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In the present work we introduce the use of multiple docked poses for bootstrapping machine learning-
based QSAR modelling. Ligand-receptor contact fingerprints are implemented as descriptor variables. We
implemented this method for the discovery of potential inhibitors of the serine protease enzyme
TMPRSS2 involved the infectivity of coronaviruses. Several machine learners were scanned, however,
Xgboost, support vector machines (SVM) and random forests (RF) were the best with testing set accura-
cies reaching 90%. Three potential hits were identified upon using the method to scan known untested
FDA approved drugs against TMPRSS2. Subsequent molecular dynamics simulation and covalent docking
supported the results of the new computational approach.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Docking algorithms explore the conformational space of bound
ligand(s) by sampling numerous ligand conformations/poses
within the targeted binding site. The binding enthalpy of each
docked pose/conformation is evaluated employing force fields that
calculate interactions between ligand-protein complementary
groups [1–4]. However, docking engines ignore entropic contribu-
tions in binding and therefore need to be guided by scoring func-
tions to select realistic docked poses [4–33]. Modern docking
methods can reproduce an experimental ligand crystallographic
pose within high-ranking solutions. However, scoring functions
are usually unable to evaluate binding free energies to accurately
rank docked poses [1,3,34–37].

The concept of Ligand-Receptor Contacts Fingerprints (LRCFs) is
well established [38]. It proceeds by either mapping out all binding
site atoms that contact a list of docked potent ligands and evade
inactive compounds [38–41], or identify binding site atoms that
frequently contact a particular bound ligand during molecular
dynamics or related simulations [42–44]. Significant binding site
contacts can be transformed into pharmacophores [38–44]. A
related concept to LRCFs is the interaction fingerprints (IFPs)
[45–51], which were used as postdock equivalents to scoring func-
tions [45,46,52] or as means for virtual screening by similarity
search [46,49,53,54].

Machine learning (ML) in drug discovery involves the imple-
mentation of statistical means for learning and predicting molecu-
lar properties [55–62]. The following are popular ML algorithms
used in computer-aided drug design and discovery and were eval-
uated in the current research: Random Forest (RF) [61,63]; Naïve
Bayesian (NB) [64–68]; eXtreme Gradient Boosting (XGBoost)
[69,70]; K-nearest neighbors (kNN) [71]; Support vector machine
(SVM) [72,73]; probabilistic neural networks (PNN) [74–79]; and
multilayer perceptron (MLP) [80,81]. However, ML needs to be val-
idated vis-à-vis statistical accuracy. Bootstrapping (BS) is a com-
monly used statistical approach to assign accuracy values for ML
models. BS is a resampling method that uses random sampling
with replacement to assign accuracy measurements to sample esti-
mates particularly in situations of limited training data [82–84].

We herein propose to use multiple docked poses (up to hun-
dreds per ligand), generated by a number of docking engines/scor-
ing functions for a list of active and inactive ligands, to bootstrap
bioactivity ML classifiers using LRCFs descriptors. The rational is
based on a plausible assumption: Since docking algorithms imple-
ment reasonable enthalpy estimating methods, then all docked
conformers/poses are enthalpically plausible, particularly for
potent ligands. Therefore, ML-based convergence, among numer-
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ous docked poses/conformers of potent ligands, on certain group of
atom contacts within the binding site highlights the significance of
those contacts and their collective ability to classify docked virtual
screening hits, i.e., as active or inactive. This method is reminiscent
of 4D-QSAR, which uses molecular dynamics simulations to create
conformation-dependent molecular descriptors [179]. Still, our
approach is less computationally extensive and more suited for vir-
tual screening purposes.

We applied this innovative concept, i.e., bootstrapping ML with
multiple docked poses, to virtually screen and repurpose known
drug molecules against the COVID-19-related enzyme transmem-
brane serine protease 2 (TMPRSS2).

TMPRSS2 is a cell surface serine protease involved in priming
entry proteins necessary for respiratory viruses, e.g., influenza
and COVID19, to cross cellular membranes [85–94]. Several rever-
sible [90] and irreversible [95,96] inhibitors have been reported for
TMPRSS2 [86,88–92], e.g., nafamostat and camostat [97–102].

TMPRSS2 had no known crystallographic structure until
recently (PDB code: 7MEQ, Released 2021–04-21), nevertheless,
it was successfully modeled based on its close homologue hepsin
(PDB code 5ce1) [92]. Incidentally, our proposed approach of boot-
strapping ML with multiple docked poses is expected to be partic-
ularly useful in such a case where ligand–receptor crystallographic
structure is unavailable to help identify critical ligand-receptor
binding interactions.

Irreversible ‘‘covalent” inhibitors usually include reactive elec-
trophilic ‘‘warheads” capable of reacting with nucleophilic center
(s) within targeted binding sites [103–106]. However, for success-
ful covalent inhibition, irreversible bond formation should be pre-
ceded by reversible recognition [107,108] that specifically allows
the warhead close proximity to the targeted nucleophilic center
(Ser478 in TMPRSS2) [107,108]. In fact, presence of reactive war-
head in particular inhibitor represents an added value to enhance
bioactivity rather than an essential precondition for bioactivity.
This is why we were prompted to use docking tools developed
for reversible binders to bootstrap and generate ML models
intended for the identification of covalent binders, as shown below.

The following are reported warheads against serine hydrolases.
(i) b-lactam rings [106,109]. (ii) Carbamates [106,109–111] (iii)
Nitriles [112,113]. Two famous nitrile-based protease covalent
inhibitors are vildagliptin and saxagliptin [114,115].(iv) Michael
acceptors [107,116–119]. (v) Nitro groups [120–132]. (vi) Aromatic
esters. [97,133–136]. Table 1 shows the different warheads and
appropriate example on each.

The computational workflow in this project is shown in Fig. 1.
Firstly, a diverse set of known inhibitors are docked into TMPRSS2
binding pocket using 3 docking engines and 9 scoring functions.
The docked ligands include active and inactive compounds, i.e.,
against TMPRSS2, of reversible and irreversible binding capacity.
Reversible and irreversible active inhibitors are rather easy to
define. However, inactive reversible and irreversible inhibitors
warrant more explanation: These are molecules with or without
covalent warheads, respectively, which were explicitly reported
as being inactive against TMPRSS2.

The collected compounds were ionized, tautomerized and
docked/scored into TMPRSS2. Identical or closely similar docked
poses were filtered out using proper RMSD filter. Reasonable
docked poses (as judged by plausible consensus among docking
engines and scoring functions) were split into training and testing
sets for ML. Several ML methods were evaluated and the best were
used to predict the TMPRSS2 bioactivity classification of docked
poses of FDA-approved drugs. Promising hits were further evalu-
ated by covalent docking and molecular dynamics simulations.
Three hits were found to be potential potent inhibitors of
TMPRSS2, namely, capreomycin, aspoxicillin and fosamprenavir.
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2. Material and methods

2.1. Data collection

The literature was carefully searched for TMRPSS2 inhibitors.
The search identified 1064 TMPRSS2 inhibitors that can be
unequivocally classified as ‘‘active” (IC50 � 1000 nM) or ‘‘Inactive”
(IC50 � 10,000 nM). Details about these compounds are as follows:
Crystallographic ligands bound to the close homologue of
TMPRSS2, human hepsin, were collected and considered. In one
crystallographic complex, namely, 5ce1, the ligand is reported to
have anti-TMPRSS2 IC50 of 100 nM [137] and was therefore consid-
ered as ‘‘active, while in another crystallographic complex, namely,
1p57, the ligand is reported to have IC50 value of 40,000 nM, and
accordingly was considered as ‘‘Inactive”. Additionally, a group of
99 reversible TMPRSS2 inhibitors were collected [90], out of which
88 compounds were reported to have Ki values � 1000 nM, and
were therefore categorized as ‘‘actives”, while 2 compounds were
reported with Ki values � 10,000 nM and were categorized as ‘‘in-
actives”. Two additional covalent-bond forming TMPRSS2 inhibi-
tors were also included as ‘‘actives”, namely, nafamostat
(IC50 = 100 nM) and camostat (IC50 = 1000 nM) [97]. Both contain
aromatic ester warheadsand inhibit TMPRSS2 by covalent bonding
[138,139]. Additionally, 972 established ‘‘inactives” were collected
[97], out of which 150 were equipped with covalent warheads (30
nitro compounds, 29 Michael acceptors, 24 nitriles, 35 carbamates,
23 b-lactams and 9 aromatic esters).

However, to reduce the number of modeled compounds, it was
decided to use principal component analysis (PCA) to visually
select diverse representative molecules from the collected com-
pounds as in Fig. 2.

This shortlisted the modelled compounds into 107 divided into
15 ‘‘actives” (of which two are irreversible and 13 reversible inhi-
bitors) and 92 ‘‘inactives” (of which 12 have nitro warheads, 9 with
nitrile warheads, 6 Michael acceptors, 18 carbamates, 16 b-
lactams, 2 aromatic esters, one a-keto-amide and 26 compounds
lacking any reactive warheads). Table 2 shows the chemical struc-
tures of the modeled compounds and their reported bioactivities (if
available) [90,97,137,140].

Prior to docking, the modelled compounds were appropriately
ionized using the Prepare Ligands protocol in Discovery Studio
(version 4.5) assuming pH range of 6.5–8.5. Additionally, the same
protocol was also used to generate tautomeric forms of each com-
pound. This yielded 338 tautomeric forms (30 for the ‘‘active” inhi-
bitors and 308 for the ‘‘inactive” members) for subsequent docking
studies.
2.2. Homology modelling

2.2.1. Template search
Template search with BLAST and HHBlits has been performed

against the SWISS-MODEL template library (last update: 2020-
04-15, last included PDB release: 2020-04-10) [141,142]. A total
of 1166 templates were found.
2.2.2. Model building
Models are built based on the target-template alignment using

ProMod3 [143]. Coordinates which are conserved between the tar-
get and the template are copied from the template to the model.
Insertions and deletions are remodelled using a fragment library.
Side chains are then rebuilt. Finally, the geometry of the resulting
model is regularized by using a force field. In case loop modelling
with ProMod3 fails, an alternative model is built with PROMOD-II
[144].



Table 1
Major warheads used for covalent inhibition of serine proteases, their mechanisms of action, and examples on each.

Warhead Nucleophile-Electrophile Chemistry Example Target

Structure Name

b-Lactam L-647957 Elastase

Carbamate Ciluprevir NS3/4A protease
(Hepatitis C)

Nitrile Saxagliptin Dipeptidyl Peptidase
4

Michael Acceptors

EWG: Electron withdrawing group

Syringolin
A

b5 chymotrypsin-like
proteasomal subunit

Nitro 3-Nitro-
propionate

Isocitrate lyase

Aromatic ester Nafamostat Prostasin
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2.2.3. Ligand modelling
The ligand present in the template structure (5ce1) was trans-

ferred by homology to the TMPRSS2 model because it satisfies
the requested criteria by SWISS-MODEL: (a) The ligand is anno-
tated as biologically relevant Hepsin inhibitor, (b) the ligand is in
contact with the model, (c) the ligand is not clashing with the pro-
tein, (d) the residues in contact with the ligand are conserved
between the target and the template.
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2.2.4. Model quality estimation
The global and per-residue model quality has been assessed

using tools implemented in SWISSS-MODEL including: QMEAN
(Qualitative Model Energy Analysis) score and MolProbity score
[145]. The former is a composite of 6 energy values within the
homology model matrix related to protein nativeness with score
values � 4.0 indicating poor quality homology models. The later,
on the other hand, combines several protein parameters including:



Fig. 1. Computational workflow implemented in the current project.
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clash score, Ramachandran Plot criteria (Ramachandran Favored
and Ramachandran Outliers), rotamer outliers, C-Beta deviations
(geometry problems around alpha-carbons), bad bonds, and bad
angles [146].

2.3. Docking

The collected set of inhibitors (1–107, Table 1) were docked into
the homology model of TMPRSS2 using 3 docking engines: LibDock
[26,147], LigandFit [148] and CDOCKER [149,150]. The binding
pocket was defined as the cavity volume occupied by hepsin ligand
within the homology model. Docking details are found in Supple-
mentary Sections SM1-SM3.

2.3.1. Scoring of docked poses
Highest ranking docked conformers/poses generated by Lib-

Dock, LigandFit, and CDOCKER were scored using 9 scoring func-
tions: Jain [6,15], LigScore1, LigScore2 [148], PLP1, PLP2 [151],
PMF, PMF04 [152,153], -CDOCKER Energy and -CDOCKER Interac-
tion Energy [149].

LigScore1 and LigScore2 scores were calculated employing CFF
force field (version 1.02) and using grid-based energies with a grid
extension of 7.5 Å across the binding site. PMF scores were calcu-
lated employing cutoff distances of 12.0 Å for carbon-carbon inter-
actions and other atomic interactions, while PMF04 scores were
calculated employing cutoff values of 6.0 and 9.0 Å for
carbon-carbon interactions and other atomic interactions, respec-
tively. -CDOCKER Energy and -CDOCKER Interaction Energy were
calculated using Momany-Rone ligand partial charge method.

It was decided to select docked conformers/poses based on con-
sensus among the 9 scoring functions [154,155]. The consensus
function assigned a value of 1 for any molecular pose ranked
within the highest 20% by the particular scoring function; other-
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wise, it was assigned a zero value (i.e., fit was within the lowest
80%). Subsequently, the consensus function summed up the scores
for each molecular pose/conformer and ranked the molecular ori-
entations. Docked poses of a particular ligand that achieved con-
sensus among at least 4 scoring functions were selected for
subsequent processing.

2.3.2. RMSD filtering
The RMSD filter implemented in Discovery Studio 4.5 was used.

This filter calculates the Root Mean Square Deviation (RMSD) of
ligand poses (in Å). Only heavy atoms were included for RMSD cal-
culation (i.e., hydrogen atoms were excluded). RMSD values were
calculated with respect to all docked poses of a particular com-
pound. Poses with an RMSD <2.0 Å were considered duplicates of
which only the one having higher consensus score was retained.

2.4. Ligand-Receptor fingerprints

The docked poses/conformers of each modelled compound
were evaluated to identify their closest binding site atoms. A bind-
ing site atom that occurs within � 2.5 Å of any atom within docked
ligand pose is allocated an intermolecular contact value of ‘‘one”,
otherwise it is given a contact value of ‘‘zero”. Distance evaluations
were automatically performed employing an in-house made FOR-
TRAN package. Eventually, a 2Dmatrix is built where each row cor-
responds to docked ligands poses and each column corresponds to
different binding site atom. The matrix is filled with binary code,
whereby ‘‘zeros” correspond to inter-atomic distances >2.5 Å and
‘‘ones” for distances binding site atoms at distances � 2.5 Å.

2.5. Machine learning

Seven orthogonal ML were scanned, namely, RF, XGBoost, kNN,
PNN, SVM, NB, and MLP.

2.5.1. Random Forest (RF)
RF is a multipurpose ML strategy for classification based on

ensemble of Decision Trees (DTs) [61]. Each tree predicts a classi-
fication independently and ‘‘votes” for the related class. Most of
the votes decide the overall RF predictions [70]. We implemented
RF learner node within KNIME Analytics Platform (Version 4.1.3)
with the following settings: Splitting criterion is the Information
Gain Ratio (which normalizes the standard information gain by
the split entropy to overcome any unfair preference for nominal
splits with many child nodes), Number of trees = 100. No limita-
tions were imposed on the number of levels or minimum node
size. The accuracy was calculated using out-of-bag internal
validation.

2.5.2. eXtreme Gradient Boosting (XGBoost)
eXtreme Gradient Boosting (XGBoost, or XGB) relies on the

ensemble of weak DT-type models to create boosted DT-type mod-
els [69,70,159]. We implemented the XGBoost Learner node within
KNIME Analytics Platform (Version 4.1.3) with the following set-
tings: Tree booster was implemented with depth wise grow policy,
boosting rounds = 100, Eta = 0.3, Gamma = 0, maximum depth = 6,
minimum child weight = 1, maximum delta step = 0, subsampling
rate = 1, column sampling rate by tree = 1, column sampling rate by
level = 1, lambda = 1, Alpha = 0, sketch epsilon = 0.03, scaled posi-
tion weight = 1. Maximum number of bins = 256, Sample type (uni-
form), Normalize type (tree), and Dropout rate = 0.

2.5.3. k-Nearest Neighbors (kNN)
The kNN classifier depends on a distance learning methodology

that calculates the activity value of an unknown member based on
the bioactivities of a certain number (k) of nearest neighbors



Fig. 2. Three-dimensional plots showing three main principal components based on 8 physicochemical descriptors (LogP, Molecular Weight, hydrogen bond donors,
hydrogen bond acceptors, Rotatable Bonds, Number of Rings, Number of Aromatic Rings, Molecular Fractional Polar Surface Area) calculated for (A) All collected ‘‘actives” (red
cubes,j) compared to all established ‘‘inactives” (blue spheres,d), (B) ‘‘actives” used in current modelling (red cubes,j) compared to all collected compounds (blue spheres,
d), (C) ‘‘inactives” used in current modelling (green spheres, d), compared to all collected compounds (blue spheres, d). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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(kNNs) in the training set. In this classifier, the similarity is mea-
sured by a distance metric [160]. We implemented kNN Learner
node within KNIME Analytics Platform (Version 4.1.3) with k
scanned from 3 to 6.

2.5.4. Probabilistic neural network (PNN)
Trains a probabilistic neural network (PNN) based on the

Dynamic Decay Adjustment method on labeled data using Con-
structive Training of Probabilistic Neural Networks as the underly-
ing algorithm [161,162]. We implemented PNN Learner node
within KNIME Analytics Platform (Version 4.1.3) using PNN theta
minus = 0.2 and theta plus = 0.4 and without specifying maximum
number of epochs so that the PNN process is repeated until stable
rule model is achieved.

2.5.5. Naïve Bayesian (NB)
NB is a simple classifier whereby class labels are predicted and

assigned to external observations based on vectors of descriptors
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for some finite set of training observations. NB classifier assumes
each descriptor to contribute independently to the probability that
certain observation (e.g., compound) belongs to a particular class
(e.g., active or inactive) [163,164]. The probability of certain obser-
vation to belong to certain class is the multiplication of the individ-
ual probabilities of that class within each individual descriptor
[164–166]. We implemented NB learner node within KNIME Ana-
lytics Platform (Version 4.1.3) with the following parameters:
Default probability = 0.0001,minimumstandard deviation = 0.0001,
threshold standard deviation = 0.0 and maximum number of
unique nominal values per attribute = 20.

2.5.6. Multilayer perceptron (MLP)
It is an implementation of the RProp algorithm for multilayer

feed forward networks [167]. MLP has the capacity to learn nonlin-
ear models in real time. MLP can have one or more nonlinear hid-
den layers between the input and output layers. For each hidden
layer, different numbers of hidden neurons can be assigned. Each



Table 2
Chemical structures of the modeled compounds and their reported bioactivities.

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

1 Nafamostat 100 Aromatic ester [97]

2* Camostat 1000 Aromatic ester [97]

3 5ce1-Hepsin 100 None PDB code: 5CE1

4 [76]a 8 None [90]

5* [24]a 19 None [90]

6 [66]a 20 None [90]

7 [25]a 19 None [90]

(continued on next page)

Ma’mon M. Hatmal, O. Abuyaman and M. Taha Computational and Structural Biotechnology Journal 19 (2021) 4790–4824

4795



Table 2 (continued)

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

8 [54]a 45 None [90]

9* [71]a 60 None [90]

10* [31]a 160 None [90]

11 [69]a 220 None [90]

12 [92]a 0.9 None [90]
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Table 2 (continued)

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

13 [93]a 4 None [90]

14* [27]a 21 None [90]

15 [29]a 50 None [90]

16 Cefdinir Inactive** b-lactam [97]

17 Cefditoren Inactive** b-lactam [97]

(continued on next page)
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Table 2 (continued)

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

18 Ceftazidime Inactive** b-lactam [97]

19* Cephalexin Inactive** b-lactam [97]

20 Cloxacillin Inactive** b-lactam [97]

21* Simeprevir Inactive** None [97]

22 Mezlocillin Inactive** b-lactam [97]

23 Piperacillin Inactive** b-lactam [97]
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Table 2 (continued)

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

24* Eprosartan Inactive** Michael
Acceptor

[97]

25 Sunitinib Inactive** Michael
Acceptor

[97]

26* Afatinib Inactive** Michael
Acceptor

[97]

27 Nicardipine Inactive** Nitro [97]

28 Amprenavir Inactive** Carbamate [97]

29 Capecitabine Inactive** Carbamate [97]

30 Diperodon Inactive** Carbamate [97]

(continued on next page)
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Table 2 (continued)

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

31* Ritonavir Inactive** Carbamate [97]

32 Zafirlukast Inactive** Carbamate [97]

33* Cobicistat Inactive** Carbamate [97]

34 Doxazosin Inactive** None [97]

35 Gefitinib Inactive** None [97]

36 Pentamidine Inactive** None [97]

37 Nafcillin Inactive** b-lactam [97]
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Table 2 (continued)

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

38 Aztreonam Inactive** b-lactam [97]

39* Carbenicillin Inactive** b-lactam [97]

40 Cefoperazone Inactive** b-lactam [97]

41 Dicloxacillin Inactive** b-lactam [97]

42 Ezetimibe Inactive** b-lactam [97]

43 Meropenem Inactive** b-lactam [97]

44 Entacapone Inactive** Michael
Acceptor

[97]

(continued on next page)

Ma’mon M. Hatmal, O. Abuyaman and M. Taha Computational and Structural Biotechnology Journal 19 (2021) 4790–4824

4801



Table 2 (continued)

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

45 Bosutinib Inactive** Michael
Acceptor

[97]

46 Etravirine Inactive** Nitrile [97]

47 Anastrozole Inactive** Nitrile [97]

48 Escitalopram Inactive** Nitrile [97]

49 Tofacitinib Inactive** Nitrile [97]

50 Ruxolitinib Inactive** Nitrile [97]

51 Teriflunomide Inactive** Nitrile [97]

52 Cimetidine Inactive** Nitrile [97]
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Table 2 (continued)

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

53* Pinacidil Inactive** Nitrile [97]

54 Febuxostat Inactive** Nitrile [97]

55 Chloramphenicol Inactive** Nitro [97]

56* Flutamide Inactive** Nitro [97]

57* Nifedipine Inactive** Nitro [97]

58 Nimodipine Inactive** Nitro [97]

59 Nisoldipine Inactive** Nitro [97]

60 Nitazoxanide Inactive** Nitro [97]

(continued on next page)
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Table 2 (continued)

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

61 Nitrendipine Inactive** Nitro [97]

62* Nitrofurazone Inactive** Nitro [97]

63 Tinidazole Inactive** Nitro [97]

64 Tolcapone Inactive** Nitro [97]

65* Atazanavir Inactive** Carbamate [97]

66 Felbamate Inactive** Carbamate [97]

67 Fenspiride Inactive** Carbamate [97]

68 Linezolid Inactive** Carbamate [97]
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Table 2 (continued)

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

69* Loratadine Inactive** Carbamate [97]

70* Methocarbamol Inactive** Carbamate [97]

71 Physostigmine Inactive** Carbamate [97]

72 Rivastigmine Inactive** Carbamate [97]

73 Solifenacin Inactive** Carbamate [97]

74 Zolmitriptan Inactive** Carbamate [97]

75 Rivaroxaban Inactive** Carbamate [97]

76 Clozapine Inactive** None [97]

77 Guanabenz Inactive** None [97]

(continued on next page)
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Table 2 (continued)

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

78 Loxapine Inactive** None [97]

79 Methazolamide Inactive** None [97]

80 Phenformin Inactive** None [97]

81 Pyrimethamine Inactive** None [97]

82 Quetiapine Inactive** None [97]

83 Sildenafil Inactive** None [97]

84* Terazosin Inactive** None [97]

85* Trimethoprim Inactive** None [97]

86 Alfuzosin Inactive** None [97]
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Table 2 (continued)

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

87 Argatroban Inactive** None [97]

88 Famotidine Inactive** None [97]

89 Ranitidine Inactive** None [97]

90 Dasatinib Inactive** None [97]

91 Didanosine Inactive** None [97]

92 Mercaptopurine Inactive** None [97]

93* Diminazene Inactive** None [97]

94 Erlotinib Inactive** None [97]

95 Gabexate Inactive** Aromaticester [97]

96 1p57-Hepsin 40,000 None [138]

(continued on next page)
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Table 2 (continued)

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

97 [53]a 10,000 None [90]

98 [78]a 20,000 None [90]

99 Sivelestat Inactive** Aromatic ester [97]

100 Telaprevir Inactive** a-keto-amide [97]

101 Azlocillin Inactive** b-lactam [97]

102 Doripenem Inactive** b-lactam [97]
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Table 2 (continued)

Compound Structure IC50 or Ki (nM) Warhead Reference

Number Name

103* Famciclovir Inactive** None [97]

104 Mupirocin Inactive** Michael Acceptor [97]

105 Nizatidine Inactive** Nitro [97]

106 Darunavir Inactive** Carbamate [97]

107 Zanamivir Inactive** None [97]

* These compounds were used as testing compounds in machine learning.
** Defined as ‘‘Inactive” by the particular reference.
a Numbers in brackets represent the number of each compound in the original literature citation.
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hidden neuron gives a weighted linear summation for the values
from the previous layer, and the nonlinear activation function is
followed. The output values are reported after the output layer
transforms the values from the last hidden layer. We implemented
MLP learner node within KNIME Analytics Platform (Version 4.1.3)
with the following optimized parameters: Maximum number of
iterations = 100, Number of hidden layers = 3, and number of hid-
den neurons per layer = 100.

2.5.7. Support vector machine (SVM)
Support vector machine (SVM) chooses a small number of

boundary instances called support vectors to create discrimina-
tory function to separates training observations into distinct
classes with widest possible boundaries. SVM allows the effec-
tive use of a multitude of kernels to allow classification. A
key feature of SVMs is the attempt to minimize the error on
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training data and reduce the computational complexity of mod-
els to avoid over fitting by tuning the factors involved in the
process [168,73]. Two SVM method were attempted, namely,
C-SVM and nu-SVM. C and nu are regularization parameters
that penalize misclassifications. C ranges from 0 to infinity
while nu ranges between 0 and 1 and represents the lower
and upper bound on the number of examples that are support
vectors and that lie on the wrong side of the hyperplane. The
following default settings were used in both SVM methods as
implemented in the WEKA-KNIME (version 4.1.3) LibSVM node,
these include: Kernel Cache (Cache Size = 40.0), kernel type is
radial basis function: exp(-gamma*|u-v|^2), and loss function
is 0.1, kernel coefficients epsilon = 0.001 and Gamma = 0.00.
However, in nu-SVM the optimized nu value of 0.1 was used
(identified using Bayesian Optimization (TPE) implemented in
KNIME).
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2.5.8. ML model evaluation
ML models were evaluated by calculating their accuracies (Eq.

(1)) and Cohen’s kappa values (Eq. (2)) [169–171] against the train-
ing and testing sets (Table 2).

Accuracy ¼ TPþ TN
N

ð1Þ

where, TP is the true positive (correctly classified actives), TN true
negatives (truly classified inactives), and n is the total number of
evaluated compounds.

K ¼ P0 þ Pe

1� Pe
ð2Þ

where Po is the relative observed agreement among raters (i.e.,
accuracy), and Pe is the hypothetical probability of chance agree-
ment. This is done by using the observed data to calculate the prob-
abilities of each observer randomly seeing each category. If the
raters are in complete agreement, then kappa = 1. If there is no
agreement among the raters other than what would be expected
by chance (as given by Pe), kappa = 0. Negative Cohen’s kappa value
implies the agreement is worse than random [172].

Evaluation against the training set involves removing 20% (i.e.,
leave-20%-out or 5-fold cross-validation) of the data points (i.e.,
compounds), then building the particular ML model from the
remaining data. The model is then used for classifying the removed
compounds. The process is repeated until all training data points
are removed from the training list and predicted at least once.
Accuracy is calculated based on comparing classification results
with actual bioactivity classes. On the other hand, evaluation
against the testing set involves calculating the accuracy Cohen’s
kappa of the particular ML model by comparing its classification
results with the actual bioactivity classes of the testing set
[173,174].

2.5.9. Virtual screening
To collect FDA-approved drug molecules for virtual screening,

we employed SMARTS codes corresponding to reactive warheads
in Table 1 to screen an in house built list of FDA-approved drugs
(2111 molecules) for molecules of covalent warheads. Screening
was performed within DiscoveryStudio (version 4.5) environment.
The resulting list was then compared with TMPRSS2-related
ligands reported in the literature (active and inactive) [90,97]. Only
untested compounds (155 molecules) were kept for subsequent
virtual screening as potential TMPRSS2 inhibitors. Supplementary
Table SM-2 shows screened compounds and their corresponding
chemical structures and warheads.

The evaluated compounds were prepared, docked, scored,
RMSD-filtered and have their LRCFs determined exactly in the
same manner as described for the modelled training and testing
compounds (sections 2.3–2.4). Subsequently, their bioactivity clas-
sifications were predicted using successful ML models.

2.6. Molecular dynamics

Docked poses of capreomycin, aspoxicillin, fosamprenavir cor-
responding to highest consensus scores were solvated by VMD in
TIP3 water molecules. The complexes were then neutralized with
NaCl and the systems were minimized by conjugate gradient min-
imization until 10 KJ/mol/nm. Simulations were run using
CHARMM22 force field for proteins and general forcefield for
drug-like molecules (CGenFF) (https://cgenff.paramchem.org) for
ligands. NVE ensemble was arbitrary applied. SHAKE constraints
were applied to all hydrogen atoms. Step size was set to be 2
femto-seconds (fs). During the heating phase, the temperature of
the system was raised linearly from 0 to 310 K over 155,000 steps
with a time step of 0.002 ps. Equilibration of the solvent molecules
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was achieved in 1,000,000 steps of simulation (2 ns). This was fol-
lowed by 200 ns of production simulation for data collection, dur-
ing which structures were stored every 1 ns. Minimization,
heating, equilibration, and heating–cooling simulations were per-
formed using OpenMM software (http://openmm.org/). Results
from all simulationswere visualized using Discovery Studio (ver-
sion 4.5, Biovia, USA).

2.7. Covalent docking

Capreomycin and aspoxicillin were covalently docked into
TMPRSS2 homology model using CovDock software [175] through
Maestro Molecular Modeling Interface (Schroedingers Inc., USA).
CovDock begins with Glide docking to a receptor with the reactive
residue trimmed to alanine. The reactive residue is then added and
sampled to form a covalent bond with the ligand in different poses.
Covalent complexes are minimized using the Prime VSGB2.0
energy model to score the top covalent complexes. An apparent
affinity score, based on the Glide score of pre-reactive and post-
reactive poses, is also calculated to estimate binding energies for
use in virtual screening. The following docking settings were
implemented: The docking mode was set to Pose Prediction (thor-
ough), Energy cutoff to retain poses for further refinement = 2.5 k
cal/mol with a maximum number of poses = 200, the reactive resi-
due is S478, docked ligand(s) is(are) confined to an enclosing box
of � 20 Å, the center of the enclosing box is set to the hydroxyl
of the S478. In each docked ligand, the corresponding reaction type
was selected from the available drop-list (i.e., b-lactam addition
and Michael acceptor). A single top-ranking docked pose was
reported as output.
3. Results and discussion

3.1. Homology modeling of TMPRSS2

Since TMPRSS2 had no known crystallographic structure at the
time of preparing this manuscript, it was necessary to build an
appropriate homology model for this target. Sequence data for
TMPRSS2 was obtained from Pubmed (GenBank accession number
NP_001128571). Then BLAST and HHBlits search (141, 142) for
pairwise sequence-to-sequence alignment was performed to
search and identify close template structure(s) in the protein data-

bank (https://www.rcsb.org/). However, we only opted for tem-
plate proteins that have at least 65% sequence coverage with
TMPRSS2 and have their co-crystallized bound ligands successfully
transferred by SWISS-MODEL to the proposed binding pocket of
TMPRSS2. In SWISS-MODEL, for a template bound ligand to be
transferred to the corresponding homology model, the ligand
should be biologically related to the modelled protein, has favor-
able interactions and no clashing contacts within model atoms,
and the contacting residues are conserved between the target
and the template. Subsequent homology modelling was performed
using SWISS-MODEL on the resulting alignments [143,144,156–
158].

Hepsin crystallographic structure 5ce1 was selected as template
as it scored 66% sequence coverage, had its bound ligand success-
fully transferred to the homology model, and achieved the highest
SWISS-MODEL Global Model Quality Estimate (GMQE = 0.49),
despite an overall sequence identity of 33.43%. Out of 35 binding
site amino acids in the homology model, 23 are identical (66%) to
their counterparts in the template, while 4 amino acids were sim-
ilar (11%). Overall, amino acid homology with TMPRSS2 in the pro-
posed binding site is 77% with the catalytic serine (S478) being
conserved. Fig. 3A compares TMPRSS2 sequence to the template
protein Hepsin.

https://cgenff.paramchem.org
http://openmm.org/
https://www.rcsb.org/


Fig. 3. Criteria for the resulting TMPRSS2 homology model. (A) Alignment of TMPRSS2 (GenBank: NP_001128571) and Hepsin crystallographic template (PDB code: 5ce1,
resolution 2.5 Å) yielding homology model. Gaps are shown as (–), identical and similar residues are highlighted in green and yellow, respectively. Binding site amino acids
are indicated with asterisks, the catalytic S478 is marked with red asterisk. (B) Ramachandran plot of the homology model amino acids. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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The resulting homology structure was evaluated employing
structure assessment tools within SWISS-MODEL. The results are
as follows (in brackets): QMEAN (-1.48), MolProbity score (1.91),
clash score (6.0), Ramachandran Favored (92.17%), Ramachandran
Outliers (1.16%) (See Fig. 3B), rotamer outliers (1.35%), C-Beta devi-
ations (reporting geometry problems around alpha-carbons:7
amino acids), bad angles (37 amino acids) and no bad bonds.

Interestingly, all binding site amino acids were devoid of any
significant modelling-related artefacts as in Fig. 4A. Thankfully,
the binding site of a recently release crystallographic structure of
TMPRSS2 (7 meq, released 2021-04-21) fitted closely the binding
site of our homology model within a radius of 12 Å surrounding
the co-crystallized ligand. The alignment scored RMSD values of
1.76 Å and 1.74 Å based on a-carbons (Ca) and main chain carbons,
respectively. Fig. 4B shows the alignment between the binding
sites of the homology model and corresponding X-ray structure
of TMPRSS2. Still, the side of chain of the critical binding amino
acid Gln438 in the X-ray structure (corresponding to Gln475 in
4811
the homology model) is missing including the terminal amide moi-
ety. This major artefact undermines the validity of docking studies
using the crystallographic structure and adds merits to the homol-
ogy model.

3.2. Data collection, Docking, scoring and Machine Learning.

The literature was carefully searched for TMRPSS2 inhibitors.
The search identified 1064 inhibitors that can be unequivocally
classified as ‘‘active” (IC50 � 1,000 nM) or ‘‘inactive” (IC50-
� 10,000 nM) as in the Data Collection section under Experimen-
tal. However, we opted to select a subset of inhibitors for
performing this study partially to minimize the computational
cost, but mainly, to assess the possibility of exploiting limited
number of ligands for building successful and predictive machine
learning models. Limitations related to number of available ligands
is often encountered in drug discovery projects particularly those
involving new biotargets.



Fig. 4. TMPRSS2 binding site (A) Detailed view of many TMPRSS2 homology model binding site residues (green backbone) compared to their corresponding counter parts in
template serine protease Hepsin (PDB ID: 5ce1, red backbone) X-ray structure including the crystallographic bound pose of hepsin inhibitor 2-[6-(1-hydroxycyclohexyl)
pyridin-2-yl]-1H-indole-5-carboximidamide (compound 3 in Table 2). Most binding site amino acids are correctly aligned (B) Main binding site residues of TMPRSS2
homology model (green backbone) aligned to their counterparts in a recently released TMPRSS2 X-ray crystalographic structure (PDB ID: 7 meq, blue backbone) including the
bound fragment of nafamostat (compound 1 in Table 2). The dotted arrow points to the missing side chain of Gln438 (corresponding to Gln475 in the homology model). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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To select diverse representative molecules from the collected
compounds, it was decided to use principal component analysis
(PCA) combined with visual selection, as in Fig. 2. Eventually, 107
compounds were selected for modelling, including: 15 actives (of
which two are irreversible) and 92 inactives (of which 64 exhibit
covalent warheads). Table 2 shows the chemical structures of the
modeled compounds and their bioactivities (90, 97, 137, 140). Inci-
dentally, we attempted to use automatic means for selecting
diverse subset employing the Find Diverse Molecules protocol
within Discovery Studio (it attempts to select diverse sets based
on a maximum dissimilarity algorithm using Tanimoto distance
and molecular fingerprints), however, the selected list had limited
number of actives (only two molecules). Moreover, it is of compa-
rable diversity criteria to our visually-selected subset (as in Sup-
plementary Table SM-1).

The modeled compounds were appropriately ionized and tau-
tomerized yielding 338 tautomeric forms ready for docking.

The structures were then docked into the binding pocket of
TMPPRSS2 homology model using three docking engines, namely,
LibDock (26,147), CDOCKER (149) and LigandFit (148). This yielded
65,941 docked conformers/poses. The resulting docked poses were
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then scored by 9 docking scoring functions. Docked poses of each
compound that scored within top 20% of at least 4 scoring func-
tions (i.e., consensus among 4 scoring functions) were retained
for subsequent processing and the rest were discarded resulting
in 12,457 docked poses/conformers. The reason for this restriction
is to limit ML modelling to high-quality docked poses vis-à-vis
binding enthalpies in order to minimize ML noise caused by low
quality poses.

The veracities of the implemented docking settings were evalu-
ated by two means:

(i) Looking at the docked poses of co-crystallized hepsin ligand
(PDB code: 5ce1, compound 3 in Table 2) and nafamostat (com-
pound 1 in Table 2). In the former case we were interested to see
if the docked pose(s) approximate the experimental pose of the
ligand despite being generated for another protein (i.e., hepsin).
The close analogy between hepsin and TMPRSS2 binding sites (as
in Fig. 4) should correct this discrepancy. On the other hand, the
docked poses of nafamostat should probe the docking veracity by
looking at the distance between nafamostat’s warhead (the ester
carbon atom) and the nucleophilic oxygen of Ser478. Proximity
between these two atoms below 3.3 Å should allow successful
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covalent bond formation (see section Molecular Dynamics Simu-
lation and Covalent Docking below), and therefore demonstrates
the veracity of the docking settings. Needless to say, that nafamo-
stat covalently binds TMPRSS2 Ser478 hydroxyl as in Fig. 4B.

Fig. 5 shows the best docked poses in the two cases. In com-
pound 3 case, 2 and 14, out of 28 docked poses are within RMSD
2.0 and 4.0 Å, respectively, from the crystallographic pose, while
one of the top-ranking docked poses (i.e., 4th based on consensus
score and 1st based on 6 out of 9 scoring functions) achieved RMSD
of 1.18 Å from the crystallographic pose, as in Fig. 5A. Moreover,
upon docking 3 into its native protein, hepsin (PDB code: 5ce1),
the same docking-scoring settings generated 89 docked poses, all
of which were within RMSD of 1.2 Å from the crystallographic
bound pose, as in Supplementary Fig. SM-1. Needless to say, suc-
cess to reproduce the crystallographic pose (i.e., RMSD � 2.0 Å)
among top-ranked solutions is considered sufficient validation
for certain docking-scoring settings [182–184].

Unfortunately, it is not possible to perform similar analysis in
nafamostat (compound 1) case because the corresponding complex
(PDB code: 7 meq) includes only fragment of the bound ligand fol-
Fig. 5. Assessment of docking veracity. (A) The co-crystallized pose of 3 (Table 2, Green s
homology model and compared with high ranking docked pose of the same molecule w
nafamostat (compound 1 in Table 2) with their ester carbons at close proximities (ca. 3.
colour in this figure legend, the reader is referred to the web version of this article.)
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lowing covalent bond formation with Ser478, i.e., it is not possible
to compare whole docked nafamostat with partial crystallographic
fragment in 7 meq. As an alternative we opted to gauge the success
of the docking-scoring settings by measuring the distance separat-
ing the warhead of docked nafamostat poses from the hydroxyl of
Ser478 (as in Fig. 5B). Interestingly, 4 out of 285 docked poses were
positioned within the binding site such that the warhead ester car-
bon of nafamostat occurs within 3.3 Å from the nucleophilic hydro-
xyl of Ser478. Two poses are shown in Fig. 5B. Such close proximity
should allow successful covalent bond formation (177), and there-
fore, further validates our docking settings.

(ii) By assessing the difference between docking-scoring values
calculated for docked poses of active versus inactive compounds
(training and testing alike). T-test analysis indicates that 8 out of
9 docking-scoring functions (namely, LigScore1, LigScore2, -PLP1,
-PLP2, Jain, -PMF, -PMF04, -Cdocker Interaction Energy) have gen-
erated statistically significant scoring values for docked poses of
active compounds compared to inactive counterparts (training
and testing alike), as in Supplementary Table SM-7. These results
further support the notion that the implemented docking/scoring
keleton) within hepsin (PDB code: 5ce1) extracted into the binding site of TMPRSS2
ithin TMPRSS2 binding site (red skeleton). (B) Two high ranking docked poses of

1 Å) to the nucleophilic hydroxyl of Ser478. (For interpretation of the references to
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conditions segregate active compounds from inactives by allocat-
ing them distinct binding poses and regions within the binding
site.

We hypothesize that convergence of particularly high-quality
docked poses, corresponding to active ligands, on certain unique
binding site contacts (i.e., not contacted by high quality docked
poses of inactive ligands) highlights the significance of those bind-
ing site points as activity discriminators. Fig. 6 illustrates this
point: Clearly, the optimal docked pose of active inhibitor 12
(Table 2) fills distinct space within the binding pocket from that
occupied by the best docked pose of the analogous inactive inhibi-
tor 97. This trend is also apparent upon comparing multiple high-
ranking docked poses for the same compounds albeit less obvious
to the human eye necessitating ML usage. Moreover, this consis-
tency between docked poses and bioactivities further supports
the veracity of docking settings.
Fig. 6. Docking/bioactivity consistency. (A) Highest-ranking docked poses of compound
skeleton). (B) Docked poses of the same compounds as were used for generating LRCFs an
the reader is referred to the web version of this article.)
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To eliminate repetitions in the docked poses/conformers list,
which might emerge due to the use of multiple docking engines
on the same set of ligands, it was decided to filter out docked poses
of RMSD <2.0. This step reduced the number of poses for subse-
quent ML to 12073.

In summary, it can be concluded that the overall effect of dock-
ing/scoring/RMSD filtering is enriching the ML list from just 108
observations (i.e., TMPRSS2 ligands) to 12,073 observations (corre-
sponding docked poses) in a process reminiscent of statistical
bootstrapping albeit the multiple docked poses represent realistic
permutations rather than simple repetitive sampling. Subse-
quently, the docked poses were used to generate LRCFs such that
binding site atoms that are positioned within 2.5 Å from docked
poses are given a binary code of 1.0, otherwise they are annotated
as zeros. Additionally, scoring values of docked poses (that sur-
vived the RMSD filter) calculated by all 9 scoring functions were
s 12 (Table 2, IC50 = 0.9 nM, green skeleton) and 97 (Table 2, IC50 = 10,000 nM, red
d subsequent ML. (For interpretation of the references to colour in this figure legend,
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also added as descriptors. Thereafter, the modeled list was ran-
domly split into training (~82%, 9890 poses corresponding to 85
compounds, see Table 2) and testing (~18%, 2183 poses corre-
sponding to 23 compounds, see Table 2) sets. The splitting was per-
formed based on the modelled compounds (prior to docking,
Table 2). Approximately 16% and 84% of the training poses corre-
spond to active and inactive ligands, respectively. On the other
hand, the testing list included ~28% and ~72% poses corresponding
to active and inactive ligands, respectively.

The apparent imbalance between poses corresponding to active
and inactive ligands is attributed to the fact that known ‘‘active”
TMPRSS2 inhibitors are rather limited in number and diversity,
while their inactive counterparts are quite numerous and very
diverse allowing them to generate significantly more docked poses.
This imbalance is not necessarily disadvantageous as the excess of
inactive poses should better demark the ‘‘forbidden” regions
within the binding site. Nevertheless, such imbalance necessitates
the use of Cohen’s kappa [172,176] as additional tool for evaluating
the success/failure of a particular ML.

Seven MLs were evaluated against the training and testing set,
namely, Xgboost, SVM, RF, PNN, NB, kNN, and MLP. LRCFs and/or
docking-scoring values were evaluated as input explanatory
descriptors, as in Table 3.

Clearly from Table 3, all learners achieved excellent accuracies
against testing and training sets regardless of using LRCFs and/or
scoring functions values as input descriptors. This indicates that
the data is self-consistent. Still, in most cases the combination of
both descriptor classes generally yielded better accuracies com-
pared to either class alone (i.e., LRCF or scoring functions).

Intriguingly, Cohen’s Kappa unveiled significant differences
between learners not seen from accuracy values: In three leaners,
the use of a single class of descriptors completely failed to yield
significant Kappa, i.e., C-SVM, nu-SVM, PNN. In the particular case
Table 3
Accuracy and Cohen’s Kappa values for ML models developed using different ML learners

Learner Descriptors Accuracy

L20%outa Testingb

Xgboost LRCFs and Scoring Functions 0.96 0.90
LRCFs 0.91 0.83
Scoring 0.95 0.88

C-SVM LRCFs and Scoring Functions 0.94 0.89
LRCFs 0.86 0.76
Scoring Functions 0.84 0.72

nu-SVMd LRCFs and Scoring Functions 0.95 0.90
LRCFs 0.87 0.80
Scoring Functions 0.84 0.72

RF LRCFs and Scoring Functions 0.95g 0.90
LRCFs 0.90g 0.81
Scoring Functions 0.95g 0.89

PNN LRCFs and Scoring Functions 0.91 0.88
LRCFs 0.84 0.72
Scoring Functions 0.92 0.88

Naïve Bayasian LRCFs and Scoring Functions 0.84 0.72
LRCFs 0.84 0.72
Scoring Functions 0.87 0.81

kNNe LRCFs and Scoring Functions 0.93 0.87
LRCFs 0.88 0.80
Scoring Functions 0.93 0.87

MLPf LRCFs and Scoring Functions 0.89 0.82
LRCFs 0.89 0.82
Scoring Functions 0.87 0.79

a L20%out: Leave 20% out cross-validation for accuracy and Cohen’s Kappa.
b Testing: Accuracy and Cohen’s Kappa determined against the testing set (marked w
c Re-substitution: Accuracy and Cohen’s Kappa determined by applying the particular
d Performed using optimized nu value of 0.1.
e Performed using optimized k value of 6 (number of neighbors).
f Performed using 3 hidden layers, 100 neuron per layer, and 100 iterations (epochs)
g RF ML models were validated by Out-of-Bag validation instead of Leave 20% out cro
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of NB, combining both classes, or using LRCFs alone, failed to yield
significant Cohen’s Kappa values. On the other hand, in kNN and
MLP cases, the combined use of both descriptor classes (LRCFs
and scoring functions) failed to have any significant additive
advantage over the use of one class only. However, in RF and
Xgboost cases, the use of any of the two descriptor classes was suc-
cessful and the combination yielded even better Cohen’s Kappa
values. Overall, the varying performances of different learners
vis-à-vis success of their ML models upon using differing combina-
tions of descriptor classes points to the orthogonality of these
learners and that their ML models inherently different.

From the above and by comparing the behavior of different ML
models in Table 3 we concluded that the best models to be used for
predicting the bioactivity of screened compounds are Xgboost, RF
and nu-SVM. Moreover, the orthogonality of these ML approaches
prompted us to stack them in a meta-learner were each individual
learner casts an equivalent vote for predicting the anti-TMPRSS2
bioactivity of screened ligand docked poses.

To further exclude the possibility of chance correlation we per-
formed y-scrambling validation experiment. In this test, 100 ran-
dom bioactivity data are generated. Subsequently, each learner is
challenged to use these random data to generate ML models using
scoring functions and LRCFs descriptors [180]. Supporting Tables
SM-4 to SM-6 show the results of the experiments employing
Leave-20%-Out or Out-of-Bag cross-validations. The results show
that the original non-randomized data yielded MLmodels of signif-
icantly superior accuracy and Cohen’s Kappa values compared to
all randomized trials. The effect is particularly evident in Cohen’s
Kappa values. Overall, the results support the validity of our ML
models.

Incidentally, upon using more stringent pose-selection criteria
through imposing consensus score � 8 on training and testing
poses (i.e., 8 or 9 of the scoring functions ranked the selected poses
combined with LRCFs and/or scoring function values as descriptors.

Cohen’s Kappa

Re-substitutionc L20%outa Testingb Re-substitutionc

1.00 0.85 0.73 1.00
0.97 0.63 0.53 0.89
1.00 0.80 0.68 1.00
0.95 0.73 0.71 0.80
0.87 0.22 0.21 0.32
1.00 0.00 0.00 1.00
0.99 0.80 0.72 0.95
0.94 0.51 0.45 0.77
1.00 0.02 0.00 1.00
1.00 0.79g 0.72 0.98
0.96 0.57g 0.46 0.83
1.00 0.78g 0.69 1.00
0.92 0.62 0.66 0.67
0.84 0.00 0.00 0.00
0.93 0.63 0.66 0.68
0.84 0.01 0.00 0.00
0.84 0.00 0.00 0.00
0.87 0.49 0.48 0.48
0.94 0.69 0.64 0.76
0.90 0.43 0.37 0.52
0.94 0.68 0.64 0.75
0.99 0.56 0.49 0.96
0.99 0.57 0.50 0.96
0.88 0.42 0.38 0.44

ith asterisks in Table 2).
ML model to predict the same training compounds used to build the model.

.
ss-validation for accuracy and Cohen’s Kappa.
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within their top 20%), the best three MLs (Xgboost, RF and nu-SVM)
performed slightly worse (see Supplementary Table SM-3). It is
noteworthy to mention that under such restrictions (imposing
consensus score � 8), the number of training compounds fell from
85 to 42, whereas testing compounds decreased from 23 to 13. This
is because not all screened compounds have such high ranking
docked poses (consensus score � 8). This reduction in training
and testing data should restrict the applicability domain of the
respective ML model [181]. Moreover, imposing docking consensus
score � 8 will undoubtedly lower the number of docking hits cap-
tured in a virtual screening campaign because many potential hits
fail to reach high quality docked poses.

3.3. Virtual screening and prediction of hits’ anti-TMPRSS2
bioactivities

To utilize optimal ML models to search for potential anti-
TMPRSS2 inhibitors within FDA-approved drugs, it was decided
to screen 155 drug molecules of reactive warheads (Supplemen-
tary Table SM-2). All screened molecules were not tested before
against TMPRSS2.

Virtual screening commenced by properly ionizing and tau-
tomerizing screened molecules. Subsequently, they were docked,
scored and RMSD-filtered utilizing the same settings implemented
for the training and testing sets. The resulting docked poses were
then used to generate corresponding LRCFs in exactly the same
manner as in the training and testing sets. Subsequently, the
resulting LRCFs were substituted in the best ML models, namely,
Xgboost, nu-SVM and RF, to predict the activity label of each
docked pose/conformer. This resulted in a situation where each
screened compound yielded a set of poses that are assigned either
‘‘active” or ‘‘inactive” labels. This prompted us to define a threshold
by which to consider certain screened molecule as being promising
or not, i.e., as anti-TMPRSS2, based on the ratio of docked poses/-
conformers predicted to be ‘‘active” compared to those predicted
Table 4
Predicted active and inactive docked poses for testing set compounds.

Compoundsa Predicted number of active and inactive docked pose

Numbers Anti-TMPRSS2
Activity

Xgboost nu-SVM

Active
Poses

Inactive
Poses

Percent Active
Posesb

Active
Poses

5 Active 100 4 96.2 94
9 Active 97 5 95.1 97
10 Active 90 14 86.5 79
14 Active 103 1 99 99
2c Active 39 165 19.1 43
19 Inactive 2 45 4.3 6
21 Inactive 0 8 0 0
24 Inactive 0 141 0 1
26 Inactive 2 954 0.2 3
31 Inactive 5 5 50 2
33 Inactive 18 12 60 1
39 Inactive 0 18 0 0
53 Inactive 0 7 0 0
56 Inactive 0 2 0 0
57 Inactive 0 13 0 0
62 Inactive 0 2 0 0
65 Inactive 1 1 50 1
69 Inactive 0 2 0 0
70 Inactive 0 13 0 0
84 Inactive 0 92 0 1
85 Inactive 4 163 2.4 1
93 Inactive 2 43 4.4 5
103 Inactive 0 10 0 1

a Compounds’ numbers and bioactivities are as in Table 2.
b Determined by dividing the number of active poses by the total number poses (acti
c The percent active poses of this compound (camostat, Ki = 1000 nM) were used as th

inhibitors.
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to be ‘‘inactive”. We decided that the most reasonable way to
define such a threshold is to evaluate the active/inactive ratios
within the testing set. It can be reasonably assumed the least
active-to-inactive ratio of unequivocally documented active inhibi-
tor represents an acceptable threshold for identifying potentially
new active hits. Table 4 shows the percentages of active poses of
testing compounds as predicted by the top three ML (i.e., Xgboost,
nu-SVM and RF).

Clearly from Table 4, the anti-TMPRSS2 inhibitor 2 (camostate,
Ki = 1000 nM, Table 2) shows the smallest ratios of predicted
active-to-inactive docked poses among other inhibitors in the test-
ing set, and therefore, it can be used to discriminate actives among
screened compounds (Supplementary Table SM-2). Still, careful
assessment of Table 4 shows that two inactives, namely, 31 (Riton-
avir) and 65 (Atazanavir), to have predicted active-inactive ratios
above than the proposed thresholds. Nevertheless, the total num-
ber of docked poses of these outliers are rather low (31 has 10
docked poses, while 65 has only 2 docked poses) and way from
the number of docked poses of active compounds (average = 123.6,
minimum = 102). On the other hand, it is noteworthy to mention
that camostate has the highest number of docked poses among
all active testing compounds (204 poses), which further highlights
the importance of this point.

Table 5 shows the predicted active-to-inactive ratios of the
screened compounds. Clearly all three top MLs agreed on three
drugs to exhibit active-to-inactive ratios exceeding the corre-
sponding thresholds of camostat in Table 4. The three compounds
are: 116 (aspoxicillin), 126 (capreomycin), and 196 (fosampre-
navir). Moreover, these compounds have considerable number of
docked poses, namely, 4404 for the two forms of capreomycin,
210 for aspoxicillin and 65 for fosamprenavir. Still, only capre-
omycin and aspoxicillin have their count of docked poses exceed-
ing the minimum of docked poses of active testing compounds
(i.e., 102), suggesting the lesser propensity of fosamprenavir as
valid TMPRSS2 inhibitor. To validate our overall computational
s

RF

Inactive
Poses

Percent Active
Posesb

Active
Poses

Inactive
Poses

Percent Active
Posesb

10 90.4 102 2 98.1
5 95.1 99 3 97.1
25 76 84 20 80.8
5 95.2 102 2 98.1
161 21.1 26 178 12.7
41 12.8 0 47 0
8 0 3 5 37.5
140 0.7 0 141 0
953 0.3 1 955 0.1
8 20 3 7 30
29 3.3 7 23 23.3
18 0 0 18 0
7 0 0 7 0
2 0 0 2 0
13 0 0 13 0
2 0 0 2 0
1 50 1 1 50
2 0 0 2 0
13 0 0 13 0
91 1.1 0 92 0
166 0.6 0 167 0
40 11.1 3 42 6.7
9 10 0 10 0

ve + inactive).
reshold to classify screened compounds into potential active and inactive TMPRSS2



Table 5
Screened drug molecules and counts of their predicted ‘‘active” and ‘‘inactive” docked poses as predicted by the three top MLs.

Compoundsa Predicted number of active and inactive docked poses

Xgboost nu-SVM RF

Active
Poses

Inactive
Poses

%Active
Posesb

Active
Poses

Inactive
Poses

%Active
Posesb

Active
Poses

Inactive
Poses

%Active
Posesb

108 5-Iodo-Sunitinib 1 218 0.5 0 219 0 0 219 0
109 5-CH3O-Sunitinib 2 253 0.8 2 253 0.8 1 254 0.4
110 Acenocoumarol 1 10 9.1 0 11 0 0 11 0
111 Acrivastine 0 24 0 0 24 0 0 24 0
112 Alectinib 0 38 0 0 38 0 0 38 0
113 Alogliptin 0 32 0 0 32 0 0 32 0
114 Apalcillin 4 284 1.4 5 283 1.7 1 287 0.3
115 Apraclonidine 0 1 0 0 1 0 0 1 0
116 Aspoxicillinc 89 121 42.4 75 135 35.7 97 113 46.2
117 Ast-1306 1 523 0.2 12 512 2.3 0 524 0
118 Bacampicillin 34 157 17.8 25 166 13.1 21 170 11
119 Bambuterol 0 42 0 1 41 2.4 0 42 0
120 Baricitinib 0 25 0 0 25 0 0 25 0
121 Belinostat 0 78 0 0 78 0 0 78 0
122 Benznidazole 0 12 0 0 12 0 0 12 0
123 Biapenem 0 7 0 0 7 0 0 7 0
124 Brodimoprim 1 29 3.3 2 28 6.7 2 28 6.7
125 Canertinib 10 1284 0.8 19 1275 1.5 0 1294 0
126 Capreomycin1c,d 1183 931 56 1203 911 56.9 1590 524 75.2

Capreomycin2c,d 1313 977 57.3 1269 1021 55.4 1725 565 75.3
127 Carisoprodol 0 8 0 0 8 0 0 8 0
128 Carumonam 0 11 0 0 11 0 1 10 9.1
129 Cefadroxil 0 87 0 11 76 12.6 0 87 0
130 Cefamandole 0 71 0 0 71 0 0 71 0
131 Cefatrizine 2 575 0.3 17 560 2.9 2 575 0.3
132 Cefazedone 0 57 0 0 57 0 0 57 0
133 Cefazolin 0 51 0 0 51 0 0 51 0
134 Cefbuperazone 0 66 0 0 66 0 0 66 0
135 Cefcapene 0 115 0 0 115 0 0 115 0
136 Cefclidin 0 181 0 0 181 0 1 180 0.6
137 Cefepime 2 105 1.9 0 107 0 0 107 0
138 Cefetamet 0 52 0 0 52 0 0 52 0
139 Cefixime 0 4 0 0 4 0 0 4 0
140 Cefmenoxime 0 176 0 0 176 0 0 176 0
141 Cefmetazole 0 25 0 0 25 0 0 25 0
142 Cefminox 0 80 0 4 76 5 0 80 0
143 Cefodizime 0 43 0 0 43 0 0 43 0
144 Cefonicid 0 94 0 0 94 0 0 94 0
145 Ceforanide 1 166 0.6 0 167 0 2 165 1.2
146 Cefotaxime 0 112 0 0 112 0 0 112 0
147 Cefotetan 0 79 0 0 79 0 0 79 0
148 Cefotiam 0 183 0 1 182 0.5 0 183 0
149 Cefoxitin 2 33 5.7 1 34 2.9 0 35 0
150 Cefozopran 0 270 0 1 269 0.4 0 270 0
151 Cefpimizole 0 179 0 1 178 0.6 1 178 0.6
152 Cefpiramide 3 309 1 0 312 0 1 311 0.3
153 Cefpirome 1 157 0.6 0 158 0 0 158 0
154 Cefpodoxime 0 74 0 0 74 0 0 74 0
155 Cefprozil 0 3 0 0 3 0 0 3 0
156 Cefroxadine 0 58 0 0 58 0 0 58 0
157 Cefteram 0 16 0 0 16 0 0 16 0
158 Ceftezole 0 38 0 0 38 0 0 38 0
159 Ceftibuten 0 61 0 0 61 0 0 61 0
160 Ceftizoxime 1 42 2.3 2 41 4.7 0 43 0
161 Ceftriaxone 0 186 0 0 186 0 0 186 0
162 Cefuroxime 0 59 0 1 58 1.7 0 59 0
163 Cefuzonam 0 168 0 0 168 0 0 168 0
164 Cephacetrile 0 2 0 0 2 0 0 2 0
165 Cephaloridine 0 23 0 1 22 4.3 0 23 0
166 Cephalothin 0 19 0 0 19 0 0 19 0
167 Cephapirin 0 38 0 2 36 5.3 0 38 0
168 Cephradine 1 44 2.2 0 45 0 0 45 0
169 Cilastatin 0 113 0 3 110 2.7 1 112 0.9
170 Cinanserin 0 188 0 0 188 0 0 188 0
171 Citalopram 0 9 0 0 9 0 0 9 0
172 Clobenprobit 0 138 0 0 138 0 0 138 0
173 Clonazepam 0 5 0 0 5 0 0 5 0
174 Clonitazene 0 41 0 0 41 0 0 41 0
175 Cyclacillin 0 23 0 2 21 8.7 0 23 0
176 Cypermethrin 0 57 0 0 57 0 0 57 0

(continued on next page)
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Table 5 (continued)

Compoundsa Predicted number of active and inactive docked poses

Xgboost nu-SVM RF

Active
Poses

Inactive
Poses

%Active
Posesb

Active
Poses

Inactive
Poses

%Active
Posesb

Active
Poses

Inactive
Poses

%Active
Posesb

177 Dacomitinib 0 430 0 3 427 0.7 0 430 0
178 Dantrolene 0 91 0 0 91 0 0 91 0
179 Debrisoquin 0 1 0 0 1 0 0 1 0
180 Demecarium 1 12 7.7 3 10 23.1 0 13 0
181 Difenoxin 0 26 0 0 26 0 0 26 0
182 Diphenoxylate 1 83 1.2 2 82 2.4 0 84 0
183 Enzalutamide 0 16 0 1 15 6.3 0 16 0
184 Ertapenem 0 21 0 0 21 0 1 20 4.8
185 Eszopiclone 0 41 0 0 41 0 0 41 0
186 Ethacrynic_Acid 0 1 0 0 1 0 0 1 0
187 Etonitazene 0 55 0 0 55 0 0 55 0
188 Etozolin 0 5 0 0 5 0 0 5 0
189 Etretinate 0 7 0 0 7 0 1 6 14.3
190 Ezogabine 0 144 0 0 144 0 0 144 0
191 Famitinib 1 323 0.3 1 323 0.3 0 324 0
192 Flubanilate 0 11 0 0 11 0 0 11 0
193 Flucloxacillin 0 10 0 0 10 0 0 10 0
194 Flunidazole 0 9 0 0 9 0 0 9 0
195 Flunitrazepam 0 2 0 0 2 0 0 2 0
196 Fosamprenavirc 22 43 33.8 30 35 46.2 20 45 30.8
197 Guanadrel 0 8 0 1 7 12.5 0 8 0
198 Guanethidine 1 4 20 1 4 20 0 5 0
199 Guanfacine 0 10 0 0 10 0 0 10 0
200 Guanisoquin 0 3 0 0 3 0 0 3 0
201 Guanoxan 0 12 0 0 12 0 0 12 0
202 Guanoxyfen 0 11 0 0 11 0 0 11 0
203 Henatinib 0 1 0 0 1 0 0 1 0
204 Hetacillin 0 21 0 1 20 4.8 0 21 0
205 Hydroxystilbamidine 0 2 0 0 2 0 0 2 0
206 Ibrutinib 1 387 0.3 2 386 0.5 0 388 0
207 Imipenem 0 16 0 0 16 0 0 16 0
208 Iobenguane 0 5 0 0 5 0 0 5 0
209 Irinotecan 1 24 4 0 25 0 2 23 8
210 Isosulfazecin 1 93 1.1 5 89 5.3 1 93 1.1
211 Leuprolide 0 2 0 0 2 0 2 0 100
212 Levocabastine 0 8 0 1 7 12.5 0 8 0
213 Levofuraltadone 0 29 0 0 29 0 0 29 0
214 Levopropylcillin 0 2 0 0 2 0 0 2 0
215 Lodoxamide 0 27 0 0 27 0 0 27 0
216 Loracarbef 0 55 0 5 50 9.1 0 55 0
217 Mebendazole 0 82 0 0 82 0 0 82 0
218 Methicillin 0 7 0 0 7 0 0 7 0
219 Mitomycin 0 8 0 0 8 0 0 8 0
220 Momelotinib 0 125 0 0 125 0 0 125 0
221 Moricizine 0 219 0 0 219 0 0 219 0
222 Naquotinib 4 330 1.2 5 329 1.5 4 330 1.2
223 Neratinib 7 324 2.1 13 318 3.9 13 318 3.9
224 Niclosamide 0 16 0 0 16 0 0 16 0
225 Nifurtimox 0 3 0 0 3 0 0 3 0
226 Nilutamide 0 2 0 0 2 0 0 2 0
227 Nitisinone 0 6 0 0 6 0 0 6 0
228 Nitrazepam 0 6 0 0 6 0 0 6 0
229 Nitrofurantoin 0 35 0 0 35 0 0 35 0
230 Octocrylene 0 12 0 0 12 0 0 12 0
231 OctylMethoxycinnamic 0 16 0 0 16 0 0 16 0
232 Olmutinib 8 566 1.4 12 562 2.1 6 568 1
233 Orantinib 1 31 3.1 1 31 3.1 0 32 0
234 Osimertinib 34 1031 3.2 48 1017 4.5 22 1043 2.1
235 Oxacilin 0 16 0 2 14 12.5 0 16 0
236 Oxamniquine 0 26 0 0 26 0 0 26 0
237 Pelitinib 1 229 0.4 2 228 0.9 1 229 0.4
238 Penicillin G 0 12 0 0 12 0 0 12 0
239 Penicillin V 0 20 0 0 20 0 0 20 0
240 Pentagastrin 5 566 0.9 5 566 0.9 89 482 15.6
241 Pericyazine 0 41 0 1 40 2.4 0 41 0
242 Piritrexim 31 547 5.4 24 554 4.2 3 575 0.5
243 Poziotinib 0 167 0 1 166 0.6 0 167 0
244 Proguanil 0 11 0 0 11 0 0 11 0
245 Pyrotinib 4 143 2.7 0 147 0 3 144 2
246 Rescinnamine 1 7 12.5 0 8 0 0 8 0
247 Rociletinib 7 910 0.8 4 913 0.4 9 908 1
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Table 5 (continued)

Compoundsa Predicted number of active and inactive docked poses

Xgboost nu-SVM RF

Active
Poses

Inactive
Poses

%Active
Posesb

Active
Poses

Inactive
Poses

%Active
Posesb

Active
Poses

Inactive
Poses

%Active
Posesb

248 Romidepsin 0 3 0 0 3 0 0 3 0
249 Siguazodan 1 53 1.9 3 51 5.6 0 54 0
250 Spebrutinib 0 880 0 5 875 0.6 0 880 0
251 Streptomycin 2 97 2 4 95 4 18 81 18.2
252 Tedizolid-phosphate 0 2 0 0 2 0 0 2 0
253 Tegaserod 0 68 0 0 68 0 0 68 0
254 Tepotinib 1 88 1.1 1 88 1.1 0 89 0
255 Ticarcillin 0 26 0 0 26 0 0 26 0
256 Vasopressin 0 2 0 0 2 0 0 2 0
257 Verapamil 0 79 0 0 79 0 0 79 0
258 Vilazodone 0 99 0 0 99 0 1 98 1
259 Vorapaxar 1 35 2.8 1 35 2.8 0 36 0
260 Yn-968d1 0 86 0 1 85 1.2 0 86 0
261 Zaleplon 0 3 0 0 3 0 0 3 0
262 Zopiclone 0 37 0 1 36 2.7 0 37 0

a Compounds are as in Supplementary Table SM-2.
b Determined by dividing the number of active poses by the total number poses (active + inactive).
c The percent active poses of these compounds exceeded the threshold in Table 2 (compound 2 or camostat) and therefore are predicted to be active anti-TMPRSS2

inhibitors.
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method, we evaluated the three promising hits by molecular
dynamics simulation and covalent docking.

3.4. Molecular dynamics simulation and covalent docking

As a prerequisite for successful covalent bond formation
between the ligand’s warhead and the targeted nucleophilic center
within the binding site (hydroxyl of Ser478), it is necessary for the
warhead to reside for some time, e.g., 20 to 80 ns [177,178], at
close proximity to the nucleophilic residue. It can be assumed that
the sum of van der Waals’ radii of oxygen and carbon atoms (3.3 Å,
representing the hydroxyl oxygen of Ser478 and carbon atoms of
electrophilic warheads, magenta line in Fig. 7) is a reasonable
distance threshold for probable subsequent nucleophilic attack
[177].

To evaluate the residence time and distance separating the
reactive warheads of capreomycin, aspoxicillin and fosamprenavir
from the nucleophilic hydroxyl of Ser478, we opted to perform
200-ns MD simulations for the three hits as they dock within the
binding pocket. The starting poses were selected to have the high-
est consensus score among other docked poses in each case. MD
trajectories show fosamprenavir to leave the binding pocket after
approximately 60 ns. Moreover, it failed to have close encounters
with the nucleophilic Ser478 OH (within distance threshold) as
can be seen in Fig. 7A where the distance separating the elec-
trophilic carbamate atom of fosamprenavir and the nucleophilic
Ser478 OH never crossed the threshold magenta line. Accordingly,
we were prompted to discard fosamprenavir from subsequent
covalent docking. However, the other two hits (capreomycin and
aspoxicillin) remained during MD simulation within the active site
(Fig. 7A). However, aspoxicillin seems to have better chances to
form covalent bond with Ser478 as it crosses/approaches the dis-
tance theshold line (magneta line in Fig. 7A) more frequently.

Covalent docking shows both aspoxicillin and capreomycin to
successfully form covalent bonds with the nucleophilic hydroxyl
4819
of Ser478, as in Fig. 8. In aspoxicillin case, the nucleophilic hydro-
xyl attacks and ring-opens the b-lactam ring (Fig. 8A and 8B), while
in capreomycin case an oxa-Michael addition reaction takes place
whereby the nucleophilic hydroxyl adds to the Michael acceptor
feature within capreomycin (Fig. 8C and D). Moreover, covalent
docking shows that each docked compound exhibits additional
reversible binding interactions: Aspoxicillin forms hydrogen bond-
ing interactions with Glu426, Ser497 and Gly476 together with
hydrophobic interactions Cys502 and His333 (Fig. 8A and B). Sim-
ilarly, docked capreomycin is involved in hydrogen bonding inter-
actions with Gln475, His333, Ser497, Gly476, His316, and Gly428.
Additionally, the guanidine of capereomycin is stacked against the
imidazole side chain of His333.

Covalent docking, however, is only a decorative tool to suggest
how a covalent–bond forming drug might fit into the binding
pocket in case it succeeds in forming covalent bond. However,
we believe the main supportive tool in our case is MD simulations.
To enhance confidence in MD simulations as success gauge for our
ML models, we performed MD simulations (200 ns) for further 4
compounds (starting with high-quality docked poses of consensus
score of 9), namely, camostat (2), cobicistat (33), ibrutinib (206)
and piritrexim (242). The former two belong to the testing set,
while the latter two belong to the screened set. Camostat is the
only active compound among the collection and it was correctly
predicted by our ML models to be active. While the other three
were all predicted to be inactive by our models, however one of
them, i.e., cobicistat, is experimentally proven to be inactive. This
collection should allow us to adequately probe the correlation
between our ML predictions and MD simulation data. Fig. 7B shows
the results of the MD study. Clearly, only camostat persisted within
the vicinity of the binding site, while the rest, whether experimen-
tally inactive or predicted to be inactive, were quickly ejected from
the binding site. These results nicely correlate with the predictions
of our ML models despite being generated for rather diverse set of
compounds.



Fig. 7. MD simulations distance probes (A) Distances separating the reactive warheads of candidate hits: capreomycin (126), aspoxicillin (116) and fosamprenavir (196) from
the nucleophilic hydroxy of Ser478 during 200 ns of MD trajectories. (B) Distances separating the reactive warheads of camostat (2, active testing compound), ibrutinib (206,
predicted inactive) or cobicistat (33, inactive testing compound) or the central atom of piritrexim (242, predicted inactive) from the nucleophilic hydroxy of Ser478 during
200 ns of MD trajectories. Each time step represents 1.0 ns. The magenta lines represent the minimum distance between the reactive warhead atoms of the hits and Ser478
hydroxyl oxygen atom in a covalent-bond productive encounter (the distance represents the summation of van der Waals’ radii of carbon and oxygen atoms). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. The 3-D and 2-D structure of covalent docked complexes tying the reactive warheads (A) and (B) Aspoxicilin, (C) and (D) Capreomycin 1 with the hydroxy of Ser478.
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4. Conclusions

In the present work we introduce computational bootstrapping
of machine learning QSAR modelling using multiple high-quality
docked poses. Ligand-receptor contact fingerprints and scoring
function values were used as descriptors, while several MLs were
scanned. We implemented this method for the discovery of poten-
tial inhibitors for the serine protease enzyme TMPRSS2 involved in
the infectivity of coronaviruses. Three hits were identified. Subse-
quent molecular dynamic simulation and covalent docking sup-
ported the results of the new computational approach.
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