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A cognitive architecture aimed at cumulative learning must provide the necessary

information and control structures to allow agents to learn incrementally and

autonomously from their experience. This involves managing an agent’s goals as well as

continuously relating sensory information to these in its perception-cognition information

processing stack. The more varied the environment of a learning agent is, the more

general and flexible must be these mechanisms to handle a wider variety of relevant

patterns, tasks, and goal structures. While many researchers agree that information at

different levels of abstraction likely differs in its makeup and structure and processing

mechanisms, agreement on the particulars of such differences is not generally shared in

the research community. A dual processing architecture (often referred to as System-1

and System-2) has been proposed as a model of cognitive processing, and they are

often considered as responsible for low- and high-level information, respectively. We

posit that cognition is not binary in this way and that knowledge at any level of abstraction

involves what we refer to as neurosymbolic information, meaning that data at both high

and low levels must contain both symbolic and subsymbolic information. Further, we

argue that the main differentiating factor between the processing of high and low levels

of data abstraction can be largely attributed to the nature of the involved attention

mechanisms. We describe the key arguments behind this view and review relevant

evidence from the literature.

Keywords: artificial intelligence, cognitive architecture, levels of abstraction, neurosymbolic models, systems of

thinking, thalamocortical loop

1. INTRODUCTION

Cognitive architectures aim to capture the information and control structures necessary to
create autonomous learning agents. The sensory modalities of artificially intelligent (AI) agents
operating in physical environments must measure relevant information at relatively low levels of
detail, commensurate with the agent’s intended tasks. Self-supervised learning makes additional
requirements on the ability of an agent to dynamically and continuously relate a wide variety
of sensory information to high-level goals of tasks. The more general an agent’s learning is, the
larger a part of its perception-cognition “information stack” must capture the necessary flexibility
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to accommodate a wide variety of patterns, plans, tasks, and
goal structures. Low levels of cognition (close to the perceptual
senses) seem to quickly generate and use predictions to generalize
across similar problems. This is a key responsibility of a sensory
system because low-latency predictions (i.e., those that the
agent can act quickly on) are vital for survival in a rapidly
changing world. Natural intelligence has several outstanding
skills that Deep Learning does not have. Two of these, as
pointed out by e.g., Bengio et al. (2021), are that (a) it
does not require thousands of samples to learn, and (b)
it can cope with out-of-order (OOD) samples. As detailed
by e.g., Thórisson et al. (2019), another equally important
shortcoming is that Deep Learning does not handle learning
after the system leaves the laboratory—i.e., cumulative learning—
in part because it does not harbor any means to verify newly
acquired information autonomously. Such skills require not only
perception processes that categorize the sensory data dynamically
so that the lower levels can recognize “familiar” situations by
reconfiguring known pieces and trigger higher-level cognition
in the case of surprises, but also the reasoning to evaluate the
new knowledge that has been thus produced. Whenever high-
level cognition solves a new problem, the coordination allows
the new knowledge to modify and improve the lower levels for
similar future situations, which also means that both systems
have access to long-term memory. Architectures addressing both
sensory- and planning-levels of cognition are as of yet few and
far between.

While general agreement exists in the research community
that information at different levels of abstraction likely differs
in makeup and structure, agreement on these differences—
and thus the particulars of the required architecture and
processes involved—is not widely shared. It is sometimes
assumed that lower levels of abstraction are subsymbolic1

and higher levels symbolic, which has led some researchers
to the idea that Deep Learning models are analogous to
perceptual mechanisms while higher levels involve rule-based
reasoning skills due to a symbolic nature, and according
to e.g., Kahneman (2011), is the only system that can use
language. This view has been adopted in some AI research,
where “subsymbolic” processing are classified as System-
1 processes, while higher-level and “symbolic” processing
is considered belonging to System-2 (c.f. Smolensky, 1988;
Sloman, 1996; Strack and Deutsch, 2004; Kahneman, 2011).
According to this view, artificial neural networks, including
Deep Learning, are System-1 processes; rule-based systems are
System-2 processes (see Bengio, 2019; Bengio et al., 2021 for
discussion). Similarly, James (1890) proposed that the mind
has two mechanisms of thought, one which handled reasoning
and another which was associative. We posit instead that
cognition is not binary in this way at all, and that any level of
abstraction involves processes operating on what might be called
“neurosymbolic” knowledge, meaning that data at both high and
low levels must accommodate both symbolic and subsymbolic

1We classify data as “subsymbolic” if it can only be manipulated through

approximate similarity-mapping processes, i.e., cannot be grouped and addressed

as a (named) set.

information2 Further, we argue that a major differentiating
factor between the processing of high and low levels of data
abstraction can be largely attributed to the nature of the involved
attention mechanisms.

More than a century ago, James (1890) defined attention as
“taking possession by the mind, in clear and vivid form, of one
out of what may seem several simultaneously possible objects
or trains of thought...It implies withdrawal from some things in
order to deal effectively with others.” We consider attention to
consist of a (potentially large) set of processes whose role consists
in steering the available resources of a cognitive system, from
moment to moment, including (but not limited to) its short-term
focus, goal pursuit, sensory control, deliberate memorization,
memory retrieval, selection of sensory data, and many other
subconscious control mechanisms that we can only hypothesize
at this point and thus have no names for. Low-level cognition,
like perception, is characterized by a relatively high-speed,
distributed (“multi-threaded”), subconscious3 attention control,
while higher-level cognition seems more “single-threaded,” and
relatively slower. When people introspect, our conscious threads
of attention seem to consist primarily of the latter, while
much of our low-level perceptions are subconscious and under
the control of autonomous attention mechanisms (see Koch
and Tsuchiya, 2006; Sumner et al., 2006; Marchetti, 2011
for evidence and discussion about decoupling attention from
conscious introspection). Low-level perception and cognitive
operations may reflect autonomous access to long-term memory
through subconscious attention mechanisms, while higher-
level operation may involve the recruitment of deliberate
(introspectively-accessible) cognitive control, working memory,
and focused attention (Papaioannou et al., 2021).

Two separate issues in the System-1/System-2 discussion
are often confused: (1) Knowledge representation and (2)
information processing. The first is the (by now, familiar)
“symbolic vs. subsymbolic” distinction, while the second involves
the “automatic vs. controlled” distinction. Not only are these
two distinctly different, they are also not perfectly aligned;
while subsymbolic knowledge may be more often processed
“automatically” and symbolic knowledge seem generally more
accessible through voluntary control and introspection, this
mapping cannot be taken as given. A classic example is skill
learning like riding a bike, which starts as a controlled process,
and gradually becomes automatic with increased training. On
the whole this process is largely subsymbolic, with hardly
anything but the top-level goals introspectively accessible to the
learner of bicycle-riding (“I want to ride this bicycle without
falling or crashing into things”). Though we acknowledge the
above differences, in this article our focus is on the relations
and correlations between these two distinctions. Given the
complexity of the project and related experiments mentioned in

2By “symbolic” here we mean that the information is at the level of abstraction

close to human verbal description, not that it uses “symbols” that must be

interpreted or “grounded” to become meaningful.
3We consider “subconscious” cognitive processes the set of processes that are

necessary for thought and that a mind cannot make the subject of its own cognitive

processing, i.e., all its processes that it does not have direct intropsective access to.
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the following sections, this article cannot fully describe the work
in detail. It only covers certain aspects of the project within the
scope of attention suitable for a general audience.

2. RELATED WORK AND ATTENTION’S
ROLE IN COGNITION

The sharp distinction between two hypothesized systems that
some AI researchers have interpreted dual-process theory to
entail (cf. Posner, 2020) doesn’t seem very convincing when
we look at the dependencies between the necessary levels of
processing. For instance, it has been demonstrated time and
again (cf. Spivey et al., 2013) that expectations created verbally
(“System-2 information”) have a significant influence on low-
level behavior like eye movements (“System-1 information”).
It is not obvious why—or how—two sharply separated control
systems would be the best—or even a good—way to achieve
a tight coupling between levels thus demonstrated, as has
been noted by other authors (cf. Houwer, 2019). Until more
direct evidence is collected for the hypothesis that there really
are two systems (as opposed to three, four, fifty, or indeed
a continuity), it is a fairly straight forward task to fit the
available evidence onto that theory (cf. Strack and Deutsch,
2004). In the context of AI, more direct evidence would include a
demonstration of an implemented control scheme that produced
some of the same key properties as human cognition from
first principles.

We would expect high-level (abstract) and low-level
(perceptual/concrete) cognition to work in coordination, not
competition, after millions of years of evolution. Rather than
implementing a (strict, or semi-strict) pipeline structure between
S1 and S2, where only data would go upstream (from S1 to
S2) and only control downstream (from S2 to S1; cf. Evans
and Elqayam, 2007; Evans and Stanovich, 2013; Keren, 2013;
Monteiro and Norman, 2013), we hypothesize high-level
and low-level cognition to be coupled through a two-way
control-and-data communication, as demonstrated in numerous
experiments (see Xu et al., 2020 review article on cross-modal
processing between high- and low- level cognition). In other
words, the low-level cognition does not solely work under
control of the high-level one; rather, the two levels cooperate to
optimize resource utilization through joint control.

Through the evolution of the human brain, some evidence
seems to indicate that language-based conceptual representations
replaced sensory-based compositional concepts, explaining
the slower reaction times in humans than other mammals,
e.g., chimpanzees (see for instance; Martin et al., 2014).
However, this replacement may have pushed the boundaries of
human higher-level cognition by allowing complex propositional
representations and mental simulations. While animals do
not demonstrate propositional properties of human language,
researchers have found some recursion in birdsong (Gentner
et al., 2006) and in syntax among bonobos (Clay and
Zuberbühler, 2011). Moreover, Camp (2009) found evidence
that some animals think in compositional representational
systems. In other words, animals seem to lack propositional

thought, but they have compositional conceptual thought, which
is mostly based on integrated multisensory data. Since animals
appear to have symbol-like mental representations, these findings
indicate that their lower levels can be neurosymbolic. Evidence
for this can be found in a significant number studies from
the animal-cognition literature (for review, see Brannon, 2005;
Diester and Nieder, 2007; Hauser et al., 2007; Hubbard et al.,
2008; Camp, 2009).

Among the processes of key importance in skill learning,
to continue with that example, is attention; a major cognitive
difference between a skilled bike rider and a learner of bike-riding
is what they pay attention to: The knowledgeable rider pays keen
attention to the tilt angle and speed of the bicycle, responding by
changing the angle of the steering wheel dynamically, in a non-
linear relationship. Capable as they may already be of turning the
front wheel to any desired angle, a learner is prone to fall over
in large part because they don’t know what to pay attention to.
This is why one of the few obviously useful tips that a teacher of
bicycle-riding can give a learner is to “always turn the front wheel
in the direction you are falling.”

Kahneman (1973) sees attention as a pool of resources
which allows different process to share cognitive capabilities and
posits a System-1 that is fast, intrinsic, autonomous, emotional,
parallel, and a System-2 that is slower, deliberate, conscious,
and serial (Kahneman, 2011). For example, driving a car on
an empty road (with no unexpected events), recognizing your
mother’s voice, and calculating 2+2, mostly involve System-1,
whereas counting the number of people with eyeglasses in a
meeting, recalling and dialing your significant other’s phone
number, calculating 13 × 17, and filling out a tax form depend
on System-2. Kahneman’s System-1 is good at making quick
predictions because it constantly models similar situations based
on experience. It should be noted that “experience” in this
context relates to the process of learning, and its transfer—
i.e., generalization and adaptation—which presumably relies
heavily on higher-level cognition (and should thus be part
of System-2). Learning achieved in conceptual symbolic space
can be projected to subsymbolic space. In other words, since
symbolic and subsymbolic spaces are in constant interaction,
acquired knowledge in symbolic space has correspondences
in subsymbolic space. This allows System-1 to start quickly
using the projections of the knowledge, even based on System-
2 experience.

Several fMRI studies support the idea that sensory-specific
areas, such as thalamus, may be involved in multi-sensory
stimulus integrations (Miller and D’Esposito, 2005; Noesselt
et al., 2007; Werner and Noppeney, 2010), which are symbolic
representations in nature. Sensory-specific brain regions are
considered to be networks specialized in subsymbolic data that
originates from the outside world and different body parts.
Thalamo-cortical oscillation is known as a synchronization
mechanism or temporal binding between different cortical
regions (Llinas, 2002). However, recent evidence shows that the
thalamus, previously assumed to be responsible only for relaying
sensory impulses from body receptors to the cerebral cortex,
can actually integrate these low-level impulses (Tyll et al., 2011;
Sampathkumar et al., 2021). In other words, in the thalamus
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there are sensory-based integrations, and they are essential in
sustaining cortical cognitive functions.

Wolff and Vann (2019) use the term “cognitive thalamus”
to describe a gateway to mental representations because
recent findings support the idea that thalamocortical and
corticothalamic pathways may play complementary but
dissociable cognitive roles (see Bolkan et al., 2017; Alcaraz et al.,
2018). More specifically, the thalamocortical pathway (the fibers
connecting thalamus to cortex region) can create and save task-
related representations, not just purely sensory information, and
this pathway is essential for updating cortical representations.
Similarly, corticothalamic pathways seem to have two major
functions: directing cognitive resources (focused attention) and
contributing to learning. In a way, the thalamocortical pathway
defines the world for the cortex, and the corticothalamic pathway
uses attention to tell thalamus what the cortex needs from
it to focus. Furthermore, a growing body of evidence shows
that the thalamus plays a role in cognitive dysfunction, such
as schizophrenia (Anticevic et al., 2014), Down’s syndrome
(Perry et al., 2018), drug addiction (Balleine and Leung, 2015),
and ADHD (Hua et al., 2021). These discoveries support other
recent findings about the role of the thalamus in cognition via
the thalamocortical loop. The thalamus, a structure proficient
in using and integrating subsymbolic data actively, describes
the world for the cortex by contributing to the symbolic
representations in it. On the other hand, the cortex uses attention
to direct resources to refresh its symbolic representations
from the subsymbolic space. In Non-Axiomatic Reasoning
System (NARS; Wang, 2006) attention has the role of allocating
processing power for producing and scheduling inference steps,
whereby inferences can compose new representation from
existing components, seek out new ones, and update the strength
of existing relationships via knowledge revision. This control
also leads to a refreshing of representations in a certain sense,
as the system will utilize the representations which are most
reliable and switch to alternatives if some of them turn out to
be unreliable.

In the Auto-catalytic Endogenous Reflective Architecture
(AERA) attention is implemented as system-permeating control
of computational/cognitive resources at very fine-grain levels
of processing, bounded by goals at one end and the current
situation at the other (cf. Helgason et al., 2013; Nivel et al., 2015).
Studies on multitasking in humans have shown that a degree
of parallelism among multiple tasks is more likely if the tasks
involve different data modalities, such as linguistic and tactile.
Low-level attention continuously monitors both mind and the
outside world and assesses situations (i.e., relates it to active goals
and plans) with little or no effort, through its access to long-term
memory and the sensory information. Surprises and threats and
detected early in the perceptual stream, while plans and questions
are handled at higher levels of abstraction, triggering higher
levels of processing, which also provide a top-down control
of attention and reasoning. Theoretical foundations and design
features including the attention control mechanism of AERA can
be fund in the detailed technical reports (cf. Thórisson, 2009;
Nivel et al., 2013).

In contrast to so-called “attention” mechanisms in artificial
neural networks (which are for the most part rather narrow
interpretations of resource control in general), mental resources
(processing power and storage in computer systems) are
explicitly distributed, whereby filtering of input for useful input
patterns is just a special case. Another aspect is priming for
related information by activating it, which is not limited to
currently perceived information but can integrate long-term
memory content rather than just content of a sliding window (as
in Transformers) of recent stimuli in input space.

3. A NEUROSYMBOLIC ARCHITECTURE
AS SYSTEMS OF THINKING

The idea of combining symbolic and sub-symbolic approaches,
also known as the neurosymbolic approach, is not new. Many
researchers are working on integrated neural-symbolic systems
which translate symbolic knowledge into neural networks (or
the other way around), because symbols, relations, and rules
should have counterparts in the sub-symbolic space. Moreover,
the neurosymbolic network needs a symbol manipulation that
also supports preservation of the structural relations between the
two systems without losing the correspondences.

Currently, Deep Learning and related machine learning
methods are primarily subsymbolic. Meanwhile, rule-based
systems and related reasoning systems are usually strictly
symbolic. We consider it possible to have a Deep Learning
model that demonstrates symbolic cognition (without reasoning
mechanisms) that entails the transformation of symbolic
representations into subsymbolic ML/DL/statistical models. One
of the costs associated with such transformation, however,
is an inevitable loss of the underlying causal model which
may have existed in the symbolic representation (Parisi et al.,
2019). Current subsymbolic representations are exclusively
correlational; information based on spurious correlation is
indistinguishable from other correlations and causal direction
between correlating variables is not represented and thus not
separable from either of those knowledge sets.

There is an ongoing interest in bringing symbolic and
abstract thinking to Deep Learning, which could enable more
powerful kinds of learning. Graph neural networks with distinct
nodes (Kipf et al., 2018; Steenkiste et al., 2018), transformers
with discrete positional elements (Vaswani et al., 2017), and
modular models with bandwidth (Goyal and Bengio, 2020)
are examples of attempts in this direction. Liu et al. (2021)
summarize the advantages of having discrete values (symbols)
in a Deep Learning architecture. First, using symbols allows a
language for inter-modular interaction and learning, whereby
the meaning of symbols is not innate but determined by
the relationships with others (as in Semiotics). Second, it
allows reusing previously learned symbols in unseen or out-
of-order situations, by reinterpreting them in a way suitable
to the situation. Discretization in Deep Learning may provide
systematic generalization (recombining existing concepts) but it
is currently not very successful (Lake and Baroni, 2018).
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FIGURE 1 | Neurosymbolic metamodel and framework for artificial general

intelligence.

Current hybrid approaches attempt to combine symbolic and
subsymbolic models to compensate for each other’s drawbacks.
However, the authors believe that there is a need for a
metamodel which will accommodate hierarchical knowledge
representations. Latapie et al. (2021) proposed such a model
inspired by Korzybski’s (1994) idea about levels of abstraction.
Their model promotes cognitive synergy and metalearning,
which refer to the use of different computational techniques
and AGI approaches, e.g., probabilistic programming, machine
learning/Deep Learning, AERA (Nivel et al., 2013; Thórisson,
2020), NARS4 (Wang, 2006, 2013) to enrich its knowledge
and address combinatorial explosion issues. The current article
extends the metamodel as a neurosymbolic architecture5 as
in Figure 1.

In this metamodel, the levels of abstractions6 are marked
with L. L0 is the closest to the raw data collected from various
sensors. L1 contains the links between raw data and higher
level abstractions. L2 corresponds to the highest integrated levels
of abstraction learned through statistical learning, reasoning,
and other processes. The layer L2 can have an infinite number
of sub-layers since any level of abstraction in L2 can have
metadata existing at an even higher level of abstraction. L*
holds the high-level goals and motivations, such as self-
monitoring, self-adjusting, self-repair, and the like. Similar to
the previous version, the neurosymbolic metamodel is based on
the assumption of insufficient knowledge and resources (Wang,

4With open-source implementation OpenNARS at https://github.com/opennars/

opennars (accessed October 20th, 2021).
5This architecture has a “symbolic” aspect in the sense that there are components

that can be are accessed and manipulated using their identifiers. This is different

from traditional Symbolic AI where a “symbol” gets its meaning by referring to an

external object or event, as stated by Newell and Simon (1976).
6Korzybski (1994) states that knowledge is a multiordinal, hierarchical structure

with varying levels of abstraction.

2005). The symbolic piece of the metamodel can be thought
of as a knowledge graph with some additional structure that
includes both a formalized means of handling anti-symmetric
and symmetric relations, as well as a model of abstraction. The
regions in the subsymbolic piece of the metamodel are mapped
to the nodes in the symbolic system in L1. In this approach,
the symbolic representations are always refreshed in a bottom-
up manner.

Depending on the system’s goal or subgoals, the metamodel
can be readily partitioned into subgraphs using the hierarchical
abstraction substructure associated with the current focus of
attention. This partitioning mechanism is crucial to manage
combinatorial explosion issues while enabling multiple reasoners
to operate in parallel. Each partition can trigger a sub-focus of
attention (sFoA), which requests subsymbolic data from System-
1 or some answers from System-2. The bottom-up refreshing
and the neurosymbolic mapping between regions and symbols
allow the metamodel to benefit from different computational
techniques (e.g., probabilistic programming, Machine
Learning/Deep Learning and such) to enrich its knowledge
and benefit from the ‘blessing of dimensionality’ (cf. Gorban and
Tyukin, 2018), also referred to as “cognitive synergy.”

A precursor to the metamodel as a neurosymbolic approach
was first used by Hammer et al. (2019). This version was the first
commercial implementation of a neurosymbolic AGI-aspiring7

approach in the smart city domain. Later, the need for use of
the levels of abstraction in the metamodel became mandatory
due to the combinatorial explosion issue. In other words,
structural knowledge representation with the levels of abstraction
became very important for partitioning the problem, process
subsymbolic or symbolic information for each sub problem
(focus of attention, FoA), and then combine the symbolic results
in the metamodel. The metamodel with the level of abstraction
was actually achieved fully in the retail domain (see Latapie
et al., 2021 for details). The flow of the retail use case with the
metamodel is shown in Figure 2. The example for the levels of
abstraction using the results of the retail use case is shown in
Figure 3. Latapie et al. (2021) emphasized that no Deep Learning
model was trained with product or shelf images for the retail use
case. The system used for the retail use case is solely based on
representing the subsymbolic information in a world of bounding
boxes with spatial semantics. The authors tested the metamodel
in four different settings with and without the FoA and reported
the results as in Table 1.

Another use case for the metamodel is the processing of
more than 200,000 time series with a total of more than 30
million individual data points. The time series are network
telemetry data. For this use case, there are only two underlying
assumptions: The first assumption is that the time series or a
subset of them is at least weakly-related, such as time series from
computer network devices. The second assumption is that when
a number of time series simultaneously change their behaviors,
it might indicate that an event-of-interest has happened. For

7Artificial general intelligence (AGI) is the research area closest to the original

vision of the field of AI, namely, to create machines with intelligence on par with

humans.
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FIGURE 2 | Flow of retail use case for metamodel (from Latapie et al., 2021). (A) Raw input from sensor data services. (B) Rectified input from data structuring

services. (C) Unsupervised clustering and line detection from image processing services. (D) Bounding boxes from sensor data analytic services. (E) 2D world of

rectangles. (F) Symbolic data and knowledge graph from spatial semantics services.

detecting anomalies and finding regime change locations, Matrix
Profile algorithms are used (see Yeh et al., 2016; Gharghabi et al.,
2017 for Matrix Profile and Semantic Segmentation). Similar to
the retail use case, millions of sensory data points are reduced
to a much smaller number of events based on the semantic
segmentation points. These points are used to form a histogram
of regime changes as shown in Figure 4. The large spikes in the
histogram are identified as the candidate events-of-interest. Then
the metamodel creates a descriptive model for all time series,
which allows system to downsize millions of data points into a
few thousand structural actionable and explainable knowledge.

To test the metamodel with time series, we first use a subset
of the Cisco Open Telemetry Data Set8. After being able to
identify the anomalies in the data set, we create our own data
sets similar to the Open Telemetry Data. For this purpose, 30
computer network events, such as memory leak, transceiver
pull, port flap, port shut down, and such, are injected to a
physical computer network. The system is able to identify 100%
of the events with a maximum of 1 minute delay. For example,
Figure 4 represents the histogram of regime changes for a port
shut down event, which is injected at the 50th timestamp. Since
the sampling rate is 6 s, 1 min later (which is at the 60th
timestamp) the system detects a spike as an event-of-interest.
It can take time for a single incident to display a cascading
effect on multiple devices. When the injection ends at the 100th

8https://github.com/cisco-ie/telemetry

timestamp, another spike is observed within 10 timestamps,
which represents a recovery behavior for the network. It should
be noted that not all events necessarily mean an error has
happened. Some usual activities in the network, e.g., a usual
firmware update on multiple devices as events-of-no-interest,
are also captured by the metamodel. The metamodel learns to
classify such activities either by observing the network. Although
the time series processing using the metamodel does not require
any knowledge of computer networking, it can easily incorporate
such features extracted by networking-specific modules, e.g.,
Cisco Joy,9 or ingest some expert knowledge defined in the
symbolic world, specifically at the 2nd level of abstraction This
neurosymbolic approach with the metamodel can quickly reduce
the sensory data into knowledge, reason on this knowledge,
and notify the network operators for remediation or trigger a
self-healing protocol.

4. DISCUSSION

The neurosymbolic approach presented here evolved from
several independent research efforts by four core teams [NARS,
AERA, OpenCog (Hart and Goertzel, 2008)], all of which
are open source projects) as well as efforts at Cisco over
the past 10 years focusing on hybrid state-of-the-art AI for
commercial applications. This empirically-based approach to AI

9https://github.com/cisco/joy
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took off (circa 2010) with deep-learning based computer vision,
augmented by well-known tracking algorithms (e.g., Kalman
filtering/Hungarian algorithm). The initial hybrid architecture
resulted in improved object detection and tracking functionality,
but the types of errors, arguably related to weak knowledge
representation and poor ability to define and learn complex
behaviors, resulted in systems which did not meet our
performance objectives. This initial hybrid architecture was
called DFRE, Deep Fusion Reasoning Engine, which actually
lacked the metamodel. In order to improve the system’s ability
to generalize, NARS was incorporated. The initial architecture
used NARS to reason about objects and their movements in
busy city intersection with trains, busses, pedestrians, and heavy
traffic. This initial attempt at a commercial neurosymbolic system
dramatically improved the ability of the system to generalize
and learn behaviors of interest, which in this case were all
related to safety. In essence the objective of the system was
to raise alerts if any two moving objects either made contact

FIGURE 3 | Levels of abstraction for retail use case (from Latapie et al., 2021).

or were predicted to make contact as well as to learn other
dangerous behaviors such as jay walking, wrong-way driving,
and such. While this system worked well as an initial prototype
and is considered a success, there were early indications of
potential computational scalability issues if the number of objects
requiring real-time processing were to increase from the average
100 or so to say an order of magnitude more objects, such as
1,000. In order to explore this problem we then focused on a
retail inventory use case that required the processing of over
1,000 objects. As expected, DFRE suffered from the predicted
combinatorial explosion issues. In the retail use case, this
problem was solved via the metamodel’s abstraction hierarchy
which provides a natural knowledge partitioning mechanism.
This partitioningmechanismwas used to address the exponential
time complexity problem and convert it to a linear time
complexity problem.

While NARS enabled the system to learn by reasoning in an
unsupervised manner, there was a growing need in commercial
applications for a principled mechanism for unsupervised
learning directly from temporal data streams such as sensor data,
video data, telemetry data, etc. This is the focus of AERA as
well as internal Cisco project Kronos based on Matrix Profile
(Yeh et al., 2016). While there is a large body of work on
time series processing (FFT, Wavelets, Matrix Profile, etc.), the

FIGURE 4 | A histogram of regime changes from network telemetry data (A

port shut down event started at the 50th timestamp and ended at the 100th).

TABLE 1 | Experimental results from retail use case using metamodel.

Category
Without FoA (%) With FoA (%)

Precision Recall f1-score Precision Recall f1-score

Product 80.70 29.32 52.88 96.36 99.07 97.70

Shelf 8.82 18.75 12.00 82.35 87.50 88.85

Other 36.61 89.66 52.00 96.00 82.76 88.89

Overall accuracy 46.30 (min/max: 30.13/84.65) 94.73 (min/max: 88.10/100.00)

Bold values indicate the average accuracy after 10-fold testing.
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problem of dealing with large-scale time series and incorporating
contextual knowledge to produce descriptive and predictive
models with explanatory capability seems relatively unsolved at
the time of this writing. In our preliminary experimentation, both
AERA and Cisco’s Kronos projects are demonstrating promising
results. Incorporating AERA and Kronos into the hybrid
architecture is expected to result in enhanced unsupervised
learning and attention mechanisms directly from large-scale
time series.

This evolved hybrid architecture (ML/DL/NARS/Kronos
metamodel) is expected to promote cognitive synergy while
preserving level of abstraction, symmetric and anti-symmetric
properties of knowledge and using a bottom-up approach
to refresh System-2 symbols from System-1 data integration
(see Latapie et al., 2021 for details). Moreover, System-1
provides rapid responses to the outside world and activates
System-2 in case of a surprise such as an emergency or
other significant event that requires further analysis and
potential action. System-2 uses conscious attention to request
subsymbolic knowledge and sensory data from System-1, to
be integrated into the levels of abstraction inspired from
Korzybski’s work. Korzybski’s two major works (Korzybski, 1921,
1994) emphasize the importance of bottom-up knowledge. The
corticothalamic and thalamocortical connections play different
but complementary roles.

A balanced interplay between System-1 and System-2 is
important. System-1’s innate role is to ensure the many
faceted health of the organism. System-2 is ideally used to
help humans better contend with surprises, threats, complex
situations, important goals, and achieve higher levels in
Maslow’s hierarchy of needs. From an AI systems perspective,
contemporary Deep/Machine Learningmethods (includingDeep
Learning) have it the other way around: Causal modeling and
advanced reasoning are being solved in System 1, leveraging
statistical models which can be seen as an inversion of proper
thalamocortical integration.

5. CONCLUSIONS

While not conclusive, findings about natural intelligence
from psychology, neuroscience, cognitive science, and animal
cognition imply that both low-level perceptual knowledge and

higher-level more abstract knowledge may be neurosymbolic.
The difference between high and low levels of abstraction may
be that lower levels involve a greater amount of unconscious
(automatic) processing and attention, while higher levels are
introspectable to a greater extent (in humans, at least) and
involve conscious (i.e. steerable) attention. The neurosymbolic
metamodel and framework introduced in this article for artificial
general intelligence is based on these findings, and the nature of
the distinction between both systems will be subject to further
research. One may ask whether artificial intelligence needs to
mimic natural intelligence as a key performance indicator. The
answer is yes and no. No, because natural intelligence, a result
of billions of years of evolution, is full of imperfections and
mistakes. Yes, because it is the best way known to help organisms
survive for countless generations.

Both natural and artificial intelligences can exhibit astounding
generalizability, performance, ability to learn, and other
important adaptive behaviors when symbolic originating
attention and sub-symbolic originating attention are properly
handled. Allowing one system of attention to dominate, or
inverting the natural order (e.g., reasoning in the subsymbolic
space or projecting symbolic space stressors into the subsymbolic
space) may lead to suboptimal results for engineered systems,
individuals, and societies.
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