 12,000 est. 
DEAE peak 630 2,520 
Actomyosin-II precipitate 57 194 
Buffer G extract 56 77 
Hydroxylapatite peak 18 4.9 
2.0-2.5 M ammonium sulfate 2 2.3 

precipitate 
Sucrose precipitate 1 2 1.1 

Protein concentrations estimated by the Bradford method (28). The starting 
material for this preparation was 600 g of cells estimated to contain 30 g total 
protein. 

low ionic strength actin depolymerizing buffer, buffer G (2 
mM imidazole-Cl [pH 7.0], 0.5 mM dithiothreitol, 0.2 mM 
ATP, 0.2 mM CaC12), to solubilize about half of the actin and 
GP-260 (Fig. 1, lane C). The fraction of GP-260 extracted 
depends on the volume of buffer G. A volume of 100 ml is a 
reasonable compromise, because larger volumes extract more 
of myosin-II, the most difficult contaminant to remove at 
later stages in the purification of GP-260. About 50% of the 
total protein is insoluble in buffer G and is enriched in 
myosin-II (Fig. 1, lane D), but also contains part of the GP- 
260 and actin. About half of the GP-260 is lost in the pellet 
at this step. This insoluble GP-260 dissolves in KI but cannot 
be recovered as a discrete peak when the solubilized, myosin- 
enriched actomyosin-II is fractionated by gel permeation 
chromatography in 0.6 M KCI (see Fig. 3 in reference 19). 

GP-260 is separated from the actin and most other proteins 
by chromatography on hydroxylapatite equilibrated with 60 
mM KPi and 0.6 M KI (Fig. 3). GP-260 (but not actin) binds 
in 60 mM KPi and is eluted by a gradient at 160-166 mM 
KE. Gel electrophoresis always reveals a single peak of GP- 
260 at this position (Fig. 3), but the antibody-binding assay 
reveals that this main peak usually has smaller leading 
or trailing shoulders of immunoreactive material (Fig. 3). 
Myosin-II elutes at about the same concentration of KP~, so 
it is difficult to purify GP-260 by this method if a sample 
containing a high concentration of myosin-II, such as the 
actomyosin, is applied to the column. A peak of material that 
also absorbs at 290 nm elutes just ahead of the peak of GP- 
260. It is not associated with any prominent polypeptides 
(Fig. 3). 

The final step in purification of GP-260 is selective precip- 
itation during dialysis against 10% sucrose, 10 mM imidazole, 
0.5 mM dithiothreitol. In two of six preparations, the protein 
did not precipitate in sucrose until it was first concentrated 
by ammonium sulfate precipitation between 2.0 and 2.5 M. 
Fortunately, all of the contaminating polypeptides are soluble 
in sucrose and can be separated from GP-260 by centrifuga- 
tion at 11,000 g for 5 min. The pellet of pure GP-260 is 
dissolved in 0.5 M KC1, 5% sucrose, 10 mM imidazole (pH 
7), 0.5 mM dithiothreitol, and I mM NAN3. 

Yield and Purity 
The yield of GP-260 from 600 g of cells varied from 250 

ug for the first preparation to 1,100 /zg for the sixth; with 
experience there was steady improvement, attributable mainly 
to the selection of the optimal volume of buffer G to extract 

protein from the actomyosin. The yield can probably be 
improved considerably by optimizing for GP-260 at each step, 
because there are major losses when the DEAE fractions are 
pooled and during the extraction of the actomyosin. The 
purity was high (Fig. l, lane G). Although not visible on gels 
stained with Coomassie Blue, the preparations contained a 
trace of myosin-II that could be identified by staining gel 
transfers with antibodies. No other major protein contami- 
nants were detected by gel electrophoresis. 

These preparations of GP-260 most likely contain nonpro- 
tein material. The UV absorbance spectrum had a maximum 
at 258 nm and the ratio of A28o to A26o was 0.56 to 0.72 in 
three preparations. The material may be a nucleic acid, but it 
has not yet been characterized or tested for association with 
GP-260. It may account for the absorbance peak on the 
hydroxylapatite column that elutes just ahead of the protein. 
It probably also accounts for why the absorbance of GP-260 
is so high at 280 n m - - u p  to a 2 A28o per mg/ml of protein in 
one preparation. 

Physical Properties 
The purified Acanthamoeba polypeptide has approximately 

the same electrophoretic mobility as the 260,000-mol-wt al- 
pha-chain of spectrin from pig erythrocytes (Fig. l, lanes H, 
I, and L) and pig brain (Fig. l, lane K). The electrophoretic 
mobility in SDS is greater than that of pig brain MAP-2 and 
less than that of chicken gizzard filamin. 

Electron micrographs of purified GP-260 rotary-shadowed 
with platinum showed rod-shaped particles 70-1 l0 nm long 
and ~4 nm wide (Fig. 4A and B). These particles appear to 
be very flexible compared with GP-85 (19) and the tail of 
myosin-II (2), two other rod-shaped actin-binding proteins 
from Acanthamoeba (Fig. 4). The size, shape, and bends of 
these particles are similar to isolated brain spectrin alpha- and 
beta-chains (35). These preparations of GP-260 also contain 
a small number of flexible rod-shaped particles with contour 
lengths between 140 and 200 nm (Fig. 4C), that could be 
end-to-end dimers of the major species. 

At a concentration of 150 ~g/ml, the purified GP-260 is 
insoluble in 5-10% sucrose with NaCl concentrations up to 
200 mM, or with 1 mM ATP, or with 30 mM Tris-Cl (pH 8). 
It is soluble in 5% sucrose with 500 mM KCI, with 500 mM 
KI, or with 25 mM ATP. Given this insolubility at low ionic 
strength, it is clear why GP-260 is extracted only partially 
from the actomyosin-II by the actin depolymerizing buffer. 

Interaction with Actin 
The purified GP-260 is an actin cross-linking protein ca- 

pable of forming a gel with purified actin filaments (Fig. 5). 
The effect on the low shear viscosity of Acanthamoeba actin 
filament solutions is identical in I mM EGTA (Fig. 5) and in 
0.1 mM CaC12 (not illustrated). The traces of myosin-II in 
these preparations are not responsible for the cross-linking of 
the actin filaments, because concentrations of purified Acan- 
thamoeba myosin-II similar to those contaminating the GP- 
260 have little or no effect on the apparent viscosity of actin 
under the conditions of this assay. At a concentration of l0 
~g/ml, GP-260 had no detectable effect on the time course of 
polymerization of 7.5 #M Acanthamoeba actin in l mM 
MgCl2, 10 mM imidazole-Cl (pH 7.5), 0.1 mM CaC12, and 
0.1 mM ATP measured by fluorescence enhancement, so it 
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FIGURE 4 Electron micrographs of Acanthamoeba GP-260 (A-C) 
compared with Acanthamoeba myosin-II and GP-85 (D). The puri- 
fied molecules in 50% glycerol) were sprayed on mica, dried in 
vacuo, and rotary-shadowed with platinum. (A and B) Individual 
GP-260 particles. (C) Possible end-to-end dimers of GP-260. (D) 
(Left) Three Acanthamoeba myosin-II molecules found as minor 
contaminants in a preparation of GP-260; (right) several purified 
Acanthamoeba GP-85 molecules prepared in the same way. (A) Bar, 
100 rim. x 116,000. (B-D) Bar, 100 nm. x 205,000. 

probably has no substantial effect on the nucleation or elon- 
gation of actin filaments. 

Immunolog ica l  Studies 

Both rabbits produced antibodies to the pur i f ied GP-260. 
When assayed by the solid-phase antibody-binding method 
with 0.2 ~g of GP-260 in each well, these sera were positive 
at more than 10 times background out to a dilution of 104. 
Purification of these antibodies by binding to and elution 
from electrophoretically purified GP-260 adsorbed to nitro- 
cellulose yielded small amounts of purified antibody at a 
concentration 100 times lower than in the original serum. 

The sera from rabbits immunized with GP-260 and purified 
Antibodies to chicken gizzard filamin do not bind to GP-260 
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FIGURE 5 LOW shear falling-ball viscometry of mixtures of Acan- 
thamoeba actin and GP-260. Conditions: 8/~M actin, 50 mM KCI, 1 
mM MgCI2, 0.1 mM CaCl2, 0. 1 mM ATP, 10 mM imidazole (pH 7), 
1 mM EGTA; 60 min incubation at 25°C. Apparent viscosities are 
averages of four measurements at an angle of 80*. A native molec- 
ular weight of 520,000 was assumed for GP-260. 

antibodies to GP-260 react strongly with polypeptides with 
molecular weights of 260,000, 240,000, and 100,000 among 
all of the polypeptides of the ameba that can be separated by 
gel electrophoresis in SDS (Fig. 6, lane B-AM). These same 
antibodies react with 260,000- and 100,000-mol-wt polypep- 
tides in the soluble extract of Acanthamoeba (Fig. 6, lane B- 
EX) and only with the 260,000-mol-wt polypeptide in samples 
of purified GP-260 (Fig. 6, lane B-GP). Pre-immune sera from 
these rabbits do not bind to any ameba peptides at the 
dilutions used for the immune sera (Fig. 6A). After a second 
boost with the purified GP-260, both rabbits also produced 
low levels of antibodies to Acanthamoeba myosin-II, the 
major contaminant in the samples; these sera were not used 
in the experiments reported here. 

The immune sera and purified antibodies from both rabbits 
also bind to the beta-chains, but not the alpha-chains, of 
purified spectrin from pig erythrocytes (Fig.6, lane B-PS) and 
pig brain (Fig.7, lane E). The reaction is much weaker with 
pig spectrins than ameba spectrin judging from the intensity 
of the autoradiograms (cf. Fig. 6, lanes B-GP and B-PS) and 
from solid-phase antibody-binding assays. For example, a 
100-fold dilution of serum from rabbit JH-20 bound 10 times 
over background to 500 ng of pig erythrocyte spectrin, while 
a 10,000-fold dilution of the same antibody bound as well to 
200 ng of GP-260. The antibodies to GP-260 do not bind to 
either chicken gizzard filamin or pig brain MAP-2, two other 
high molecular weight actin-binding proteins from verte- 
brates, at least after gel electrophoresis and transfer of the 
proteins to nitrocellulose (Fig. 6D, E). 

Purified antibodies to erythrocyte spectrin alpha- and beta- 
chains (Fig. 6, lanes C-PS and -PS') react weakly with 
260,000- and 240,000-mol-wt polypeptides in samples of 
whole amebas (Fig. 6, lane C-AM) and purified GP-260 (Fig. 
6, lane C-GP). In comparison, the reaction with the soluble 
extract of the ameba is much weaker (Fig.6, lane C-EX). 



FIGURE 6 Reaction of antisera with polypeptides separated by SDS PAGE and transferred to nitrocellulose paper. AM, whole 
Acanthamoeba. EX, 140,000 g supernatant from Acanthamoeba homogenized in 0.34 M sucrose. (The AM and EX samples were 
derived from equal numbers of cells so they can be compared directly.) GP, purified Acanthamoeba GP-260. PS, purified pig 
erythrocyte spectrin. MT, pig brain microtubule protein. F, purified chicken gizzard filamin. (D-F were loaded with about five 
times more MAP-2 and filamin than GP-260 to look for weak cross-reactivity.) A was reacted with a 1:2,000 dilution of pre- 
immune serum, B and D with a 1:2,000 dilution of immune anti-Acanthamoeba GP-260 serum, C with purified antibodies to pig 
erythrocyte spectrin,/E with purified antibodies to Acanthamoeba GP-260, and F with anti-chicken gizzard filamin immunoglobulins. 
PS' is a short exposure of lane PS to illustrate the positions of the erythrocyte spectrin alpha-chains (molecular weight, 260,000) 
and beta-chains (molecular weight, 240,000). Antibodies bound to the paper were detected by reaction with 1251-protein A, and 
autoradiography. 

or other peptides in samples of whole amebas fractionated by 
gel electrophoresis and transferred to nitrocellulose paper (Fig. 
6F). Antibodies to GP-85 do not react with high molecular 
weight polypeptides in extracts of the ameba (Tseng, P. C.- 
H., D. P. Bichell, R. C. Williams, and T. D. Pollard, manu- 
script in preparation). 

Judging from the reactions of the antibodies to GP-260, 
most of the 260,000-mol-wt polypeptide, but little of the 
240,000-mol-wt chain, is extracted into the 140,000 g super- 
natant of cells homogenized in 0.34 M sucrose (Fig. 6, lanes 
B-AM and -EX). Likewise, little of the material that reacts 
with the antibodies to erythrocyte spectrin is extracted into 
the soluble fraction (Fig. 6, lane C-AM and -EX). 

The 260,000-mol-wt chain in the crude sample is most 
likely GP-260. The 240,000-mol-wt chain could simply be an 
insoluble fragment of the 260,000-mol-wt chain, but a more 
interesting possibility is that it is another polypeptide related 
to GP-260 (see Discussion). The 100,000-mol-wt polypeptide 
is not myosin-II or a fragment of myosin-II, because the 
purified antibodies do not bind to myosin-II and antibodies 

to myosin-II do not bind to either GP-260 or the 100,000- 
mol-wt polypeptide. Instead, the 100,000-mol-wt polypeptide 
is probably a fragment of GP-260, because it has solubility 
properties similar to GP-260 and varies in amount in different 
preparations of extract (cf. Figs. 6B and 7A and M). 

Purified antibodies to GP-260 also react with high molec- 
ular weight polypeptides from a variety of cell types (Fig. 7). 
The reaction has not been quantitated, but it is strong for 
Acanthamoeba, Physarum, and Astronyxis. The reaction with 
a 260,000-mol-wt polypeptide is weaker forJaeglaria (an 
ameboflagellate), scallop membranes, PtK cells (from a mar- 
supial), fish brain, and human platelets. In the case of Dro- 
sophila larvae and several chicken striated muscles (but not 
gizzard), the major reactive species has the same electropho- 
retic mobility as the myosin heavy chain. Since these antibod- 
ies do not react with either myosin-I or myosin-II from 
Acanthamoeba or myosin in samples of platelets, HeLa 
cells,and PtK cells, it seems likely that they are binding to 
another polypeptide about the same size as myosin rather 
than myosin itself. 
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FIGURE 7 Reaction of purified anti- 
bodies to Acanthamoeba GP-260 
with the polypeptides from crude 
cell samples and purified spectrin 
from various sources. The samples 
were prepared by gel electrophoresis 
and transferred to nitrocellulose pa- 
per for reaction with antibodies and 
12Sl-protein A. Autoradiograms local- 
ize the sites of antibody binding. 
(A) Acanthamoeba extract. (B) Whole 
Astronyxis, another Hartmanellid 
ameba. (C) Whole Physarum poly- 
cephalum. (D) Whole Naeglaria grub- 
eft. (E) Purified pig brain spectrin. (F) 
Crude extract of Fundulus brain from 
Mr. Stephen Rothwell (Johns Hop- 
kins Medical School). (G) Scallop gill 
ciliary membranes from Dr. R. E. Ste- 
phens (Marine Biological Laboratory, 
Woods Hole, MA). (H) Whole PtK-1 
cells. (I) Whole human platelets. (J) 
Drosophila larvae from Dr. Peter 
Cherbas (Harvard University). (K) 
Chicken breast muscle. (L) Chicken 
gizzard. (M) Another preparation of 

Acanthamoeba extract. The exposures of the autoradiograms were varied to give strong exposures of bands in the high molecular 
weight region of the gel that are illustrated here. Left, Molecular weights x 10 -~. 

FIGURE 8 Indirect fluorescent antibody staining of Acanthamoeba with antibodies to Acanthamoeba GP-260. Each field is paired 
with a corresponding phase-contrast micrograph. (A, C, I) Purified antibody. (E) A 1:1,500 dilution of immune serum. (G) A 1:1,500 
dilution of pre-immune serum. (A-D), The same field with A and B focused at the equator of the cells, and C and D focused at 
the base of the cells. (I and J) Six cells where the bulk of the cytoplasm was ripped away during preparation, revealing with 
greater clarity than in C the pattern of staining of the cortical cytoplasm that has remained attached to the cover slip. x 2,200. 

1976 THE JOURNAL OF CELL BIOLOGY • VOLUME 99, 1984 



Localization of GP-260 in the Ameba 
Both the immune sera (Fig. 8, E and F) and the purified 

antibodies (Fig. 8, A-D, L and J) to GP-260 stain the cortical 
cytoplasm next to plasma membrane more strongly than other 
parts of Acanthamoeba. There is also less intense staining of 
the cytoplasm. The pattern of the fluorescence can be very 
complex due to convolutions of the plasma membrane, but 
the plasma membrane staining is obvious to an observer who 
can focus through the cell in the microscope. Membrane 
staining is clearest in single photographs focused at the equa- 
tor, where there is a bright fluorescent ring around the periph- 
ery of the cell (Fig. 8, A and E). 

At the base of the cell, a reticular pattern is seen in the 
plane of the membrane (Fig. 8 C). Some cells are torn away 
from their attachments to the cover slip during staining, 
offering a clear view, unobstructed by overlying cytoplasm, 
of the reticular pattern of fluorescence associated with the 
membrane (Fig. 8 I). A larger relative of Acanthamoeba called 
Astronyxis stains in the same way as Acanthamoeba (Fig. 9). 
Controls without anti-GP-260 antibody or with pre-immune 
serum (Fig. 8, G and/-/) gave only very faint general staining, 
not the distinctive pattern of plasma membrane staining. 

DISCUSSION 

The GP-260 isolated here is sufficiently pure that one may be 
confident that it is a component of the actin filament cross- 
linking system in Acanthamoeba, but the mechanism of cross- 
linking will require a fuller analysis of its physical properties. 
At high ionic strength, GP-260 is soluble and appears largely 
as single particles 100 nm long by electron microscopy. Under 
conditions where the cross-linking experiments were per- 
formed, GP-260 aggregates and even precipitates if its con- 
centration is high enough. Thus, it seems likely that multimers 
of GP-260 are present and participate in the cross-linking of 
the filaments. The electron microscopic experiments at high 
ionic strength suggest that end-to-end dimers similar to the 
ABP/filamin class of gelation proteins (36, 37, 38) might be 
one type of oligomer of GP-260. 

An important factor to be investigated in the future is 
whether the 240,000-mol-wt polypeptide in the whole cell 
that reacts with the antibodies to GP-260 might be another 
component of the native molecule and form some sort of 
laeteromer with GP-260 like the subunits of spectrins. Al- 
though not visible on stained gels of purified GP-260 (Fig. 1), 
there is a trace of a 240,000-mol-wt polypeptide in samples 
of purified GP-260, because the antibodies to erythrocyte 
spectrin react with a 240,000-mol-wt species (Fig. 6 C). Such 
heteromers might have substantially different properties than 
the bulk of the GP-260 studied here. 

Relationship of GP-260 to Other Actin-binding 
Proteins of Acanthamoeba 

An essential task in characterizing the actin filament system 
in any cell is to make a complete catalogue of the proteins 
that bind to actin and affect its polymerization or the orga- 
nization of actin filaments in the cell. Acanthamoeba has been 
a rich source of actin-binding proteins: two classes of myosin 
called myosin-I and myosin-II (reviewed in references 1 and 
2), two actin monomer-binding proteins called profilin (39) 
and actophorin (Cooper, J. A., J. D. Blum, and T. D. Pollard, 
manuscript in preparation), an actin filament capping protein 
(40) and six actin filament cross-linking proteins (Table II). 

FIGURE 9 Indirect fluorescent antibody staining of Astronyxis with 
purified antibodies to Acanthamoeba GP-260. (A) Phase-contrast 
micrograph focused at the base of the cell. (B) Corresponding 
fluorescence micrograph. (C) Another fluorescence micrograph fo- 
cused near the upper surface of the cell showing the complex 
pattern of cortical staining, x 2,200. 

While this list is undoubtedly incomplete, it is already obvious 
that the actin system in this cell is complex and not likely to 
be fully understood without characterizing a rather large 
number of proteins. 

GP-260 is the sixth actin filament cross-linking protein to 
be purified from Acanthamoeba (Table II). The others are an 
alpha-actinin-like protein called GP-85 (19) and four small 
proteins called gelactins (2, 41). It seems likely that additional 
cross-linking proteins will also be found. GP-260 is the largest 
by far and probably present in lower quantities than the 
others. 

It is remarkable that proteins that differ so much in their 
physical properties (Table II) can have similar effects in the 
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TABLE II 

Comparison of Actin Filament Cross-linking Proteins from Acanthamoeba 

Critical gel l ing conc ! 

Subunit* IzM 
Gelation protein composition Shape Yield*, ug/g (#mol/kg) (actin, uM) Reference 

Gelact in-I  1 x 23,000 Globu lar  11 (0.48) 0.30 (48) 42 
Gelact in-I I  2 x 28,000 65 (1.18) 0.45 (48) 42 
Gelactin-II I  2 x 32,000 16 (0.25) 0.11 (48) 42 

0.16 (12) 43 
Gelactin-IV 2 x 38,000 8 (0.10) 0.04 (48) 42 

0.13 (12) 43 
GP-85 2 x 90,000 3 x 50-nm rod 100 (0.56) 0.08 (12) 19 
GP-260 ! ? x 260,000 3 x 100-nm rod 2 (0.004) 0.24 (8) This report 

* Subunit molecular weights by SDS gel electrophoresis. Native molecular weights estimated by gel filtration except for GP-85, where the native molecular 
weight of 180,000 was measured by sedimentation equilibrium ultracentrifugation. 

* These yield values are all underestimates of the cellular content of these proteins. For example, the content of GP-85 estimated by antibody binding assay is 
actually 4.3 ~,mol/kg of packed cells. 

! The minimal concentration of gelation protein required to form a gel with the given concentration of actin. A tube inversion method was used in reference 
42 and falling ball viscometry was used for the other determinations. These two assays are not strictly comparable. 

i A native molecular weight of 520,000 was used for these calculations. 

assays that are commonly used to characterize proteins that 
bind to actin filaments. In the falling ball assay for the cross- 
linking of actin filaments, roughly similar molar concentra- 
tions of all of these proteins are required to form a gel (Table 
II). Likewise, all of these proteins form gels with actin fila- 
ments equally well in the presence or absence of Ca 2+, so that 
the Ca ++ sensitivity of gelation of cytoplasmic extracts from 
Acanthamoeba (29) has not yet been explained by the intrinsic 
properties of the known gelation proteins. (The apparent Ca ++ 
sensitivity of GP-85 [19] is now known to be due to an effect 
of Ca ++ on the kinetics of actin polymerization, not the cross- 
linking by GP-85 {Bichell, D. P., D. L. Rimm, P. C.-H. Tseng, 
and T. D. Pollard, manuscript in preparation].) Similarly, 
neither GP-85 nor GP-260 has a major effect on the assembly 
of actin. When polymerization is measured by viscometry, 
GP-85 appeared to accelerate polymerization (19), but this is 
not observed when the polymer concentration is measured by 
the enhancement of the fluorescence ofpyrene-actin (Bichell, 
D. P., D. L. Rimm, P. C.-H. Tseng, T. D. Pollard, manuscript 
in preparation). Thus, the effect of GP-85 is on the viscosity 
of the solution, not the kinetics of polymerization. 

Why should a cell have so many different actin filament 
cross-linking proteins? The most likely possibility is that each 
has a unique function in the cell that may be difficult or 
impossible to understand from biochemical and biophysical 
studies on the isolated proteins. For example, although both 
GP-85 and GP-260 have similar effects on actin in vitro, they 
most likely have different physiological functions because 
their distributions in the cell are so different. GP-85 is spread 
diffusely throughout the cytoplasm and is concentrated in 
limited regions of the cortex (Tseng, P. C.-H., D. P. Bichell, 
R. C. Williams, T. D. Pollard, et al., manuscript in prepara- 
tion), while GP-260 is concentrated near the plasma mem- 
brane of the ameba, much like the spectrin in erythrocytes, 
neurons, and muscle (9, 13, 42, 43). Direct tests of function 
in the living cell will be required to fully appreciate the sort 
of subtlety exemplified by the existence of multiple actin 
filament cross-linking proteins in Acanthamoeba. 

Relation of GP-260 to Other Actin- 
binding Proteins 

Judging from the cross-reactivity of the antibodies to GP- 
260 with high molecular weight polypeptides from a wide 

range of species including protozoa, a clam, an insect, a bird, 
and man, there are related proteins in many cells and species. 
This raises intriguing questions, because it is by no means 
obvious how GP-260 is related to the three well-characterized 
classes of vertebrate high molecular weight actin-binding pro- 
teins: the spectrins, ABP/filamin, and MAP-2. The immu- 
nological analysis strongly suggests that GP-260 belongs to 
the spectrin family, but some of the physical properties of 
GP-260 suggest instead that it may be in the ABP/filamin 
group. A clear decision regarding classification will have to 
await fuller characterization of GP-260, but it is instructive 
to point out why the available data are ambiguous. 

One can argue both for and against classifying GP-260 as a 
spectrin. This classification is supported by the reciprocal 
cross-reactivity of antibodies to GP-260 and vertebrate spec- 
trins, the identical electrophoretic mobility of GP-260 and 
the alpha-chains of spectrins in SDS, the indistinguishable 
size and shape of GP-260 and isolated alpha- or beta-chains 
of spectrin, and the common localization of GP-260 and 
spectrins near the plasma membrane. On the other hand, 
there are several persuasive arguments against GP-260 be- 
longing to the spectrin family. All known spectrins are com- 
posed of two distinct polypeptides that differ in their electro- 
phoretic mobility, peptide maps, and antigenic sites (11, 15, 
35, 42). Although each of these chains forms a slender mole- 
cule about 100 nm long (like GP-260), the alpha- and beta- 
chains of spectrin bind tightly enough to each other in parallel 
heterodimers (44) that denaturing agents are needed to sepa- 
rate them (35). These dimers also associate head to head to 
form tetramers ~200 nm long (44). Under the high salt 
conditions used to keep GP-260 in solution, it does not appear 
to form comparable molecular structures. Further, binding of 
spectrin to actin filaments requires both alpha- and beta- 
chains (35), and cross-linking actin filaments requires tetra- 
mers (44). Additional features that might identify a spectrin 
are binding sites for ankyrin and calmodulin (for review see 
reference 46), but these have not yet been tested with GP- 
260. 

Similarly, one can argue both for and against GP-260 
belonging to the ABP/filamin family. Like ABP and filamin 
(38), the purified GP-260 appears to consist of a single poly- 
peptide that can form a gel with actin filaments. GP-260 also 
has some tendency to associate end to end like the stable 
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dimers of ABP and filamin (36). On the other hand, the 
individual GP-260 particles are somewhat longer than ABP 
and filamin subunits (38). The absence of cross-reactivity of 
antibodies to GP-260 and filamin is evidence against relat- 
edness, but like most negative results, this absence is not 
conclusive. Likewise, ABP and filamin are typically localized 
in the cortical cytoplasm (47) or deeper in the cell (4) rather 
than being concentrated near the plasma membrane like GP- 
260. 

There is no evidence that GP-260 is related to the third 
class of vertebrate high molecular weight actin-binding pro- 
teins, MAP-2 (17, 18). The antibodies to GP-260 do not react 
with any of the polypeptides in pig brain microtuble protein 
even though they react with spectrin from the same species 
and organ. Further, antibodies to GP-260 do not stain micro- 
tubular structures in the cell. Finally, GP-260 is considerably 
smaller than the MAP-2 polypeptide. 

It is probably fair to conclude that the GP-260, as isolated, 
is not in the MAP-2 family, and that it does not fit neatly 
into either the spectrin or ABP/filamin families either. The 
immunological evidence and cellular localization persuade 
me to consider GP-260 to be a spectrin, at least as a working 
hypothesis. The main problem is the apparent absence of a 
second polypeptide to give GP-260 the structure characteristic 
of native spectrins. It could be that there are actually two 
different polypeptides present in the purified GP-260, but that 
they have the same electrophoretic mobility (like mouse brain 
spectrin chains [48]) and that they dissociate more readily at 
high ionic strength than vertebrate spectrins. Alternatively, 
the missing subunit might be the 240,000-mol-wt polypeptide 
in whole cell sample that reacts with antibodies to GP-260 
and erythrocyte spectrin. This 240,000-mol-wt peptide could 
simply be an insoluble fragment of GP-260. However, it is 
attractive to consider that the 240,000-mol-wt peptide might 
be a second Acanthamoeba spectrin chain that is firmly 
associated with the organelle fraction like the beta-chain of 
vertebrate spectrins. If this speculation is true, the association 
between GP-260 and the 240,000-mol-wt peptide must be 
considerably weaker than the association of alpha- and beta- 
chains of vertebrate spectrins, and actin binding would have 
to be a property of GP-260 rather than requiring two chains 
as in the vertebrate spectrins. Such a model does not coincide 
with our preconceptions about spectrin based on studies in 
vertebrate systems, but there is no reason to exclude some 
variability in other parts of the phylogenetic tree. 

Since this work was completed, a report has appeared on a 
high molecular weight actin-binding protein from Physarum 
(49) that differs in its properties from both GP-260 and the 
vertebrate actin-binding proteins, illustrating that other pro- 
teins may also be difficult to categorize. 
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