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Abstract The calculation of error bars for quantities of

interest in computational chemistry comes in two forms:

(1) Determining the confidence of a prediction, for instance

of the property of a molecule; (2) Assessing uncertainty in

measuring the difference between properties, for instance

between performance metrics of two or more computa-

tional approaches. While a former paper in this series

concentrated on the first of these, this second paper focuses

on comparison, i.e. how do we calculate differences in

methods in an accurate and statistically valid manner.

Described within are classical statistical approaches for

comparing widely used metrics such as enrichment, area

under the curve and Pearson’s product-moment coefficient,

as well as generic measures. These are considered of over

single and multiple sets of data and for two or more

methods that evince either independent or correlated

behavior. General issues concerning significance testing

and confidence limits from a Bayesian perspective are

discussed, along with size-of-effect aspects of evaluation.

Keywords Statistics � Computational methods �
Evaluations � Significance � Bayes � Correlation �
Error bars � Confidence intervals

Introduction

Part One of this paper [1] focused on the calculation of

error bars, or confidence limits for measured or calcu-

lated quantities. Such confidence intervals might have

intrinsic value, e.g. is a solubility or a pKa accept-

able for project X? More abstractly, a value without an

indication of uncertainty lacks important information, and

can be as misleading as it is informative. In the drug

discovery process inaccurate data can confuse rather than

guide.

Often, however, confidence limits are used to assess

relative performance or merits, e.g. is a new method better

or worse than an old one? Is the loss in accuracy of a faster

or cheaper assay acceptable compared to a slower or more

expensive approach? What is the probability a molecule’s

property is actually worse than another’s, given measure-

ment imprecision? In this case we have to assess the ac-

curacy of differences, rather than just accuracy. New

concepts are important here, in particular the role of

covariance between methods. In Part One covariance was

considered in the context of the additivity of random

effects, rather than its role in differentiating performance.

Procedures are presented for comparing metrics in com-

mon use in computational chemistry both when covariance,

i.e. correlation, is important and when it is not.

Measuring relative performance is crucial in any field

that hopes to improve its capabilities. If a field cannot

assess whether a new approach is not just new but actually

better how can it progress? Yet, in a competitive field, such

as computational chemistry, alternate methods may derive

from different, competing interests. As such it is all too

easy for statistics to be either ignored or used improperly to

justify ill conceived but novel methods, whether because of

the need for publication, career or product advancement.

As such, it is important not just to get the statistics of

relative measurement correct but also to know what such

statistics really mean and what they do not mean.

Two important aspects of statistics that are most

commonly misunderstood are the difference between
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confidence limits and a test for significance, and between

significance and the size of an effect. A confidence limit is

a range of values that, with a given level of probability, we

believe captures the actual value of a quantity. On the other

hand, a significance level is the probability that observed

values could have been seen if there actually was no ‘‘ef-

fect’’ or difference, but random chance made it appear that

way. Confidence limits can be used to a similar effect, e.g.

whether an estimate on the range of a difference brackets

‘‘zero’’, i.e. ‘‘no difference’’. Both have their utility and

both can be misappropriated, misunderstood and misused.

Secondly, significance does not imply importance of an

effect, merely its existence. No two computational methods

will have identical results. As such, the average perfor-

mance of one will always be better than the other. Given

enough examples, such a difference in average perfor-

mance can always be found to be significant—but is it

important? Is a difference, say, in 1 % enrichment for a

virtual screen between 20.00 and 20.01 important? This

distinction between significance and size-of-effect has

become an important issue in many fields, e.g. economics

and the social sciences, and presented here are some

practical aspects of this debate for our field.

The structure of this follow-on paper is as follows:

(1) Comparing two methods with known confidence

limits

a. Independent errors

b. Dependent errors

c. Corrections for small sample numbers

d. Dealing with asymmetric confidence limits

e. Averaging over a set of systems

(2) Binary systems

a. Probabilities

b. Virtual Screening AUCs

c. Virtual screening enrichments

(3) Pearson’s r-squared

a. Independent errors

b. Dependent errors

(4) Thoughts and observations on parametric vs non-

parametric modeling of differences

(5) Comparing multiple methods

a. Comparing a single method to a series of others

b. Determine whether a series of methods are

actually equivalent to each other

c. Distinguishing single methods from a set of

methods

(6) Discussion of conceptual issues concerning confi-

dent intervals and significance testing

Comparing two methods with known confidence
limits

Independent errors

Part One described how the variance of the difference

between properties is found by summing the variance of

each property. Suppose method or property A and B have

equally sized error bars, then this means the error bar for

the difference is simply that of A and B scaled by H2. This

may seem obvious but it is contrary to a common

assumption, which says that if two error bars overlap then

two methods are statistically equivalent. Figure 1 shows an

example of two histograms being compared, each with

error bars of ±1.0. In several, admittedly uncontrolled,

polls scientists were shown the triptych below and asked

which panel shows methods that are statistically equiva-

lent. A large majority mislabelled the middle panel,

claiming this shows methods that are statistically similar

because the error bars overlap. This would only be true if

errors added in a linear fashion. As the error bar of the

difference is 1.41 (i.e. H2) the pair in this panel are sig-

nificantly different. If error bars do not overlap we can say

two methods are statistically different (left panel) at the

same level of the significance represented by the error bars

but the converse is not correct.

Dependent errors

The right-most panel of Fig. 1 represents method A with

metric of performance of 5.0 and B of 4.0; assume larger is

better. Clearly we cannot say that A is better than B with

95 % confidence because the 95 % confidence bar for the

difference is 1.41 and the actual difference is only 1.0. If

we calculate the probability of A actually being better than

B we find that there is roughly an 80 % chance of this being

so.

Now suppose this metric for A is an average over ten

systems and that for every single system A performed

better than B. If the two methods were equivalent we would

expect A to only beat B five times out of ten. The odds of it

beating B every single time are the same as the odds of

flipping heads ten times out of ten, i.e. about one in a

thousand. This would suggest the probability A is better

than B is 99.9 %, not 80 %. So what has gone wrong here?

The cause of this discrepancy is that we have used the

same ten systems to compare A and B. All of the statistics

for the addition of errors is based on the concept that errors

are independent of each other, i.e. variation in one method

is independent of the variation in the other. But if the

performance of A and B are related to each other they are
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not independent at all. The correct way to construct an

error bar for a dependent system is on the difference

between A and B per system, i.e. the variation of the dif-

ference of A and B on each system:

Var A� Bð Þ ¼
XN

i¼1

ðAi � BiÞ � A� B
� �� �2

N � 1
ð1Þ

The standard deviation of the difference between A and B is

then
p

Var A� Bð Þ=Nð Þ, which should be compared to the

average difference between A and B. If the variation

between A and B is pretty constant, i.e. A moves up as does

B, then Var(A - B) is small and the difference between

A and B may be very significant.

We can see more clearly the consequences of the co-

varying of A and B by reordering the last equation:

Var A� Bð Þ ¼ 1

N � 1

XN

i¼1

ðAi � �AÞ � ðBi � �BÞð Þ2 ð2Þ

The variance now looks like the difference between two

vectors, A and B, where the ith element of either is the

element Ai or Bi minus its average. As such we can write

the variance as we would the difference of two vectors:

Var A� Bð Þ ¼ 1

N � 1
A~
���
���
2

þ B~
�� ��2�2 A~

���
��� B~
�� �� cos h

� �
ð3Þ

Where h is just the angle between the two vectors. We can

rewrite this formula:

Var A� Bð Þ ¼ Var Að Þ þ Var Bð Þ � 2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Að ÞVar Bð Þ

p

ð4Þ

Here r is actually just Pearson’s correlation coefficient. We

can replace the variance by the standard deviation, r, and
obtain the formula:

var A� Bð Þ ¼ r2A þ r2B � 2rrArB ð5Þ

If the correlation between the two sets of results is zero

(r = 0), then we get the standard result for the addition of

error terms is as follows:

var A� Bð Þ ¼ r2A þ r2B ¼ var Að Þ þ var Bð Þ ð6Þ

If the variances of A and B are equal we obtain an error bar

for the difference that is H2 larger than for the component

methods. However, if r[ 0, i.e. the performance of each

methods are correlated, this estimate is too strict. A may be

better than B even if the differences in their average per-

formance is smaller than the independent assessment of

mutual error. In theory, the variance of the difference could

become zero if there is perfect correlation between results

and the variances of A and B are equal. In practice, lower

and upper bounds on the variance of the difference are:

var A� Bð Þmin¼ rA � rBð Þ2 ð7aÞ

var A� Bð Þmax¼ rA þ rBð Þ2 ð7bÞ

This means the maximum and minimum of the difference

error bars is simply the sum and difference of the individual

error bars respectively. This illuminates the real rules for error

bars. If the error bars of two measures do not overlap they are

concretely different, nomatter the correlation. Similarly, if the

error bars of one measure lie within the error bars of the other

measure then the twomethods cannot be statistically different,

even if they are maximally correlated. These rules are

described succinctly below and illustrated in Fig. 2a, b. In-

dependent measures (e.g. tested against different datasets):

Composite Error

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Size of Error Bar1ð Þ2þ Size of Error Bar2ð Þ2

q

(1) If the error bars do not overlap the measures are

statistically different (because the composite error

must be less than the sum of the two error bar sizes)

Fig. 1 Three comparisons of histograms, each with 95 % confidence

limits of 1.0. Both the left and center comparisons are statistically

different at this confidence level. However, most challenged with

these graphs assume only the left panel shows methods that are

distinct due to the commonly quoted but incorrect ‘‘non-overlap of

error bars’’ rule

J Comput Aided Mol Des (2016) 30:103–126 105

123



(2) If one measure lies within the error bar of the other

then the measures are not statistically different (the

composite error is always larger than either error bar)

(3) Two measures are not significantly different if they

are closer than their composite error bar

(4) Two measures are significantly different if they are

further apart than their composite error bar

Dependent measures (e.g. tested against the same

datasets):

CompositeError\Size of Error Bar1þSize of Error Bar2

CompositeError[ Size of Error Bar1�Size of Error Bar2j j

(1) If the error bars do not overlap the measures are

statistically different

(2) To be distinguishable measures must differ by more

than the sum or absolute difference of the sizes of the

individual error bars.

(3) If the error bars of one measure lie entirely within the

error bars of theother then these twomeasures cannot be

statistically different, no matter what their correlation.

Fig. 2 These figures illustrate

the rules for statistical deduction

from standard bar charts with

error bars. The error bars are

for 95 % significance and are

±3.0 for Method A and ±4.0

for method B, giving a

composite independent error

bar of ±5.0. The single

exception is in the bottom right

figure for dependent error bars

where both are set to ±3.0
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(4) If the error bars are the same size then any difference

in mean values could be statistically significant

Anti-correlatedmeasures are always nice to find, e.g. ifwe

know that method A will succeed when method B fails and

vice versa. Averages of such methods are then more robust.

However, correlated measures are more common than anti-

correlated measures, e.g. we are often comparing small

variants ofmethods. As such, it can be very helpful to include

method-to-method correlation if you wish to statistically

prove progress in the development of a procedure. In the

statistical literature this approach to accounting for the cor-

relation between two methods is often referred to as the

paired Student t test [2]. This is described more in the next

section regarding small sample sizes.

Corrections for small sample numbers

The above description of error combination assumes we are

in the asymptotic limit of large numbers of samples. Often

we have small numbers of samples. Suppose, for instance,

we want to compare the property difference for two com-

pounds, A and B, where that property has been measured in

triplicate, i.e. the sample size is just three. Suppose we

ignore any knowledge of the expected variance of the

experiment, i.e. we have to estimate the standard deviation

from the three measurements; from Part One we know that

for N = 3 we are required to use the Student t-distribution.

In this case the correct t statistic would be:

t ¼ XA � XBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Að Þ þ var Bð Þð Þ=N

p ¼ XA � XBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Að Þ þ var Bð Þð Þ=3

p

ð8Þ

where:

var a ¼ A or Bð Þ ¼ 1

N � 1

Xi¼3

i¼1

xai � xa
� �2¼ 1

2

Xi¼3

i¼1

xai � xa
� �2

ð9Þ

I.e. using the ‘‘N - 1’’ unbiased estimator of variance. The

question arises, however, as to the number of degrees of

freedom, m, which is necessary in order to set the t thresh-

old for significance. Is it m = 2? This doesn’t seem right

because there are six measurements. In fact, the correct

answer is m = 4, because there are six measurements but

two estimations of means (for A and B) being used. This

makes a significant difference since t95%(m = 2) = 4.30

and t95 %(m = 4) = 2.78.

If there are unequal numbers of measurements for A and

B, namely NA and NB, the formula for t is slightly different:

t ¼ XA � XBffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NA

þ 1
NB

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NA�1ð Þvar Að Þþ NB�1ð Þvar Bð Þ

NAþNB�2

q ð10Þ

This looks different to Eq. 8 but reduces to the same

expression when NA = NB. The number of degrees of

freedom used to calculate t95 % is m = NA ? NB - 2.

Finally, the above description assumes that the standard

deviations for both sets of measurements is supposed to be

the same, i.e. what we have done is to combine the esti-

mates of variance from the two sets of measurements to

improve the accuracy of our estimate. If we know, or if we

wish to assume, this is not true (that the methods have

different variances) then the formula for t is:

t ¼ XA � XBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Að Þ
NA

þ var Bð Þ
NB

q ð11Þ

This is the standard combination of variance we would

expect from the combination of independent errors. The

calculation of the degrees of freedom, however, is more

complicated and requires the Welch–Satterthwaite formula

[3] described in Part One.

As a final note, a word of caution needs to be given to

the estimation of the variance from small samples. In the

case above we considered the example of having only three

observations from which to deduce a variance for a mea-

surement. The formula for the standard deviation that we

use is the best estimate of the variance assuming no prior

knowledge. However, it is unlikely this is the case. For

instance, if we know the instrument or procedure used to

measure the properties is accurate then we may be able to

use that known error. If we have considerable prior

knowledge as to the likely variance of the measurements

we are free to use it. Bayesian techniques give a natural

framework for including known estimations of variance

with current observations but such approaches are beyond

the scope of this article.

Asymmetric error bars

In Part One it was discussed as to how confidence limits

might not be symmetric, though we often treat them as if

they were. An example would be if there is a natural bound

on a property, e.g. zero for a root-mean-square-error, or

zero and one for a probability. We will later consider the

case of Pearson’s correlation coefficient in detail later, but

the general prescription is as follows:

(1) If there is a transformation that renders the likely

distribution of values as Gaussian, then calculate the

error bars in this transformed space.

(2) Apply the same rules as above to the transformed

error bars, i.e. two methods are different, the same or

not distinguishable when their difference (in trans-

formed values) are compared to the composite error

bar (in transformed coordinates).
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(3) If necessary, transform the symmetric error bars

back to the original function space and apply these

(asymmetric) error bars to the difference of original

values.

For independent errors there are also some convenient

approximations. Suppose the range of A is: [XA - LA,

XA ? UA] and that of B is: [XB - LB, XB ? UB], where

XA[XB, then [4]:

XA � XB 2 XA � XB � L;XA � XB þ U½ � ð12Þ

where:

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2A þ U2

B

q
ð13Þ

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2B þ U2

A

q
ð14Þ

Essentially these equations arise by considering the two sides

of the error bars to be from different Gaussians. The lower

‘‘Gaussian’’ of A combines with the upper ‘‘Gaussian’’ of B

to describe the case where the difference between A and B is

less than average, and the reverse combination describes

when the separation between A and B is bigger than expec-

ted. One then compares (XA - XB) to the lower bound, L, to

test significance against the null model.

Averaging over a set of systems

Typically we measure the performance of some method

over a set of systems for which both the performance and

variability are not constant. In Part One we considered how

the system-to-system variability should be combined to

arrive at confidence limits for a method over all systems.

These confidence limits can be treated as above when

comparing methods. In addition, Part One described how,

for instance, if we were looking at how variable a docking

method is over a set of proteins we can adjust (lower) this

variability by accounting for how imprecise we think our

estimate of performance is on each particular protein. I.e.

noise in each system, for instance due to a finite number of

active compounds, contributes to the variability over all

systems.

However, if we are comparing two methods over the

same set systems we need to determine the correlated

variance for each system. Then, we look at the variability

of the difference in performance over a set of systems with

which to adjust the variability of the whole set. As a

concrete example, suppose we are docking to a set of

proteins by methods A and B and are calculating the Area-

Under-the-Curve (AUC) as a metric of performance. It is

not enough to calculate the protein-by-protein error in the

AUC for A and B separately; we need to know the effects

of correlation on the difference in AUC for each protein.

Both AUC and enrichment are examples of averages

over binary events; in the case of the AUC it is whether a

randomly chosen ‘‘active’’, e.g. a compound that passes

some experimental threshold, scores higher than a ran-

domly chosen inactive, e.g. a compound that fails to pass

this threshold. In the case of enrichment, it is whether an

active falls within a certain range of compound ranking by

some algorithm. Both represent ‘‘binary’’ events. Calcu-

lating the effects of correlation between two such measures

is considered in the next Section.

Binary systems

Probabilities

From Part One we know the formula for the variance of a

single probability p is very simple, i.e. it is merely

p(1 - p). But what is the variance of the difference of two

probabilities? Suppose that we have calculated p by aver-

aging a binary variable, i.e. either 1 or 0, over N examples.

We could form a difference variable by subtracting the

binary variable for B from the binary variable for A. Two

ones give zero, two zeros give zero and a one and a zero

gives plus or minus one, depending on the order. This gives

us a new variable that is no longer binary; it can be one,

zero or negative one. We can calculate a variance for this

new variable by the usual methods. In particular, we can

use the formula from above:

var A� Bð Þ ¼ var Að Þ þ var Bð Þ � 2r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Að Þvar Bð Þ

p

ð15Þ

where now:

var Að Þ ¼ pa 1� pað Þ ð16Þ
var Bð Þ ¼ pb 1� pbð Þ ð17Þ

And r is the Pearson’s correlation coefficient between the

two binary vectors. I.e. there is no conceptual difficulty in

calculating the correlated variance between two probabil-

ities, which may be greater or less than the uncorrelated

quantity depending on whether the instances that make up

the probability calculation are positively or negatively

correlated. This is the approach we take to consider virtual

screening metrics.

There is a special case that can be useful. Suppose we

want to compare probabilities for two classifications, e.g.

pa is the probability of category A and pb is the probability

of category B and A and B are the only categories, for

instance perhaps A everything that passes a threshold, and

B is everything that does not. The probability vectors

described above for A and B are anti-correlated, i.e.

whenever A is a 1, B is a 0 and vice versa. This means that
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r = -1.0. Furthermore, since pa ? pb = 1, var(A) =

Var(B) in the above example. This leads to the very simple

formula for the net variance:

var A� Bð Þ ¼ 4� var Að Þ ð18Þ

This leads to a very simple test as to whether a given yes–

no distribution is statistically different from 50:50. If

pa = pb = 1/2 then:

var A� Bð Þ ¼ 4� 1

2
� 1� 1

2

� �
¼ 1 ð19Þ

Therefore, if there are N samples, we expect 95 % of the

variation from 50:50 to be ±1.96/HN & ±2/HN. If we

have DN as the difference in yes–no, up–down votes for

this binary example then for this difference to be significant

at the 95 % level we require:

DN=Nð Þ[ 2=
ffiffiffiffi
N

p

DNð Þ2 [ 4N
ð20Þ

For instance, if 120 active compounds are examined and 70

have a feature X and 50 do not. Is it statistically significant

that active compounds have X? Here, NA = 70 and

NB = 50, the square of the difference is 400. The right

hand side is 4 9 120 = 480; therefore this difference is not

significant at the 95 % level.

AUC

This concept of the different in binary vectors is straight-

forward to apply to the calculation of a correlated AUC.

The components that go into the variance of an AUC are

the variance of the probability for an active scoring higher

than an inactive, plus the variance of the probability an

inactive scores higher than an active [5, 6]. When we are

looking at the correlated difference between two AUCs we

merely have to look at how to calculate the correlated

difference of these components.

This can be done by considering the contribution to the

total variance of each actives/inactives in turn, using the

above approach to calculate the covariance. I.e. suppose we

select a single active compound and make a vector of

length NI, where NI is the number of inactives. Then we go

down the list of inactives and place a ‘‘1’’ in the vector

every time the active scores higher than this inactive using

method A and ‘‘0’’ otherwise. This is our binary vector for

this active corresponding the example above. The average

of all entries in the vector is the probability, p, that this

active scores higher than a randomly chosen inactive. The

average variance is therefore p(1 - p).

The average of all such variances is the first term in the

expression from Delong et al. for the variance of the AUC

[6]. However, we can repeat this procedure to generate a

second vector for this active by using Method B. With

these two vectors we can form a product vector that rep-

resents the correlation of the two methods for this active,

i.e. the angle between the two binary vectors representing

whether inactives score higher or lower using method A or

method B. This can be repeated over all actives, and also

over all inactives, where the vector is then of length equal

to the number of actives and the binary condition is whe-

ther the inactive scores higher then an active. If both

methods tend to rank the same active or inactive in similar

ways then it will reduce the total variance in the DeLong

formula, or increase it if they rank in very different ways.

Formally, then, the correlated version of the DeLong

formula looks like this:

Err2AUC;A�B ¼ varAactive þ varBactive � 2covABactive
Nactive

þ varAinactive þ varBinactive � 2covABinactive
Ninactive

ð21Þ

where:

covactive ¼
1

NActives � 1

XNActives

i¼1

1

NInactives

XNInactives

j¼1

vAi;jv
B
i;j

 !
� pAi p

B
i

" #

ð22Þ

Here, vi,j is one if active i scores higher than inactive j,

otherwise zero and pi is the average of this quantity, i.e. the

probability active i scores higher than any inactive. The

formula for the covariance of the inactives follows the

same form with the appropriate quantities swapped.

Enrichment

The same logic can be applied to the calculation of the

composite error of two ROC enrichments, i.e. where the

enrichment is defined as relative to the fraction of inactives,

not the fraction of total compounds [7]. If the same (actives/

inactives) are discovered in the top X % of the list then two

methods are highly correlated and the error bars for their

difference in performance for that system need to reflect this

fact. The binary vector upon which we perform our opera-

tions is simpler than in the case of the AUC. All we have to

consider is whether an active or an inactive falls above the

enrichment threshold and form two binary vectors, one for

actives and one for inactives. FromPart One variance of each

contributes to the total variance of the enrichment:

var eA or B � fð Þ ¼ gA or B 1� gA or Bð Þ
NActives

þ S2A or B

f 1� fð Þ
NInactives

ð23Þ

Here S is the slope of the ROC curve at f, the fraction of

inactives found, and g is the fraction of actives and the
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variance is calculated for the enrichment scaled by f so as

to have the form of a probability (i.e. from 0 to 1). From

this the formula for the square of the error of the difference

of two enrichments has the form:

Err2Enrichment;A�B

¼ 1

fraction inactives2
varAactive þ varBactive � 2covactives

Nactive

�

þ S2Avar
A
inactive þ S2Bvar

B
inactive � 2SASBcovinactives

Ninactive

�
ð24Þ

where,

covActives ¼
1

Nactive

XNactive

i¼1

vAi v
B
i

 !
� gAgB ð25Þ

Here, vi is 1 if active i is in the top fraction, otherwise it is

zero. The formula for the covariance of the inactives fol-

lows the same form with the appropriate replacement of

quantities.

We illustrate this procedure of considering binary vec-

tors representing active and inactive molecules in Fig. 3.

Here we are looking at ROC enrichment at 20 %, i.e. for

actives that score higher than the top two inactives.

We have:

pAactive ¼
3

8
; pBactive ¼

4

8
ð26Þ

Thus, ROC enrichments are:

EA
20% ¼

3
8
1
5

¼ 15

8
¼ 1:875

EB
20% ¼

4
8
1
5

¼ 20

8
¼ 2:5

ð27Þ

The variances are:

varAactive ¼
3

8
� 5

8

� �
¼ 0:234; varBactive ¼

4

8
� 4

8

� �
¼ 0:25

varAinactive ¼
2

10
� 8

10

� �
¼ 0:16;

varBinactive ¼
2

10
� 8

10

� �
¼ 0:16 ð28Þ

Finally, the covariances are:

covABactive ¼
2

8

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varAactivevar

B
active

q

¼ 2

64� 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15� 16

p
¼ 0:061

covABinactive ¼
1

10

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varAinactivevar

B
inactive

q

¼ 1

100� 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 16

p
¼ 0:016

ð29Þ

For such a simple example the slopes of the ROC curve

may not be very accurate but Eq. 30 can approximate

them:

SA ¼ 3=8

2=10
1þ

ln 15
8

� �

ln 2
10

� �
 !

¼ 1:14

SB ¼ 4=8

2=10
1þ

ln 20
8

� �

ln 2
10

� �
 !

¼ 1:07

ð30Þ

Putting this all together we arrive at:

Err2Enrichment;A�B ¼ 1:96

DEnrichment A;Bð Þ ¼ 0:625� 1:4
ð31Þ

Thus, the difference in enrichment in this toy problem is

not significant, which is not unexpected given the small

sample sizes.

Pearson’s r-squared

It would seem particularly important to consider the com-

parison of Pearson’s r or r2 values because in computa-

tional chemistry this is typically how claims are made for

method superiority. As before, cases have to be made for

independent values, e.g. ones made on different test cases,

as well as the much more usual situation where different

methods are being applied to the same dataset, in which

case r values may be correlated with each other, i.e. we

have to consider the ‘‘correlation of correlation’’. There

have been many papers on this subject, going back to early

work by Pearson himself [8]. Much of this work has been

developed and applied in the social sciences [9–11]. Here,

illustrations will be made with simulations of a simple

Fig. 3 Binary vectors constructed for two methods, A and B over a

set of eight actives and ten inactives. Bits are set for the inactive

compounds if they are the highest or second highest ranked inactive

compounds and for the active compounds if they score higher than the

second ranked inactive
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system where two variables, y and z are correlated to a

primary variable, x.

The results of the first two such simulations are shown in

Fig. 4 (Fig. 8 in Part One). This is a frequency plot of 106

rxy values from the correlation of fifty evenly spaced values

from x = 0 to x = 4.0, each with a Gaussian noise added

to produce fifty y values, i.e.:

yi ¼ xi þ cN 0; 1ð Þy;i ð32Þ

The noise component, c, has been scaled to produce dis-

tributions peaked at r = 0.8 (c = 0.925) and r = 0.9

(c = 0. 595).

Here x is acting as some experimental property to be

predicted, y is some theoretical prediction that correlates

with x except it is inaccurate, i.e. has noise of strength c.
Nothing would change in the results below if the constant

of proportionality (e.g. slope between x and y) where not

one, or if there were an offset to y, because the definition of

a correlation coefficient is independent of such.

For our purposes we want to derive the error bounds on

a difference between two r values. The first aspect to note

is that the distributions shown in Fig. 4 are quite asym-

metric. As described in section above, this does not in and

of itself represent a problem. Equations 12 to 14 describe

how to combine the upper and lower confidence limits to

arrive at a consensus upper and lower bounds for inde-

pendent measures. We can calculate these for any r values

using the standard techniques described in Part One, e.g.

using the Fisher z-transform which makes the distributions

Gaussian, find confidence limits in z-space and then

transform them back to r values [12]. For the examples

shown in Fig. 4 the upper and lower 95 % confidence

limits are:

U0:8 ¼ 0:882; L0:8 ¼ 0:671; U0:9 ¼ 0:942;
L0:9 ¼ 0:829

ð33Þ

Putting these into Eqs. 13 and 14 for the upper and lower

bounds on the distribution of the difference between

r = 0.9 and r = 0.8, i.e.\Dr[= 0.1 gives:

Dr 2 0:1� 0:1085; 0:1þ 0:1356½ �
Dr 2 �0:0085; 0:2356½ �

ð34Þ

As Dr = 0.0 lies (just) within this range we can not

exclude, at 95 % confidence, that the two r values are

actually different.

Of course, we calculated the upper and lower bounds by

using the Fisher trick of transforming the variables to give

distributions that are closer to Gaussian in character. As

such, another perfectly acceptable way to determine if the

two r values are different would be to calculate if the

values in z-space are actually different. If the methods are

independent we know that the variance in this transformed

space will be simply twice the component variances, i.e.

twice 1/(N - 3). We then just have to compare this value

to the difference between the transformed r values. In the

case considered above we have:

r ¼ 0:8 ! F rð Þ ¼ 0:5 ln 1þ 0:8=1� 0:8ð Þ ¼ 1:099

r ¼ 0:9 ! F rð Þ ¼ 0:5 ln 1þ 0:9=1� 0:9ð Þ ¼ 1:472

F 0:9ð Þ � F 0:8ð Þ ¼ 0:373 ð35Þ

Meanwhile, the combined variance in the transformed

space is 2/(N - 3),

var F 0:9ð Þ�F 0:8ð Þð Þ¼ 1

N�3
þ 1

N�3
¼ 2

47
¼ 0:0425

F 0:9ð Þ�F 0:8ð Þffiffiffiffiffiffiffi
var

p ¼ 0:373

0:206
¼ 1:81\t95% ¼ 2:01 for N ¼ 50ð Þ

ð36Þ

Therefore the difference in r values is not quite statistically

significant at the 95 % level, as we surmised from the

combining of the asymmetric error bars for r. Note that this

method only gives us the likely significance of one r being

different than the other, not what the error bounds are on

the difference.

The key assumption in the above result is that the

r values are independent. In fact, this is rarely the case,

especially when the correlations are with respect to the

same underlying variable, in this case ‘x’. This is likely the

most common use-case, e.g. two methods try to predict a

single property, x. In this case, can two r values actually be

independent? I.e. if two measures correlated with a third,

do they not have to correlate with each other?

Fig. 4 Distributions of r values with modal averages of 0.8 and 0.9.

Graphs were produced by random sampling of the correlation

coefficient of 50 points generated by Eq. 32, where the x coefficient

was evenly spaced between 0.0 and 4.0. Graphs are made from 106

independent simulations of Eq. 32, with c = 0.595 for r peaking at

0.9 and c = 0.925 for r peaking at 0.8
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In fact, there is a fundamental reason such correlation

coefficients cannot be independent: (1 - r) is a metric

distance. In the mathematical sense this means it obeys the

triangle equality:

1� rxy
� �

þ 1� rxzð Þ[ 1� ryz
� �

[ 1� rxy
� �

� 1� rxzð Þ
�� ��

ð37Þ

Which simplifies to:

1� rxy � rxz
�� ��[ ryz [ rxy þ rxz � 1 ð38Þ

In the case above of r = 0.8 and r = 0.9, this means:

0:9[ ryz [ 0:7 ð39Þ

Can we go further than this and, in fact, estimate ryz from

just rxz and rxy? Simple arguments show that we can and

that if the underlying noise in y and z, as regards to pre-

dicting x are independent then:

hryzi � rxyrxz ð40Þ

Shown in Fig. 5 is the frequency of method–method cor-

relations derived from two methods described by:

yi ¼ xi þ 0:595N 0; 1ð Þy;i
zi ¼ xi þ 0:925N 0; 1ð Þz;i

ð41Þ

The Pearson coefficients are 0.9 and 0.8, respectively, and

the mean inter-method correlation is, as predicted,

r = 0.72.

This gives us a yardstick as to whether two methods are

merely correlated because they both correlate to the same

variable, in this case x, or because there is some ‘deeper’

similarity. For instance, suppose y and z had the following

forms:

yi ¼ xi þ cN 0; 1ð Þy;iþgN 0; 1ð Þz;i
zi ¼ xi þ dN 0; 1ð Þz;iþeN 0; 1ð Þy;i

ð42Þ

Here each method shares a fraction of each other’s error

term. Clearly the methods will be more correlated than we

would expect from Eq. 41 because any resampling of the

variables y and z will tend to move in the same direction;

we would expect rxy and rxz to adjust in the same direction.

Figure 6 shows the distribution of the differences

between rxy and rxz for the parameter sets:

(1) y(c, g) = (0.595,0) and z(d, e) = (0.925,0)

(2) y(c, g) = (0.595,0) and z(d, e) = (0.595,0.708)

Both sets of parameters were tuned to produce an

average r of 0.9 for y and 0.8 for z (i.e. for the second set,

0.5952 ? 0.7082 = 0.9252). However, it is clear that the

second set of parameters produces a tighter distribution of

differences. This is as expected since the intra-method

correlations were 0.72 (as above) and 0.883, respectively.

The approach to account for the correlation between two

methods, with inter-method correlation of ryz, is to expand

the procedure described earlier for combining asymmetric

error bars to cover the case where two quantities co-vary.

The form of this is:

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2A þ U2

B � 2corrðrxy; rxzÞLAUB

q

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2B þ U2

A � 2corrðrxy;rxzÞLBUA

q ð43Þ

Fig. 5 The distribution of the inter-method correlation coefficient ryz
for two methods y and z with correlations of r = 0.9 and r = 0.8

respectively with x and independent noise terms. Note the peak falls

exactly at 0.72, the product of rxy (0.9) and rxz (0.8)

Fig. 6 Distribution of the difference in r values. In black (wider) is

the distribution of differences between two correlation coefficients

with independent error terms. In red (narrower) is the difference in

correlation coefficients that have dependent error terms. Note that the

distribution of the difference of r values is reasonably symmetric. In

both cases the mean values of the underlying correlation coefficients

is 0.8 and 0.9
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Here ‘‘corr()’’ is the correlation between correlation coef-

ficients. To calculate the correlation we first calculate the

covariance from rxy, rxz and ryz. Pearson himself addressed

this problem [8]. The approximate formula suggested for

cases with a ‘shared’ dataset (in this case x), is:

cov rxy;rxz
� �

¼ 1

N
r3yzþ ryz�0:5rxyrxz

� �
1� r2yz� r2xy� r2xz

� 	h i

ð44Þ

corr rxy; rxz
� �

¼
cov rxy; rxz
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var rxy
� �

var rxzð Þ
q ð45Þ

The formula for the variance of an r value follows from

Eq. 44 by setting z = y, i.e.

cov rxy; rxy
� �

¼ var rxy
� �

¼ 1

N
1� 2 1� 0:5r2xy

� 	
r2xy

� 	h i

¼ 1

N
1� r2xy

h i2
ð46Þ

Substituting the values for rxy, rxz and ryz for the example

illustrated in Fig. 6 we compute the following estimates for

the 95 % bounds:

(1) ryz = 0.72, corr(rxy, rxz) = 0.36, Dr 2 0:013; 0:22½ �
(2) ryz = 0.883, corr(rxy, rxz) = 0.66,Dr 2 0:035; 0:205½ �

Both estimates are in good agreement with the observed

distributions.

If prediction methods are using the same physical princi-

ples topredict a quantity of interest theyare likely tobe ‘‘over’’

correlated. For example, scoring functions used to place and

predict binding of ligands to proteins are all really quite

similar. They all have contact terms; they all have some

variant of an electrostatic interaction term etc. As such, it is

likely the differences in any prediction they make are quite

correlated. If a prediction method is being developed and

version X.1 is being compared to version X.2, where only

minor modifications have been made between versions, then

any r values calculated against the target experimental value

are likely over-correlated. It is possible that methods that

consider different aspects of a physical phenomenonmight be

less correlated. If, in fact, the inter-method correlation is less

than expected from the product of correlation coefficients then

such methods might be more usefully combined.

If the observed difference between two r coefficients is

greater than the estimate formed by estimating the inter-

method covariance from the product of the correlation coef-

ficients then it is likely safe to assert onemethod has a superior

correlation. As with other examples in this paper, correlation

between methods can ‘rescue’ significance from examples

that do not appear ‘‘independently’’ significant, but if the

methods appear significant without the inclusion of correla-

tion this added level of complexity is likely unneeded.

Thoughts and observations on parametric
versus non-parametric modeling of differences

One of the complaints about using classical statistics is that

distributions are not always Gaussian. Bootstrapping and

‘non-parametric’ methods do not assume anything about

the underlying distribution and hence are more general than

many of the approaches described here. They also have the

advantage that they can work on lists and rankings, rather

than continuous values, and as such clearly have a place in

the toolbox of useful statistical methods. For example,

Friedman’s test is a non-parametric version of the ANOVA

method described later in this paper. Or the Mann–Whit-

ney–Wilcoxon test used to determine if two sets of rank-

ings are different, which is analogous to the tests described

above to the paired Student t test. Spearman’s rho is an

analogous correlation statistic to Pearson’s but for ranked

lists, etc. [13].

The reason this paper has focused on parametric

statistics is: (1) they are more powerful than non-para-

metric statistics, e.g. they give you better, tighter error

bounds, (2) for items we are interested in, such as the

differences in properties, they are often more robustly

applicable than is commonly thought. Consider the two

graphs in Fig. 7. The top figure displays the distribution of

ligand crystal structure reproductions using a docking

program and two scoring functions (CG3 and CG4). On the

x-axis is the root-mean-square-deviation (RMSD) between

heavy atom coordinates of the docked pose and the crystal

pose, on the y axis the frequency of results. It is clear the

distributions in this graph are very non-Gaussian. Fur-

thermore, the average across the distribution is also quite

non-Gaussian, i.e. the error bars on the average are very

asymmetric. It is for this reason the reporting of a single

average RMSD for pose prediction performance is ill

advised. The bottom figure displays the frequency of the

paired differences between performances of the two scor-

ing functions. While not perfectly Gaussian it is much

closer. The variation of the average of this difference is

distributed accurately as a Gaussian, as the CLT would

predict.

A second example would be the difference in r values

displayed in Fig. 6. Although the distributions of correla-

tion coefficients are quite asymmetric, requiring Fisher’s

transformations to regain Gaussian shape, the difference in

r values is much more normal. Even though underlying

distributions may not be very Gaussian, leading some to

claim non-parametric statistics or bootstrapping may be

more appropriate, differences in properties, which is often

what interests us, may be well behaved and suitable for the

application of standard statistical practices.
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Comparing multiple methods

Often computational chemistry will require the comparison

of the performance of multiple methods. Having described

how to evaluate a pair of methods it might seem straight-

forward to evaluate multiple methods-surely this is just a

series of pair-wise comparisons? However, multiple-

method comparisons can come in several forms:

(i) Compare a select method to a series of other

methods

(ii) Determine whether a series of methods are

actually equivalent.

(iii) If a set of methods are not equivalent, which are

better and by how much?

These are actually quite distinct questions and the

complicating factor as to whether the methods are inde-

pendent or dependent is of great importance for each. Here

they will be considered in order.

Comparing a single method to a series of others

A correct comparison of two methods gives an estimate of

the probability that, say, method A is actually better than

method B. To accord with standard practice we expect that

probability to be greater than 95 %, although this is, of

course, arbitrary.

Now, suppose we are comparingmethodA to five different

methods, B through F. Suppose that A seems better than each

of them, at roughly the same level of superiority, i.e. that there

is only a 0.05 chance that one of the other methods is actually

better than A. What is the probability that A is actually better

than all of them? This is equivalent to rolling a twenty sided

dice and avoiding a ‘‘20’’ five times, which is:

p Zero ‘‘2000sð Þ ¼ 1� 0:05ð Þ5¼ 0:773 ð47Þ

Conversely the probability of at least one ‘‘20’’ occurring is:

p One or More ‘‘2000sð Þ ¼ 1� 1� 0:05ð Þ5¼ 0:227 ð48Þ

Thus, although the probability of A being better than any one

alternate method is still p = 0.05, the probability of being

better than the group or family of methods, B through F, is

close to five times that at p = 0.227. This is referred to as the

Family-Wise Error Rate (FWER) and relates to the proba-

bility of making one or more ‘‘False Discoveries’’ (False

Positives). This is a topic of considerable interest in fields such

as the analysis of correlations between gene sequences or

microarray data, where the probability of making a false dis-

covery becomes very high because so many comparisons are

considered. In fact, a poor appreciation of this simple phe-

nomenon led many early incorrect predictions of correlations

in early genome studies. For instance many gene associations

were made to schizophrenia that were later found to be

incorrect using GenomeWide Association Studies with more

sophisticated meta-analysis [14].

There are several approaches to dealing with this

problem. The simplest, as proposed by Bonferroni, is to

change what we mean by ‘‘significant’’ [15]. Since the

probability of at least one false comparison is roughly

proportional to the number of comparisons, N, we can

regain our p = 0.05 sense of (Family-Wise) significance if

we require the threshold for each individual comparison to

be reduced N–fold, i.e. change our requirement on p for an

individual comparison to 0.05/5 = 0.01. Doing so returns

the probability of making no mistakes to *0.05:

p One or More ‘‘2000sð Þ ¼ 1� 1� 0:01ð Þ5¼ 0:049 ð49Þ

However, there is a problem with this approach, namely

that we may ‘‘throw out the baby with the bathwater’’. In

trying to avoid any false positive mistakes, we might make

false negative ones, i.e. suppose method B has a probability

of being better than A of 0.02 and the p values of C through

Fig. 7 The top graph shows the frequency of pose reproduction using

two different scoring functions, with RMSD on the x-axis and

frequency on the y axis. The bottom graph has on the x-axis the

difference in RMSD values of paired examples, e.g. the RMSD under

CG4 minus the RMSD for CG3 for the same example. Hence this can

be negative as well as positive. The y-axis is the frequency of

observation of this difference
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F are all really low, say p = 0.0001. Because we have

included a number of really poor methods in the compar-

ison, suddenly B doesn’t look so bad, i.e. because

p = 0.02[ p = 0.05/5 = 0.01. This can lead to confu-

sion—how can adding bad methods suddenly make a

method such as B seem significant?

Remarkably, a very simple method can address this

conundrum: step-wise Holm–Bonferroni [16]. It is a very

simple method.

(i) Order methods (B, C, D, E, F) such that the

method least likely to actually be better than A is

first, i.e. the one with the smallest p value, with the

one most likely to be better than A last, i.e. the one

with the largest p value.

(ii) Test the first method against not p = 0.05 but

p = 0.05/(N ? 1 - k) where N is the number of

methods (N = 5) and k is the position in the list

(k = 1).

(iii) If A passes this test (i.e. p1\ 0.05/(5 ? 1 - 1) =

0.01), move on to the next method, adjusting

k upwards by one.

(iv) If A passes all the comparisons, the probability it

is actually better than all methods is better than

p = 0.05.

(v) If it fails a test against a method in the list, assume

that this alternative method and all the methods

with larger p values are also failures.

In our above example, method B would be at the end of

the list, i.e. is only compared against p = 0.05. As such, it

is always seems insignificant with respect to A, i.e.

equivalent, no matter if much worse methods (with much

lower p values) are ahead of it in the list. As a more

concrete example, suppose we have two possible lists of

p values for B through F as in Table 1.

For the ‘‘List 1’’ the procedure gives:

fB;C;D;E;FÞ ! C;F;D;B;Ef g

pC\
0:05

5
; pF\

0:05

4
; pD\

0:05

3
;

pB\
0:05

2
; pE\0:05 ð50Þ

Therefore, the probability that method A is better than all

five methods, with no misdiagnosis is less than 0.05 (the

FWER is less than 0.05).

For ‘‘List 2’’:

fB;C;D;E;FÞ ! D;B;F;C;Ef g

pD\
0:05

5
; pB\

0:05

4
; pF\

0:05

3
; pC ¼ 0:05

2

ð51Þ

Therefore, we should accept that A is better than methods

D, B and F but not methods C and E, because the Holm–

Bonferroni test tells us there is a greater than 0.05 chance

that either C or E are not actually significantly better that

A at the p = 0.05 confidence level.

Does it matter if methods are correlated or not? At first

glance it might seem irrelevant. If we have accounted for

the correlation between method A and each of the methods

in the list, i.e. so we obtain a correlation-corrected p value

then what else would we need? Does it matter if methods

B to F are correlated with each other? In general, a useful

way to think about the effects of correlation is to imagine

two methods are essentially identical, i.e. perfectly corre-

lated. For instance, suppose methods C and D are actually

the same method. We have gained nothing by adding both

rather than just one, i.e. no new information. However, the

total number of methods considered has been increased by

one if both are included. In the Holm–Bonferroni method

this means that the criteria for being declared significant

have been made harder than necessary, i.e. we only had to

check against four methods with less stringent testing

because we could have omitted C or D. As such, Holm–

Bonferroni is conservative with respect to correlation

effects, i.e. if something is declared significant we can trust

it was tested at the appropriate level, but we may have

dismissed something as insignificant that is not.

Typically a ‘conservative’ method means there are other

methods that are less conservative (more likely to make

false positive mistakes) but which have more ‘‘power’’, i.e.

can resolve true positives. The Holm–Bonferroni is no

exception and there is a different method from Hochberg

et al. that is a step-up procedure [17]. In this method we

start at the other end of the list, progressing until a test is

passed. At this point the rest of the methods are assumed

different from the primary method. This has more resolving

power, i.e. will correctly assess more differences in per-

formance. However it makes more assumptions as to the

independence of methods.

It could be that we do not care as to whether method A is

better than all other methods, perhaps we are happy with

just knowing it is likely to be better than most methods.

What we might be interested in is an estimate of how many

false positives we have likely included by mistake. For

instance, in a virtual screening list it would be very useful

to say how many ligands in our top 100 are likely inactive.

This problem falls under the rubric of control of the False

Table 1 Two example sets of

example p values for a ‘family’

of five methods versus a sixth

method, A, i.e. the p value rep-

resents the probability any of

these methods could actually be

better than A even though their

mean performance is worse

Method List 1 List 2

B 0.02 0.01

C 0.005 0.025

D 0.01 0.005

E 0.03 0.03

F 0.008 0.015
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Discovery Rate (FDR), as developed by Benjamini,

Hochberg and others [18].

Determine whether a series of methods are actually

equivalent to each other

In the above section we considered the case of a binary

categorization, up or down, yes or no, and the simple for-

mula that allows us to know if the difference in choices was

significant. An obvious generalization is when the number

of groups is greater than two. This has several potential

uses, for instance, we could be comparing methods that

produce categorizations over a number of examples. Per-

haps the categories are ‘‘antagonist’’, ‘‘agonist’’, ‘‘inactive’’

for some GPCR system, or perhaps they are some ordinal

ranking scheme, e.g. ‘‘1’’ to ‘‘5’’ for some property.

Suppose we have N examples to be classified into

M categories where method A distributes values as Ei

whereas method B distributes them according to Fi : are the

results different? Our ‘‘NULL’’ hypothesis is that they are

not different, therefore the question is whether we think

either method is a reasonable deviation from the frequen-

cies expected in each category. Consider the following sum

over categories:

v2 ¼
XM

i¼1

Ei � Ei þ Fið Þ=2ð Þ2

Ei þ Fið Þ=2 ¼
XM

i¼1

Fi � Ei þ Fið Þ=2ð Þ2

Ei þ Fið Þ=2
ð52Þ

I.e. we are dividing the square of the deviation from the

expected frequency by the expected frequency (formed

from the average of the two methods). We label this sum v2

because Pearson showed it is equivalent to the Chi squared

function described in Part One, i.e. the expected sum of the

square of random draws from a unit Gaussian [19]. E.g. if

you select N random numbers from a Gaussian of unit

width, square each number and add them together you

obtain a sum distributed as the Chi squared function. We

can develop a sense of why this must be true for Eq. 52 by

rewriting it in terms of observed class probabilities, p,

relative to the expect probability, P.

v2 ¼
XM

i¼1

N pi � Pið Þ2

Pi

ð53Þ

We should note that since the sum of probabilities is

constrained to one, there is one less degree of freedom that

in the sum, i.e. M - 1, i.e. just as we use (1/N - 1) rather

than (1/N) in calculating variances we should scale this

sum by (M - 1/M). If we recall that the variance for a

probability is P(1 - P) then this looks like:

v2 ¼
XM

i¼1

N Dpið Þ2

Vari
¼
XM

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dpi

Vari=N

s !2

ð54Þ

Each term here looks like a square of a t statistic for the

deviation of the frequency of observations for that category

from the expected, i.e. the sum looks like the Chi-squared

function. The degrees of freedom of that function (i.e. the

number of draws) is not M here but (M - 1) because the

probabilities have to add up to one, i.e. there is one less

degree of freedom than we expect. This is taken care of by

the fact that we have treated the variance as if it is just p not

p(1 - p), i.e. each denominator is actually larger than it

should be, reducing the sum by, on average (M - 1)/M.

This, then, is Pearson’s Chi-squared test for two meth-

ods of categorization. If, instead, we are comparing a single

method to a set of standard frequencies, Oi, we derive:

v2 ¼
XM

i¼1

Ei � Oið Þ2

Oi

ð55Þ

If we consider there being only two categories, returning to

the earlier binary example, the Chi-squared statistic is:

v2 ¼
X2

i¼1

Ei � N=2ð Þ2

N=2
¼
X2

i¼1

DN=2ð Þ2

N=2

Nv2 ¼ DNð Þ2
ð56Þ

Here we have only one degree of freedom (the difference)

and the Chi-squared value for 95 % significance is 3.84

(1.96 9 1.96) * 4.0, i.e. leads to an identical (asymptotic)

formula as in Eq. 20 in the previous section.

DNð Þ2 [ 4N ð57Þ

Chi-squared is reintroduced here because it plays a central

role in the evaluation of the significance of groups of

methods, as it does in Pearson’s test for categories. This is

especially clear in the derivation of Fisher’s F function that

lies at the center of both ANOVA and, more generally, the

comparison of ‘‘nested’’ models.

A ‘‘nested’’ model is simply one that is a more elaborate

version of a simpler one, e.g. if we go from a one-param-

eter model to a two-parameter model then the second

model is said to be ‘‘nested’’ relative to the first. ANOVA is

Fisher’s classic technique to determine if a technique

(method) is having an effect relative to a set of other

techniques (methods) [20]. For instance, you may have a

large population where each member has a set of charac-

teristics (e.g. smoker, vegan, gender, race). If you have

some outcome (e.g. disease prevalence) you can try to

separate out the population into sub-populations where

only one category varies and then attempt to say whether

that category is correlated with the outcome. Use of

ANOVA and its many variants is widespread in the med-

ical and social sciences and, initially, seems quite removed

from whether two models are equivalent. As a conse-

quence, at least in this author’s experience, ANOVA, while
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simple to perform, is conceptually confusing. Here, the

basics are described in a standard manner but are followed

by a simpler and more powerful explanation as to why

ANOVA works, and how it can be extended.

In ANOVA the starting assumption is that everything is

the same, e.g. there is no difference in the subpopulations

with different characteristics. Then, two ‘‘sums of squares’’

are calculated. The first is the sum of the squared differ-

ences of the average of each subpopulation from the

‘‘global’’ mean. This measures the ‘‘variance’’ of the sub-

populations’ averages from the mean of the entire popu-

lation, multiplied by the number of examples in the subset.

The second ‘‘sum of squares’’ is the sum of the squared

differences of each member of the population from its

‘‘local’’ subpopulation mean. (Note that the terms used here

of ‘‘local’’ and ‘‘global’’ are not usual, rather terms such as

‘‘between groups’’ and ‘‘within groups’’, respectively, are

often used). Formally, if there are M subpopulations, each

with a population of N, then we have for the two key sum-

of-squares:

SSglobal ¼ N
XM

i¼1

xh ilocali � xh iglobal
� 	2

SSlocal ¼
XM

i

XN

j¼1

xj � xh ilocali

� 	2
ð58Þ

Note, there is no need for each population to have the same

size, rather this has been chosen for simplicity and for easy

translation to the case where methods are being compared

to the same set of N datasets.

Each of these is a sum of squares of quantities drawn

from Gaussian distributions. The Gaussian width of the

‘‘global’’ term will be smaller than that for the ‘‘local’’ term

because it is drawing from the Gaussian distribution of an

average for a set of N methods, i.e. each term in the global

term is the difference of averages. But we know this width

will be smaller by exactly HN, because that is how many

items there are in each average. Thus, multiplying the sum

of such squared quantities by N makes up for this and then

both terms become draws from equivalent Gaussians (i.e.

Gaussians of the same width). In fact, if we divide each

term by the number of degrees of freedom of each sum then

they ought to be comparable, i.e. close to 1.0 if the methods

are equivalent to each other.

Mathematically the ratio of the two sums-of-squares

looks like the ratio of two Chi-squared functions. This is

precisely how Fisher’s F function is constructed, i.e.

F i; jð Þ ¼ v2i =i

v2j =j
ð59Þ

If the methods are actually distinct, i.e. have different

means, then the term in the denominator will be smaller

than expected and F(i,j) will be larger than one. The more

extreme the deviation the larger F becomes. As the Chi-

squared function represents a distribution, i.e. a probability

of a sum of squares sampled from a unit Gaussian, so does

F. As such, we can say how much of the distribution

(probability) lies beyond a certain value, i.e. we can tab-

ulate ‘significance’ values, i.e. the likelihood that methods

that are actually the same appear to be different. This is a

little more difficult than with the Student t test because now

there are two numbers, i and j, not just one, i.e. the sample

size.

As a worked example, suppose we have three methods

and their AUC scores across five protein systems, as in

Table 2 below:

It looks like method A is not as good as the other two.

The average performance across all systems is 0.694, and

the sum of squares of these method’s average scores from

this ‘‘global’’ average:

SSglobal ¼ 5� ½ 0:580� 0:694ð Þ2þ 0:754� 0:694ð Þ2

þ 0:748� 0:694ð Þ2� ¼ 0:0998

ð60Þ

The ‘‘local’’ sum of squares of method A is:

SS Að Þ ¼ 0:6� 0:58ð Þ2þ 0:65� 0:58ð Þ2

þ 0:7� 0:58ð Þ2þ 0:45� 0:58ð Þ2

þ 0:5� 0:58ð Þ2¼ 0:044

ð61Þ

For methods B and C, we have:

SS Bð Þ ¼ 0:01; SS Cð Þ ¼ 0:0152 ð62Þ

The total local sum-of-squares is then:

SSlocal ¼ SS Að Þ þ SS Bð Þ þ SS Cð Þ ¼ 0:0696 ð63Þ

Next we calculate the numbers of degrees of freedom for

both sums-of-squares. For the global term we have three

terms, each of which share a mean derived from them, i.e.

there are two degrees of freedom (i.e. one of the method

averages could be replaced using the mean and the other

two values). For the local sum there are fifteen squares but

we use three means, so there are twelve degrees of free-

dom. This gives us an F value of:

Table 2 An example of three methods and their performance, e.g. an

AUC value, measured over a set of five systems

System Method A Method B Method C

1 0.60 0.81 0.74

2 0.65 0.75 0.7

3 0.7 0.72 0.85

4 0.45 0.69 0.7

5 0.5 0.8 0.75

Average 0.580 0.754 0.748
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F ¼ 0:0998=2

0:0696=12
¼ 8:45 ð64Þ

If the methods were all essentially the same we would expect

F to be close to 1.0. As it is greater than 1.0 we need to know

whether a value of 8.45 would be likely, i.e. how likely would

it be to see such inter-method (global) variance relative to the

intra-method (local) variance that we observe. For this we

have to look at the level of significance associated with the

critical value for F(2,12) value, i.e. the ratio of Chi-squared

functions with two and twelve degrees of freedom. The 95 %

confidence value forF(2,12) is 3.88 so clearly we can be quite

confident in believing the methods are not equivalent. In fact,

the probability of seeing such a greater degree of variability of

the method mean values, given the variability within the

methods, is less than p = 0.01.

Suppose there are just two methods, A and B, how does

ANOVA then look?

SSglobal ¼ N Ah i � Ah i þ Bh i
2

� �2

þN Bh i � Ah i þ Bh i
2

� �2

¼ N

2
Ah i � Bh ið Þ2

SSlocal ¼
XN

i¼1

xAi � Ah i
� �2þ

XN

i¼1

xBi � Bh i
� �2

¼ N � 1ð Þ r2A þ r2B
� �

ð65Þ

The number of degrees of freedom for the global term is

one, for the local term it is (N - 1) 9 2. Therefore the F

factor is:

F ¼ N Ah i � Bh ið Þ2=2
N � 1ð Þ r2A þ r2B

� �
= N � 1ð Þ � 2ð Þ

¼ N Ah i � Bh ið Þ2

r2A þ r2B
� �

ð66Þ

This is exactly the square of the t statistic for the paired-

t test. In fact, given that the function F(1,N) is the square of

the Student t function this shows that the two methods are

exactly equivalent when comparing just two systems.

Alternate interpretation of ANOVA in terms of model

comparison

There is an alternate form of ANOVA that is appealing

because it extends the concept to a much wider range of

problems [21]. Rather than presenting the perhaps myste-

rious ‘‘between-groups’’ and ‘‘within-groups’’ concept,

suppose we looked at the two sums-of-squares as different

models for explaining the total variance across all exam-

ples. Rather than the ‘‘between-groups’’, let’s consider a

third sum-of-squares, namely the ‘‘total’’ sum-of-squares,

i.e. a sum of each of N systems and each M models:

SStotal ¼
XM

i¼1

XN

j¼1

xij � xh i
� 	2

ð67Þ

We would normally refer to this as (3N - 1)*Vartotal, i.e.

it’s an estimate of the variance using all the examples and

the global mean. What is noteworthy is that:

SStotal ¼ SSglobal þ SSlocal ð68Þ

This follows from:

SStotal ¼
XM

i¼1

XN

j¼1

xij � xh iglobal
� 	2

¼
XM

i¼1

XN

j¼1

xij � xh ilocali þ xh ilocali � xh iglobal
� 	2

¼
XM

i¼1

XN

j¼1

xij � xh ilocali

� 	2
þ
XM

i¼1

XN

j¼1

xh ilocali � xh iglobal
� 	2

� 2
XM

i¼1

XN

j¼1

xij � xh ilocali Þð xh ilocali � xh iglobal
� 	

¼ SSlocal þ SSglobal

ð69Þ

The final equivalence arises because the third term sum

must be zero. We can also derive that the degrees of

freedom for the total term has to equal that for the global

and local terms, e.g.

df totalð Þ ¼ NM � 1 ¼ M � 1þM N � 1ð Þ
¼ df globalð Þ þ df localð Þ ð70Þ

Given this identity we can change the F statistic to look

like:

F ¼ SSglobal=dfglobal
SSlocal=dflocal

¼ SStotal � SSlocalð Þ= dftotal � dflocalð Þ
SSlocal=dflocal

ð71Þ

We can look at the RHS of the equation in a completely

new way. We can view the numerator as the improvement

in the ‘‘error’’ in a model that uses a single number (the

global mean) to predict all the values in the set, as opposed

to having a different mean for each method. The F function

becomes a measure of model improvement. In this guise it

is a much more powerful entity and is know as the F test

for nested models (as here), i.e. where we add explanatory

parameters and look to see whether the improvement in the

sum of the errors (squared) is large enough, in a relative

sense, to justify a more complex model. ANOVA is just

one example of an F test where the simple model has a

single mean (all methods are equivalent) versus a separate

mean for each grouping (each model is distinct).

One of the advantages of looking at ANOVA in this way

is that it is then straightforward to think of variations. For

instance, suppose we want to test whether a subset of
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methods is equivalent but the remainder are different—

remember ANOVA actually tests whether all the methods

are different from each other. Here the SStotal term would

remain the same but the SSlocal term would use the global

mean for each method in the subset we assume equivalent.

We would then adjust the degrees of freedom, dflocal, to

reflect how many different means are present in the SSlocal
term, calculate F and compare it to the critical value of

interest for F(dfglobal, - dflocal, dflocal).

What is great about the F test is that as long as we

expect the errors in a prediction method to be distributed in

a Gaussian manner it is a quite general test to control for

parameterization in nested models. All we have to do is to

replace the sums of squares with those produced in making

predictions with the two models being compared. Although

outside the scope of this article, analytic approaches for

assessing over-parameterization, such as the Fisher F test,

are very attractive as an alternative to cross-validation or

bootstrapping, for instance Rivals and Personnaz [22]. A

similar example exists for Pearson’s r2, known as the

adjusted r2, is defined as [23]:

r2 ¼ r2 � 1� r2
� � p

N � p� 1
ð72Þ

Here N is, as usual, the number of data points and p is the

number of parameters introduced into themodel to fit the data.

Hence, the second term will tend to reduce r2. This is appro-

priate as more parameters may improve the apparent r value

without actually adding predictive power. Thus adjusted r2

values are frequently used to compare models with different

numbers of fitting parameters. Note, however, that Romero

points out that this construct lacks statistical analysis of risk,

i.e. the discernment of how often you will be led astray into

thinking one r2 is actually greater than another. In fact, he

recommends the use of an F test! [24].

Correlated methods

When ANOVA is used in medical, economic or social sci-

ences it is typically applied to groupings of people, social

strata, countries, etc. In these cases each example is a distinct

entity, i.e. someone who smokes and is a vegan is not also a

smoker and a carnivore. However, the examples under study

in comparingmodels in computational chemistry are often the

exact same entities under multiple treatments. For instance, in

the example in Table 2 with three methods and five systems,

the exact samefive systemswere used to evaluate eachmodel.

The assumptions underlying the elegant mathematics of the

F test are that the sums-of-squareswe calculate in the local and

global sums are independent draws from unit Gaussians. But

this is far from guaranteed, as we have seen in considering the

comparison of a pairs of methods. As such, we have to take

care ifwewant to obtain good estimates of significance,which

include consideration of correlation between methods. As

with theHolm–Bonferroni adaption to successive significance

testing, ignoring correlation typicallymeans that tests become

more conservative than necessary, i.e. if something still seems

significant under the assumption of independence theywill be

so under more exacting consideration of correlation. How-

ever, the reversemaynot be true, i.e. if your test says things are

the same and assumes independence thatmaynot be truewhen

correlation is included.

Dealing with correlation for multi-method comparison is

conceptually more difficult, and more mathematically

involved. The key concept is the idea that a linear trans-

formation of correlated random variables can bring us back

to a set of random variables that now act as uncorrelated,

i.e. independent. Tests meant for the original variables are

now applied to the transformed variables. If such a test

suggests that these transformed variables come from the

same distribution, e.g. are equivalent, then so are the

original variables. The key concept is how to generate the

independent variables. This revolves around knowing the

covariance matrix, i.e. the matrix with element (i,j) equal

to the covariance of method i and j. This is a symmetric

matrix, i.e. covar(i,j) = covar(j,i) and a linear transfor-

mation will diagonalize this matrix with real eigenvalues.

As an example of a three method system:

V ¼ covar x3x3ð Þ ¼ 1

N � 1

x1
!
x2
!
x3
!

2

4

3

5: x1
! x2

! x3
!
 �

ð73Þ

Where each entry, x, is a vector of results overM systems, e.g.

x1
!¼ x1;1 � xh i1; x1;2 � xh i2; . . .; x1;M � xh iM

� �

V ¼
var 1; 1ð Þ covar 1; 2ð Þ covar 1; 3ð Þ
covar 2; 1ð Þ var 2; 2ð Þ covar 2; 3ð Þ
covar 3; 1ð Þ covar 3; 2ð Þ var 3; 3ð Þ

2
64

3
75

¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

2

64

3

75
k21 0 0

0 k22 0

0 0 k23

2

64

3

75
a11 a21 a31

a12 a22 a32

a13 a23 a33

2

64

3

75

¼ AK2AT ð74Þ

ThematrixA is a generalized rotationmatrix, i.e. its transpose

is its inverse. Here, the eigenvalues have been written as

squares because we know they are positive and because it

allows us to define the inverse square root of this matrix:

V�1=2 ¼ A

1

k1
0 0

0
1

k2
0

0 0
1

k3

2

666664

3

777775
AT ¼ W ð75Þ

It should be easy to see that, given the rotation matrix A is

orthogonal to its transpose, that W2 gives us the inverse of
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the covariance matrix, V-1. As such, W forms a transfor-

mation that combines the three methods into a new set of

three methods, y1, y2 and y3, that are independent of each

other and each have unit variance.

WVWT ¼ 1

N � 1
W

x1
!
x2
!
x3
!

2
4

3
5: x1

! x2
! x3

!
 �
WT

¼ 1

N � 1

y1
!
y2
!
y3
!

2
4

3
5: y1

! y2
! y3

!
 �
¼ I ð76Þ

Therefore, in this new ‘‘coordinate’’ frame, we can calcu-

late a Chi-squared statistic with M - 1 degrees of freedom

that can be used in ANOVA. The form of this sum in the

transformed ‘‘coordinates’’ is:

v2 ¼ xh i
�!

� l1~
� 	T

WT �W � xh i
�!

� l1~
� 	

ð77Þ

Where the x vector is the vector of averages for each

method, 1 is a vector of ‘‘1’’s and l is the scalar mean that

minimizes this (Chi-squared) expression. It is straightfor-

ward to show that

l ¼ 1T
�!

V�11~
� ��1

1T
�!

� V�1 � xh i
�!

ð78Þ

For this value of l Chi-squared takes the form:

v2 ¼ xh iT
��!

V�1 xh i
�!� �

� xh iT
��!

V�11~ 1T
�!

V�11~
� ��1

1T
�!

V�1 xh i
�!

 !
ð79Þ

The first term here replaces the sum of x2 in a uncorrelated

Chi-squared and the second term replaces the square of the

mean of these terms, divided byM, the number of methods.

This is equivalent to the SSglobal term in ANOVA. We can

also calculate the equivalent of the ‘‘local’’ ANOVA term

using the ‘‘local’’ averages of each transformed method.

Distinguishing single methods from a set of methods

If we run ANOVA, either on uncorrelated or correlated

data, we might determine that all the methods are not

equivalent, i.e. one or more are statistically better or worse.

How to we prove this is the case for a particular method?

If the methods are uncorrelated then we can follow the

prescription of Holm and Bonferroni, i.e. we can test

whether a particular method is better than the others by

assessing if it is significant enough in a step-down

method. In fact, if the methods are independent one can

adopt a slightly more powerful step-up procedure due to

Hochberg.

For completeness, the Honest Significance Difference

(HSD) method of Tukey should also be mentioned [25, 26].

This approach involves its own special function that mea-

sures the expected maximum separation between methods

drawn from a Student t-function of a given number of

degrees of freedom. Each difference between two methods

average performance is then turned into a ‘‘t-like’’ statistic

by dividing by a pooled estimate of the standard deviation

of this average, e.g.

tHSD i; jð Þ ¼ ih i � jh ij jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1 vari= N �Mð Þ

q ð80Þ

As an example, for the three methods, A, B and C described

in Table 2, we obtain a pooled standard deviation (the

denominator of Eq. 80) of 0.034 (N = 5, M = 3). The

value of the HSD function for three methods, each with five

examples at 95 % significance is 3.77 (note, tabulated

versions of this function are not easy to find!). This is then

compared to the HSD t values for the difference between

each pair of methods, e.g.

t
A�Bj j
HSD ¼ 5:12; t

A�Cj j
HSD ¼ 4:94; t

B�Cj j
HSD ¼ 0:18; ð81Þ

Clearly, as expected, A is significantly different from B and

C (tHSD[ 3.77), whereas B and C are statistically similar

(tHSD\ 3.77).

If the methods are correlated then the situation is more

demanding.However,wehave all the tools necessary from the

preceding sections. First, extract out the method of interest.

Second, for the remaining methods, run the procedure above

for constructing uncorrelated linear superpositions for meth-

ods. Let’s assume that the Chi-squared test on this remainder

set show that theydonot showsignificantly different behavior.

We can then test our chosen method against each of the linear

superposition of methods for significance, following the

Holm–Bonferroni step-down approach or the Hochberg step-

up approach (the latter would be preferred as we know the

methods being tested against are now independent). Note that

the superpositions of (equivalent) methods will be correlated

with our chosen method; it is just that they are not correlated

within themselves that matters.

If more than one method is to be tested then we can

follow a hybrid approach, i.e. we can adapt ANOVA as

described above to test whether sets of methods are better

described by a single mean or individual means, via an

F test. The situation is, of course, more complicated when

methods are correlated. However there is nothing to stop us

developing subsets such that each are made into linear

superpositions of methods. Such an approach then

‘‘blocks’’ of methods that are statistically equivalent, but

which are statistically different from other blocks. These

methods follow fairly naturally from the above exposition
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but the interested reader is directed for more details to what

is called Structural Equation Modeling (SEM). SEM con-

siders such ‘block’ significance with much more rigor than

can be provided here [28].

Depiction of statistical significance of sets of methods

When a paper is written to compare different methods it is

quite typical to give a histogram representing the perfor-

mance of each methods, where each bar is decorated with

error bars. However, such depictions do not show the inter-

correlations between methods that, as we have seen, can

affect how the differences between performances ought to

be viewed. One solution is to present the complete matrix

of inter-method difference along with associated error bars

on such differences. Although such data reporting is

important for completeness it is sparse in its interesting

content. For instance, if method A is significantly better

than method B, and method B is significantly than method

C then it is unlikely that method A is worse than method C.

What should be inherently of interest is harder to discern

from either a traditional array of histogram bars or from a

matrix of method correspondences. For instance, we would

like to know what blocks of methods are essentially

equivalent, and which are better than others. Figure 8

presents a suggestion for the depiction of the performance

of a set of methods, in this case A through F. The rules for

generating this depiction are simple. Methods are repre-

sented by circles, inscribed with their average performance

(optionally with 95 % ranges of that performance). Meth-

ods that are statistically indistinguishable from each other

are put in the same column, ordered within that column

from top (best) to bottom (worse). The columns are ordered

from left (best) to right (worse) based on the performance

of the method at the top of the column. Methods that are

statistically equivalent between columns are joined by a

dotted line (e.g. see F and E, B and D below).

If, for instance, all methods are statistically equivalent

then this reduces to a single column ordered from best to

worse, top to bottom. Figure 8 illustrates a more interesting

example. Methods E, A and B form a grouping (the dif-

ference between any pair in this set is insignificant at 95 %

confidence), as do D and C. Although method F is statis-

tically better than methods A, B, D and C, is it not different

from method E. Similarly, methods B and D are statisti-

cally similar, even though B stands out from C.

Discussion of conceptual issues concerning
confident intervals and significance testing

The idea of a p value is that it tries to summarize how

likely it is that something we thought we observed was in

fact due to chance. For instance, we made a new scoring

function and tried it out on a few of our favorite systems

and it seemed to do better than our old one. Is this real or

due to random chance? This was the central plank of

Fisher’s efforts to make statistics ‘‘scientific’’, i.e. provide a

firm foundation for determining what we actually know

during research.

However, it turns out that p values have real problems,

so much so that there are periodic pushes in some fields to

abandon them from publications [28]. One of the issues, as

discussed below, is that they are not an intrinsic aspect of a

system, or pair of systems, but an extrinsic property, i.e. the

more measurements on a system the smaller a p value can

be made. Any drug can be made significant at a p = 0.05

level if the clinical trial is made large enough (although not

necessarily significantly better).

Another concern is that p values are often misunder-

stood. Suppose we have designed a blood test for exposure

to a certain virus and we set the threshold for ‘‘signifi-

cance’’ at 95 %, i.e. if someone has not been exposed (the

‘‘NULL’’ model) then the chance of exceeding this

threshold due to random variation is 5 %. Suppose you

now take that test and come up positive. What is the

probability you have been exposed? The answer is almost

certainly not 5 %. Suppose the prevalence of exposure in

the general population is 2 %, and suppose that if you have

the condition then the probability that your blood test

comes back positive is 90 % (the ‘‘power’’ of the test).

Suppose we now test 1000 people. We would expect about

20 people to have actually been exposed and 18 to be

correctly diagnosed. A total of 980 people have not been

exposed but, due to random variation 5 %, i.e. 49, will be

misdiagnosed. This means that a total of 18 ? 49 = 67

Fig. 8 A suggestion as to how to represent multiple method

performance where the statistical relevance of relative performance

can be made obvious
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will be diagnosed as having been exposed, of which only

18 really have, i.e. your chances of actually having been

exposed is actually (18/67) or about one in four, not one in

twenty. The reason for the difference in expectation and

reality can be traced to a very basic misunderstanding: the

‘‘Fallacy of the Transposed Conditional’’ (FTC).

Suppose a person is described to you as being quiet and

very organized and then you are asked whether this person

is more likely to be a farmer or a librarian. Most people

would chose the latter, and incorrectly. There are far more

farmers in the world than librarians and so even though an

average librarian is more likely be quiet and organized than

an average farmer, the odds favor the person described

being a farmer. This is an example of transposing a con-

ditional. Suppose we agree to these general characteriza-

tions; in formal terms we would say:

pðquiet & organizedjlibrarianÞ
[ pðquiet & organizedjfarmerÞ

Here, the ‘‘|’’ symbol should be read as the word ‘‘given’’,

e.g. the term on the left reads: the probability that a person

is quiet and organized given they are a librarian. The FTC

assumes that if the above statement is true then:

pðlibrarianjquiet & organizedÞ
[ pðfarmerjquiet & organizedÞ

I.e. we assume that the probability someone is a librarian

given they are quiet and organized is greater than the

probability someone is a farmer given they are quiet and

organized.To see why the FTC is to blame for misinter-

preting the viral exposure test above, and much more

besides, consider what we initially know:

p Test PositivejNot Exposedð Þ ¼ 0:05

The FTC can lead us to think, therefore, that:

p Not ExposedjTest Positiveð Þ ¼ 0:05

Then, since someone can only have been exposed or not

exposed:

p ExposedjTest Positiveð Þ ¼ 0:95

which is the naı̈ve interpretation of being tested as positive.

The solution to the avoidance of the FTC was proposed

by Bayes, and presented more formally by Laplace many

years later. It is known as Bayes’ Equation and is, surely,

one of the most profound equations [29].

p AjBð Þ ¼ p BjAð Þp Að Þ
p Bð Þ ð82Þ

This merely says that to transpose the conditional we

have to also multiply by the ratio of independent proba-

bilities, or prevalences. In our examples of farmers and

librarians this would look like:

p librarianjquiet & organizedð Þ

¼ pðquiet & organizedjlibrarianÞ p librarianð Þ
p quiet & organizedð Þ

p farmerjquiet & organizedð Þ

¼ pðquiet & organizedjfarmerÞ p farmerð Þ
p quiet & organizedð Þ

As p(farmer) 	 p(librarian) it is unlikely that, given the

data of ‘‘quiet&organized’’ any intrinsic likelihood

towards librarian (the first term on the right) is sufficient to

win the argument. Similarly, for the viral exposure test:

p ExposedjTest Positiveð Þ

¼ p Test PositivejExposedð Þ � p Exposedð Þ
p Test Positiveð Þ

Note that in this last line we have substituted all the

essential quantities about our test, namely the significance

(0.05), the power (0.9) and the prevalence (0.02), to arrive

at the correct probability.

Does this have relevance to this article? At first glance it

would seem that this is unrelated to calculating significance

values or confidence regions. In fact, it is quite central.

Much of what we take for granted in calculating error bars

is, in fact, based on a FTC! In Part One we stressed how

much of the foundation for statistical testing is based on the

Central Limit Theorem (CLT). This states that an average

p ExposedjTest Positiveð Þ

¼ p Test PositivejExposedð Þ � p Exposedð Þ
p Test PositivejExposedð Þ � p Exposedð Þ þ p Test PositivejNot Exposedð Þ � p Exposedð Þ

¼ 0:9� 0:02

0:05� 0:98þ 0:9� 0:02
¼ 0:018

0:049þ 0:18
¼ 18

67

ð83Þ
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will be distributed as a Gaussian, centered on the true

average. Put formally, using the language of conditional

probabilities, this looks like:

pðObservedjTrue AverageÞ / Gaussian True Averageð Þ

However, what we typically say when we calculate confi-

dence limits using any of the techniques presented in this

paper or its predecessor is:

pðTrue AveragejObservedÞ / Gaussian Observedð Þ

This is notwhat the CLT says! Note that formal significance

testing does not fall into this fallacy. Instead, it states that:

pðObservedjNull HypothesisÞ / Gaussian Null Hypothesisð Þ

I.e., given the null hypothesis, the observed results will be

distributed as a Gaussian around the average of that

hypothesis. This is why statements describing significance

testing often seem tortuous, e.g. the probability that an

effect equal to or greater than that observed not being what

we observed! As we have seen above, this does not save

significance testing being misinterpreted; however strictly

as defined it is formally correct. Not so for assuming that

confidence limits naively follow from the CLT. And yet

this is how error bars are typically presented, e.g. calculate

an average and standard deviation from the observed data;

can this be so wrong?

In fact, it is often not wrong. Just because transposing

the conditional is formally incorrect does not mean doing

so is always inappropiate. It depends, as in Bayes Theorem,

on the unconditional probabilities, i.e. the probabilities as

known before the data was observed.

p AjBð Þ ¼ p BjAð Þp Að Þ
p Bð Þ ¼ p BjAð Þ if p Að Þ ¼ P Bð Þ

Consider the case where we are comparing two methods,

A and B. If we did not run any tests on the methods, i.e. we

have no data with which to compare them, then we have no

a priori reason to expect one to be better than the other, i.e.

p(A[B) = p(B[A). Under these conditions, transposing

the conditional is perfectly legal.

Even here, though, we have to be careful. Formally,

Bayes tells us:

p Diff jdatað Þ ¼ p datajDiffð Þ � p Diffð Þ
p datað Þ

¼ p datajDiffð Þ � p Diffð Þ
rp datajDiffð Þ � p Diffð Þ ð84Þ

where ‘‘Diff’’ is the difference in performance between two

methods and ‘‘data’’ is the difference we observe. The LHS

is the distribution of the actual difference given the data,

i.e. the distribution on which we would base a confidence

interval. Suppose we have the usual Gaussian distribution:

p datajDiffð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
N

2pr2

r
e
�N datah i�Diffð Þ2

2h2
data

 !

p Diffð Þ ¼ constant ¼ d

ð85Þ

I.e. the first term in the numerator of Bayes’ Equation is as

given by the CLT, the second just says that the a priori

probability of seeing a given difference is a constant pro-

portional to the (small) width, d, we associate with this

difference. Then the integral on the denominator is simply

the normalization of the CLT Gaussian, i.e. equal to one.

Therefore:

pðDiff jdataÞ ¼
ffiffiffiffiffiffiffiffiffiffi
N

2pr2

r
e
�N Diff� datah ið Þ2

2h2
data

 !
d ð86Þ

Here the ordering of ‘‘data’’ and ‘‘Diff’’ in the exponential

has been switched just to give emphasis to this being a

formula for the distribution of ‘‘Diff’’, i.e. the difference

between the observed and actual difference. This is exactly

what we are typically incorrectly taught the CLT proposes

for error bars/confidence limits on a measurement. It is

incorrect because consider if p(Diff) is not a constant. After

all, do we really expect any difference in methods to be

equally likely? We probably expect a small difference to be

more likely. This is information that is ignored in the FTC

and can actually affect the error bars.

More importantly is the case in which p(Diff) is non-

symmetric, i.e. we have reason to believe that A is superior

to B even before we take any measurements. Although

outside the scope of this article, adding prior information in

favor of one method simply makes it more difficult for the

less favored method to ‘prove’ itself. For example, many

docking programs have been around for a long time, do we

really expect some new method to give radically better

results? Perhaps, but it would seem reasonable to evince

some skepticism unless presented with over-whelming

evidence. Bayes provides a way to incorporate both this

evidence and that skepticism. In general, such prior infor-

mation acts as a ‘deflator’ of the observed difference.

Although this might seem to only apply to the comparison

of computational methods it also applies to experimental

measurements. For instance, if we have empirical evidence

that it is less likely to find highly active compounds than

less active compounds it is necessary to adjust observed

affinities lower by Bayes reasoning.

Recently the Bayesian community has provided a

powerful framework for reevaluating p values in terms of

odds-ratios [30]. An odds-ratio is just the ratio of the odds

in favor of observations being derived from one mecha-

nism as opposed to the odds in favor of a distinct and

different mechanism. This is a quite radical revision

because it puts the classical ‘‘null hypothesis’’ on the same
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footing as the competing hypothesis and merely asks,

‘‘Which is more likely?’’ Non-experts might well say,

‘‘Well, isn’t this exactly what significance testing does?’’ It

is certainly how it is often presented; however, actually

what is being provided are the odds against the null

hypothesis, not for the new hypothesis. Odds-ratios correct

this balance and their lack is being proposed as one of the

major reasons that many papers published quoting p values

for a particular effect are often found to be wrong in sub-

sequent publications. As a motivating example, this

approach would suggest that a finding that is significant at

the p = 0.05 level is actually likely to be incorrect about

one-third of the time!

A précis of this revision is as follows: Suppose some

effect is seen after some treatment. We have experience of

a null model, e.g. placebo or no treatment, and so know the

likelihood this could produce this observation—this is to

say, the traditional p value. However, what is the proba-

bility a new mechanism is producing this effect? As above,

we need to have a priori estimates for both the likelihood

that something different is happening, e.g. actual viral

exposure in the viral exposure test considered earlier, and

the likelihood that this difference can produce the effect.

For simplicity let us assume that it is equally likely that a

new mechanism is in play as is not, e.g. perhaps we’ve

prescribed a medicine that we think will affect a particular

pathway that will produce an etiology, but we are not

100 % certain, just 50 % sure. The second question is if

that pathway is being affected, could it produce the

observed effect? Of course, we don’t really know this, in

other words, we don’t know what the likely size of effect

may be (that is, after all, why we do the experiment).

Let us consider two extremes. The first is that the

probability for the size of effect of the new mechanism is

sharply peaked around zero, i.e. there is little probability of

producing the effect seen. For this example the odds-ratio

would favor the null-model, which at least has some

probability of randomly producing the observed outcome.

Now consider a second model in which we consider it

equally likely for the new mechanism to produce a small,

medium, large or even extra-large effect. Ironically, this

may also lead to an odds-ratio in favor of the null-model,

simply because the probability distribution for the new

mechanism does not favor any particular value—it is just

as likely to be predicting a larger effect as a smaller one.

This suggests that there must be some ‘‘golden mean’’, e.g.

some distribution between one sharply peaked around zero

and one with little discrimination that favors the new

hypothesis. Remarkably, this can be formally defined, i.e.

we can find the best probability function for the new effect,

given no prior information. This ‘best’ function produces

the best possible odds-ratio in favor of the new versus the

old mechanism after seeing the evidence. Even more

remarkably there is a simple formula by which to convert

from the traditional p value to the new odds-ratio in favor

of the new mechanism:

O ¼ odds� ratio ¼ � 1

e� p� ln pð Þ ð87Þ

For instance, if p = 0.05, then O = 2.45, i.e. the odds in

favor of the new mechanism are roughly two and half times

as high as those for the null model. Given that the proba-

bilities for either mechanism producing the effect must sum

to one, this means the probability of the effect being pro-

duced by the null model, rather than the new mechanism is

1.0/(2.45 ? 1) or about 29 %, i.e. much higher than the

expected 5 %.

Suppose we actually do have an estimate as to whether a

new pathway is being affected, and this probability is q.

Then the Bayesian odds-ratio is modified in a very simple

way, namely:

O qð Þ ¼ odds� ratio ¼ � q

e� p� ln pð Þ ð88Þ

I.e. the odds-ratio diminshes as a linear function of the

prior probability of there being a new effect.

Does this matter in the comparison of different methods

or approaches? Largely it does not. This application of

Bayes research applies when we do not know what is

responsible for an observation, mechanism one or mecha-

nism two. The typical use of statistics in this paper is not

aimed at whether an effect exists or not but whether we can

expect one method to be better or not. None-the-less, it is

important to be aware as to the general limitations of the

tools we use, whether they are p values or error bars.

A final concern regarding significance testing has

nothing to do with any application of Bayes but is perhaps

the most important, and that is the issue of size-of-effect

[31]. In Fig. 9 we illustrate this distinction. If the number

of observations on A and B increases then the averages

become better defined and the significance of the difference

in properties becomes greater (left panel). However, on the

right is shown the distribution of effects and these distri-

butions. Other than becoming better defined, these do not

change with sample size. What are the essential features of

A versus B? Is it the certainty with which we can say that

B is larger than A? Or is it the difference between the

averages? Or is it the overlap of the distributions illustrated

in the right-hand panel?

In an attempt to quantify the difference between A and B

that does not depend on sample size, i.e. is intrinsic to both,

Cohen defined a metric, d that bears his name [32]:

d ¼ Bh i � Ah ij jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2A þ r2B

p ð89Þ
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Note that this looks similar to a t statistics for Student’s

t test except it lacks any sample size, N. Cohen suggested

that d form a rough guide to the importance of the size of

effect, e.g. whether the improvement going from A to B is

significant (in a real world use of the word ‘significant’).

As applied in the social sciences, he recommended treating

effects with a d less than 0.2 as unimportant, those between

0.2 and 0.5 as of minor importance, between 0.5 and 0.8 as

significant and greater and 0.8 as important. In Part One we

considered ways to calculate the error bars on such a

quantity.

Cohen’s d is important because it does capture aspects

missing from significance testing on the average properties.

However, it is also a little unclear as to why Cohen’s ranges

are given their designations. In this author’s opinion it is

more useful to relate d to the probability that onemethodwill

outperform the other on the next application. That is to say, if

the performance of A on the next system is a random draw

from its distribution and that of B from its distribution, what

is the probability thatB outperformsA?This is clearly related

to both the widths of the distributions and the separation of

the peaks. This probability can be expressed in terms of the

erf function. However, if the widths of the respective dis-

tributions are roughly comparable then we can reinterpret d

in the range from zero to one as:

p B[Að Þ � 0:25d þ 0:5 ð90Þ

So, if d = 0.2 we have p(B[A) = 0.55 or p(A[B) =

0.45, i.e. B will outperform A eleven times out of twenty. If

d = 0.5 we have p(B[A) = 0.625 or p(A[B) = 0.375,

i.e. B will outperform A five times out of eight. If d = 0.8

we have p(B[A) = 0.7 or p(A[B) = 0.3, i.e. B will

outperform A seven times out of ten. Not only does this

give a more concrete feel to what Cohen’s d actually rep-

resents, these are potentially useful numbers. In the case of

d = 0.8 we know that the odds in favor of B are more than

2:1 and unless other characteristics are more important

(e.g. expense or time) B is the method of choice. However,

if d = 0.2 the advantage is slim. If there are compensating

advantages to method A it may well be the better choice.

It seems appropriate to end this section with this con-

sideration, i.e. whether a method is better than another, or

even how much better, may not be as important as the

probability it gives superior performance on the next

application. This is an aspect of a pair of methods that can

be applied to any utility function involving cost, speed,

expertise, and resources and so forth such that a judicious

choice can be made of utility. Exercises in assessing utility

are rare, although not without precedence [33]. There are

more ways to progress in computational chemistry than just

small increments in performance, a broader context is

important. All the examples in the previous sections that

attempt to provide error bars on methods are, therefore,

important also in providing distributions of properties or

differences and should be considered necessary tools for

the practicing computational chemist trying to make an

informed decision.

Conclusions

The field of computational chemistry is an empirical field;

statistical issues abound, from the quality of training sets to

the high variability of the performance of methods from

case study to case study, to the consideration of true utility

in the context of drug discovery and design. This paper,

and the one before it, has tried to present a clear framework

for at least calculating error bars on computational or

empirical quantities. With error bars one at least has a

sense of whether knowledge is precise or vague, or even

the precision with which we know how vague something

really is. These would seem essential to a field to judge

when new methods should supersede old ones, and to

provide nuance to predictions made with either.

Although there are issues to be considered in the eval-

uation of either p values or confidence limits, they both are

useful concepts, even if they need to be considered with

care. In particular, as comparisons are increasingly made

on common datasets, approaches to handle correlations

between methods are important. Clear winners will still be

Fig. 9 Illustration of the

difference between the averages

of two properties compared to

their distributions. The

distribution of averages changes

with the number of observations

(sharpens as that number

increases), whereas the

distributions are intrinsic

properties that become

stable with respect to increasing

sample size
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clear winners, but more subtle improvements, as often

occur as methods are continuously refined, need more

careful consideration. This paper briefly considered some

of the effects of parameterization on performance, e.g.

more parameters will reduce training set error, but at a

potential cost to future performance, and analytic approx-

imations to this risk. In fact, multiple hypotheses testing as

described herein is an implicit form of parameterization

that is often not recognized. There is insufficient space in

this article to begin to address the many techniques from

both information theory and Bayesian theory that exist to

address over-parameterization.

Finally, careful consideration of prior knowledge and

the incorporation of such into a testing framework, and the

appreciation for the importance of intrinsic variability, as

in the size-of-effect parameter from Cohen, are important

aspects for our field to consider. Both require careful

thought, yet both are richer ways of looking at data and the

world around us.
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