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Acute coronary syndrome is the leading cause of cardiac death and has a significant

impact on patient prognosis. Early identification and proper management are key to

ensuring better outcomes and have improved significantly with the development of

various cardiovascular imaging modalities. Recently, the use of artificial intelligence as a

method of enhancing the capability of cardiovascular imaging has grown. AI can inform

the decision-making process, as it enables existing modalities to perform more efficiently

and make more accurate diagnoses. This review demonstrates recent applications of AI

in cardiovascular imaging to facilitate better patient care.

Keywords: acute coronary syndrome, artificial intelligence, machine learning, computed tomography, magnetic

resonance, coronary angiography, intravascular ultrasound, optical coherence tomography

INTRODUCTION

Acute coronary syndrome (ACS) is a common type of coronary artery disease, which often
leads to devastating consequences (1–3). Therefore, researchers and clinical practitioners have
devoted countless efforts to the prevention, diagnosis, treatment, and rehabilitation of it. Various
imaging modalities have emerged in this context, including non-invasive methods such as
coronary computed tomographic angiography (CCTA), cardiacmagnetic resonance (CMR), single-
photon emission computed tomography (SPECT) myocardial perfusion imaging, and invasive
approaches such as coronary angiography (CAG), intravascular ultrasound (IVUS), optical
coherence tomography (OCT), fractional flow reserve (FFR), and near-infrared spectroscopy
(NIRS), etc. Even though patients with ACS benefit comprehensively from the application of the
above-mentioned imaging modalities, there are still gaps in understanding.

Artificial intelligence (AI) is a computerized program that resembles the human brain by
collecting and processing data (4). With proper training, a variety of tasks that used to be
undertaken by people can now be finished by AI. An overview of commonly used machine learning
algorithms is shown in Table 1. Everyday life has already been extensively “infiltrated” by AI. A
tremendous amount of work has already been put into cardiovascular imaging that combines AI,
hoping to help clinicians achieve better healthcare for patients with ACS in particular. To date,
scientific researchers have successfully developed AI to process imaging data, support diagnosis,
interpret an image, provide treatment advice, recognize patterns of disease, and so on (Figure 1).
Applications of AI in non-invasive modalities are summarized in Table 2, while applications in
invasive ones are in Table 3. This review discusses recent applications of AI in cardiovascular
imaging modalities related to ACS.
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TABLE 1 | Overview of common AI algorithms.

Algorithm Description Illustration

Convolutional neural

network (CNN)

A typical CNN consists of convolutional

layer, max pooling layer and fully

connected layer. Convolutional layer

extracts features in the image, max

pooling layer downsamples the features.

Usually the former two layers repeat many

times. Fully connected layer classifies the

features from the former 2 layers

eXtreme Gradient

Boosting (XGBoost)

Based on gradient boosting decision tree,

highly effective and flexible. It is a sparsity

aware algorithm and a weighted quantile

sketch for approximate learning

Random forest (RF) A supervised machine learning classifier.

Consisted of many decision trees, it

induces random feature selection during

the training process. It output a single

result after combining multiple decision

trees

(Continued)
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TABLE 1 | Continued

Algorithm Description Illustration

Support vector

machine (SVM)

A supervised machine learning method

designed to solve two-group classification

problem. It aims to find a hyperplane to

mostly separate data of two groups

APPLICATIONS OF AI IN NON-INVASIVE
IMAGING MODALITIES

CT
CT-Derived FFR
CCTA has long been found to be a reliable method to give
ACS an all-around evaluation. Cardiologists have used it to
gain information, for example, relating to stenosis, calcification,
plaque, lipid, and stent (40, 41). In recent years, a novel tool
called computed tomography angiography-based fractional flow
reserve (FFRCT) has emerged as a non-invasive alternative to
traditional FFR obtained by pressure wire based on invasive
CAG. Given that FFRCT involves a large amount of data
collection and processing, artificial intelligence appears to have
great potential for accomplishing such tasks.

Liu et al. acquired FFRCT in 243 symptomatic coronary artery
disease (CAD) patients with deep learning (DL). In patients
who had revascularization, major adverse cardiovascular event
(MACE) rates in those with a DL-FFRCT value≤0.8 (2.9%) were
similar to those who had CAG-guided interventions (3.3%). If
a DL-FFRCT value >0.8 was interpreted as positive, calling for
intervention as high as 72% of CAG should not be done (5).

According to recent studies (6, 7), CT-FFR could not only
assist in deciding the intervention but also predict prognosis, as a
non-invasive alternative to traditional FFR. Driessen et al. found
the Pearson’s and Spearman’s correlation coefficients between
CT-FFR and wire-based FFR were 0.80 and 0.67, respectively (42)
although the automatic method was different in various studies.

Qiao et al. designed a “Functional SYNTAX score” (FSSCTA)
to forecast prognosis in patients with three-vessel CAD. FSSCTA
is a combination of anatomical characteristics and functional
characteristics produced by machine learning (ML)-based CT-
FFR evaluation. The MACE predicting ability of FSSCTA was
compared with that of SSCTA and SSICA (based on CAG).
The predictive accuracy of FSSCTA for MACE proved to be
better. Revascularization strategies guided by traditional SS and
FSSCTA were also compared. With FSSCTA, 52 (22.9%) patients

initially indicated for CABG guided by SSCTA would have been
recommended to PCI (9).

With its non-invasive nature, CT-FFR significantly reduces
costs by avoiding unnecessary CAG, as well as unnecessary
anxiety and fear. Risk stratification tools should also consider
updates by integrating with CT-FFR due to its easy accessibility
and predictive power.

Markers Based on CT
Coronary artery calcium (CAC) has been shown to be powerful
in predicting the extent and severity of CAD in symptomatic
patients (43–45). Syntax score is used by interventionists and
surgeons to assist in determining treating strategy as well as
predicting outcome in patients who have had 3-vessel or left main
CAD (46, 47). Studies have developed markers like CAC and
Syntax score to assist in decision-making, prognosis predicting,
and risk stratification, taking advantage of advances in artificial
intelligence that have grown in recent decades.

A deep Convolutional Neural Network (CNN) is a powerful
algorithm in image featuring. Zeleznik et al. confirmed that
calcium on CCTA can be quantified automatically, moreover,
the calcium score based on CNN can predict the outcome.
CT readers localize the heart in cardiac CT, then segment the
heart and the segment containing calcium, followed by the
deep learning system automatically identifying and quantifying
calcium. The AUC of the automatic method and manual
approach was not different (8).

XGBoost is commonly applied in building predictive models,
with the advantage of making weak classifiers into one single
strong classifier. Featuring CT- based plaque qualitatively and
quantitatively, Al’ Aref et al. identified precursors of culprit lesion
(CL) in ACS patients who hadCAG. XGBoost algorithmwas used
to build a model predicting CLs. The predictive model performed
well in discriminating CL precursors. The model also showed a
specificity of up to 89.3% when tested in the non-ACS cohort
(10). It may provide new insights into the target of secondary
prevention of ACS.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 3 February 2022 | Volume 8 | Article 782971

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Liu et al. AI and Imaging in ACS

FIGURE 1 | AI and imaging.

Since XGBoost can identify culprit lesions, it can predict
certain diseases theoretically, given the right data. CT radiomics
have drawn attention from researchers who have then built
models. Lin et al. successfully identified acute myocardial
infarction (AMI) by building a machine learning model that
combined a series of clinical factors and pericoronary adipose
tissue attenuation with CT radiomic to identify AMI patients,
achieving an AUC of 0.87 (11). With the help of powerful
tools like XGBoost, radiomics can be of enormous use on
multiple levels. We can expect that image biomarkers derived
from CT radiomics will contribute to more precise diagnoses,
risk stratification (29), and even clinical recommendations in
the future.

Serum biomarkers also possess predicting capability, just like
imaging biomarkers. XGboost was again proven to be capable of
predicting cardiac events based on serum biomarkers integrating
other data (12). We look forward to seeing what radiomics
combining serum biomarkers can achieve.

Outcome Prediction
Atherosclerotic plaque features and stenosis can be evaluated
qualitatively and quantitatively, providing comprehensive
information to clinical practitioners, further enabling the
prognostic prediction of ACS events (48–50).

A functional assessment like FFR and adverse cardiac events
can both be predicted by CCTA features. Deciding on these
features in a traditional way involves enormous statistical
analysis. However, ML algorithms can finish the job, not only

saving time and costs but also providing important information
on potential intervening targets.

Yang et al. used Boruta and hierarchical clustering to identify
the relevant features correlated with low FFR. They then assessed
the ability to predict vessel-level adverse incidents in 5 years.
In total, six features were identified as associated with low
FFR. With the 6 relevant features increasing, the risk of vessel
level adverse incidents in 5 years increased. Additionally, it is a
better prognostic predictor than percent diameter stenosis and
FFR (13). Additionally, random forest (RF) can also pick up
features out of 1,000 radiomics which can strengthen the power
of predicting MACE (14).

Applications of AI in MR
Cardiac magnetic resonance (CMR) plays a pivotal part in
comprehensively evaluating myocardial infarction (51). Cine
and late gadolinium enhancement (LGE) sequences are most
frequently referred to in this context. Functional evaluation is
mainly performed by cine sequences because the movement can
be captured by them (52). Detection of myocardial injury makes
LGE sequence critical in diagnosing myocardial infarction (53).

Differentiating Diagnosis
In patients in whom AMI is complicated by chronic myocardial
infarction (CMI) it is crucial to distinguish AMI and CMI
for the sake of treatment and follow-up. However, ECG and
coronary angiography provide limited information to pinpoint
acute injury.
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TABLE 2 | Applications of AI in non-invasive modalities.

References Modality Purpose Samples Algorithm Results

Liu et al. (5) CT Investigate CT-FFR as an alternative in

deciding on intervention

243 patients Tree-structured

RNN

MACE rate with a CT-FFR value ≤0.8 (2.9%)

similar to that of CAG-guided interventions

(3.3%) (p = 0.838)

Duguay et al. (6) CT Investigate the prognostic value of

CT-FFR

48 patients Deep neural

network

CT-FFR ≤0.80 has a HR of 1.56 [1.01–2.83], (p

= 0.048) to predict MACE

Eberhard et al.

(7)

CT Evaluate feasibility and clinical role of

CT-FFR

56 patients Deep neural

network

Agreement of 81% in CT-FFR and clinical

diagnosis of ACS

Zeleznik et al. (8) CT Validate an automatic method of

quantifying coronary calcium

20,084

patients

Deep CNN(fully)

of U-net

architecture

Spearman’s correlation of 0.92 (P < 0.0001) to

manual measurement.Strong predictor of

cardiovascular events (multivariable-adjusted

HR up to 4.3)

Qiao et al. (9) CT Investigate if FSSCTA can predict

outcome in three vessel CAD patients

227 patients Deep neural

network

FSSCTA (OR = 1.21, P = 0.001). Predictive

accuracy for MACE of FSSCTA AUC: 0.81, P =

0.01

Al’Aref et al. (10) CT Identify culprit lesion precursors among

ACS patients based on CT-based

plaque characteristics

468 patients XGBoost ML model’s AUC of identifying culprit lesion

precursors of 0.774(CI: 0.758–0.790)

Lin et al. (11) CT Determine whether CT-based PCAT

can distinguish patients with AMI with

those with stable angina or no CAD

180 patients XGBoost AUC 0.87 in discriminating AMI

Tamarappoo

et al. (12)

CT Assess an ML risk score to predict

long-term hard cardiac events

1,069 patients XGBoost The ML risk score AUC 0.81

Yang et al. (13) CT Lumen narrowing and plaque

characteristics to predict ischaemia and

outcome

1,013 vessels Boruta and

hierarchical

clustering

Six features predicting low FFR AUC 0.797 (P

< 0.001). AUC of them predicting

vessel-oriented composite outcome 0.706 (p =

0.031)

Oikonomou

et al. (14)

CT Find FRP that can predict MACE 1,777 patients RF The coronary FRP signature can predict MACE

(C-statistic 0.77 [95% CI: 0.62–0.93])

Larroza et al.

(15)

CMR Texture features to differentiate AMI 44 patients RF SVM Polynomial SVM AUC of 0.86 ± 0.06 on LGE

MRI, AUC of 0.82 ± 0.06 on cine MRI

Schuster et al.

(16)

CMR Investigate feasibility and prognostic

implications of AI-based software

analysis

1,017 patients suiteHEART,

v4.0.6; Neosoft

Manual and automated volumetric

assessments’impact on outcome (manual: HR,

0.93; automated: HR, 0.94)

Ma et al. (17) CMR Feature study on CMR to diagnose

myocardial injury in AMI

68 patients ML Radiomics and T1 values AUC of 0.88 (training

set) and 0.86 (test set)in diagnosing MVO

Knott et al. (18) CMR Explore the prognostic significance of

MBF and MPR

1,049 patients CNN MBF: adjusted HR for death and MACE 1.93

and 2.14 MPR: adjusted HR for death and

MACE 2.45 and 1.74

Groepenhoff

et al. (19)

CCTA

CMR

integrated

Calculate the incidence of

macrovascular and microvascular

disease in women and men, develop a

decision-support tool

400 patients

expected

ML Actively recruiting participants

Dekker et al. (20) LDACT

during MPI

Investigate the association of

automated CAC scores and MACE

747 patients CNN High CAC scores has HR of 2.19 in predicting

MACE

CT, computed tomography; FFR, fractional flow reserve; RNN, recurrent neural network; RF, random forest; MACE, major adverse cardiovascular event; CAG, coronary angiography;

HR, hazard ratio; ACS, acute coronary syndrome; CNN, convolutional neural network; FSS, functional syntax score; OR, odds ratio; AUC, area under curve; CI, confidence interval;

PCAT, pericoronary adipose tissue; CAD, coronary artery disease; ML; FRP, fat radiomic profile; CMR, cardiac magnetic resonance; SVM, support vector machine; LGE, late gadolinium

enhancement; MVO, microvascular obstruction; MBF, myocardial blood flow; MPR, myocardial perfusion reserve; LDACT, low dose attenuation computed tomography; MPI, myocardial

perfusion imaging; CAC, coronary artery calcium.

Larroza et al. used machine learning and extracted texture
features in CMR images from 22 AMI patients and 22 CMI
patients. They analyzed cine and LGE MRI separately to classify
AMI and CMI. By evaluating the classification performance of
three predictive models based on ML extracting texture features,
the best performance was yielded by the polynomial SVM.
It was demonstrated that feature analysis can be applied in
differentiating AMI from CMI on both cine and LGE CMR (15).

The imaging features that can separate the two groups were
carefully selected by SVM classifier.

Predicting Prognosis
CMR is regarded to be a gold-standard non-invasive modality
for assessing cardiac function quantitatively and characterizing
myocardium after MI (54, 55).
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TABLE 3 | Applications of AI in invasive modalities.

References Modality Purpose Samples Algorithm Results

Howard et al.

(21)

CAG Identify damping in arterial pressure

waveform

5,709 beats CNN Sensitivity 100%, specifcity 99.8%, positive

predictive value 98.1%, negative predictive

value 99.5%

Moon et al. (22) CAG Recognize and localize stenosis 452 movie

clips

CNN Frame-wise AUC 0.971, frame-wise accuracy

0.934, clip-wise accuracy 0.965

Roguin et al. (23) CAG Estimate FFR 31 patients ANN Sensitivity 88%, specificity 93%, positive

predictive value 94%, negative predictive value

87%

Yabushita et al.

(24)

CAG Detect stenosis 199 patients,

1,838 videos

CNN Predictive accuracy: AUC 0.61

Zhao et al. (25) CAG Calculate FFR 137,126

images

CNN Correlation between CFRauto and CFRmanual:

r = 0.51

Du et al. (26) CAG Comprehensive analysis 20,612

angiograms

GAN

CNN

F1-scores:stenosis, 0.829; total occlusion,

0.810; calcification, 0.802; thrombosis, 0.823;

dissection, 0.854.

Lee et al. (27) OCT Developed an automated

atherosclerotic plaque characterization

method

6,556 images CNN RF Sensitivities/specificities: fibrolipidic plaques

84.8/97.8% fibrocalcific plaques 91.4/95.7%

Chu et al. (28) OCT Automatically characterize OCT

plaques

509 pullbacks CNN Diagnostic accuracy: fibrous plaque 97.6%,

lipid 90.5%, calcium 88.5%

Xu et al. (29) OCT Identify fibroatheroma with deep

features

360 images AlexNet,

VGG-16,

VGG-19, and

GoogLeNet;

SVM

Classification accuracy: Alexnet 0.7333,

VGG-16 0.7611, VGG-19 0.7639, GoogLeNet

0.7333

Prabhu et al. (30) OCT Identify fibrolipidic and fibrocalcific

A-lines in OCT images

6,556 images SVM Overall accuracy 81.58% sensitivity/specificity:

other (81.43/89.59), fibrolipidic (94.48/87.32),

fibrocalcific (74.82/95.28)

Shi et al. (31) OCT Boost the performance of recognizing

vulnerable plaques

2,300 images Fully CNN Deep

CNN

Final score:0.8767

Liu et al. (32) OCT Improve the detection quality of

vulnerable plaque

2,300 images Deep CNN Precision rate 88.84%, recall rate 95.02%,

overlap rate 85.09%; detection quality score

88.46%

Lee et al. (33) OCT Characterize coronary calcified plaque

in OCT images

8,231 images CNN Sensitivity 97.7%, specificity 87.7%, F1 score

0.922

Cha et al. (34) OCT Compare OCT-FFR with wire-based

FFR

125 patients RF Sensitivity 100%, specifcity 92.9%, positive

predictive value 87.5%, negative predictive

value 100%, and accuracy 95.2%

Johnson et al.

(35)

OCT Use transcriptomic data to predict FCT

change

69 patients Elastic net K top

scoring pair

Classification AUC = 0.969 and 0.972

Bae et al. (36) IVUS Develop ML models for predicting

OCT-TCFA

517 patients ANN SVM naïve

Bayes

ANN: 81 ± 5% (AUC = 0.80 ± 0.08) SVM: 77

± 4% (AUC = 0.74 ± 0.05) naïve Bayes: 78 ±

2% (AUC = 0.77 ± 0.04)

Jun et al. (37) IVUS Find the most accurate classifier to

classify TCFA

12,325 images FNN KNN RF

CNN

AUC of: FNN:0.859, KNN:0.848, RF:0.844,

CNN:0.911

Cho et al. (38) IVUS Develop IVUS-based algorithms for

classifying attenuation and calcified

plaques

113,746

frames

EfficientNet Angle level dice similarity coefficients:

calcification 0.79, attenuation 0.74 Frame level

accuracy:attenuation 93%, calcification 96%

Vessel level correlation with human

measurment: attenuation r = 0.89, calcification

r = 0.95

Wang et al. (39) IVUS 1. Identify the most powerful

predictor(s) for plaque vulnerability

change

2. Test whether machine learning

approaches could improve prediction

accuracy

9 patients SVM RF Prediction accuracy: RF 91.47% SVM 90.78%

MPVI the best single risk factor

CAG, coronary angiography; ANN, artificial neural network; GAN, generative adversarial network; CFR, coronary flow reserve; OCT, optical coherence tomography; FCT, fibrous cap

thickness; IVUS, intravascular ultrasound; TCFA, thin cap fibroatheroma; FNN, feed-forward neural network; KNN, K-nearest neighbor; MPVI, morphological plaque vulnerability index.
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One of the reasons artificial intelligence was developed is that
it can replace human resources to some extent, on the premise
that it can finish a human’s job just as well, if not better. The CMR
parameters of both ventricles can be analyzed both manually and
computationally. Schuster et al. proved that automatic ventricle
evaluation can predict MACE as well as manual evaluation.
Volume parameters like left ventricular mass left and right
ventricular ejection fraction and so on were automatically and
manually analyzed. Parameters then entered regression models
to predict MACE (16).

In a study conducted by Ma et al., 68 patients had CMR after
PCI for AMI. The evaluation of the myocardial damage and
prediction of left ventricular (LV) systolic contractility recovery
were evaluated with radiomics signatures extracted by open-
source software combining selected strongest features. Better
diagnostic performance for microvascular obstruction (MVO)
than T1 values alone was achieved by incorporating radiomics
and T1 values. A greater predicting power for LV contractility
recovery was also yielded by radiomics signature adding to T1
values compared to T1 values alone (17).

Derived from CMR perfusion images, myocardial stress-
related metrics are used to predict MACE. During the process of
deriving stress metrics, CNN was used to segment the contour of
the ventricle and myocardium (18). Another example of artificial
intelligence participating in predicting prognosis was exhibited.

Application of AI in Other Non-invasive
Modalities
Various modalities other than those above-mentioned examples
have been used to prevent, diagnose, and treat ACS. Additionally,
some methods integrate the above-mentioned modalities serving
the same purpose as the tools of machine learning.

Integration of CCTA, stress CMR perfusion imaging, and
electronic medical record data is proposed for building decision-
making assisting systems (19). Machine learning is destined to
play a role in these systems, although it is uncertain which
algorithm will be used.

Dekker et al. used deep learning on low-dose attenuation
correction CT (LDACT) images from 747 patients with chest pain
gathered during 82 Rubidium PET/CT in one single assessment,
to get CAC scores. High CAC scores (>400) showed the higher
predictive value of events. Both high CAC scores and ischemia
were found to be independent predictors of MACE (20). This
demonstrates that deep learning methods can also be applied to
imaging systems derived from PET/CT.

APPLICATION OF AI IN INVASIVE
MODALITIES

CAG
Arterial Waveform Analysis
Howard et al. implemented a 1-dimensional convolutional neural
network to automatically analyze arterial pressure waveforms.
With the algorithm, real-time identification of damping can
be realized to guarantee the safety of intervention for ACS
patients. The classification network achieved excellent accuracy,

specificity, sensitivity, positive, and negative predicting values
(21). This indicates that, given the right circumstances, artificial
intelligence can serve us in many ways.

Stenosis Recognizing
If we analyze CAG images with neural networks like ANN
or CNN, in theory, stenosis or thrombus or calcification
will be identified given sufficient labeling. Stenosis, as the
most significant information extracted by interventionists, has
naturally become the primary subject.

Moon et al. designed a three-step algorithm to recognize
stenosis in coronary angiography automatically. The model was
trained with 452 series of right coronary angiography. In internal
and external validation sets, both frame-wise and series-wise
satisfactory accuracy were achieved (22).

Yabushita et al. attempted to detect clinically significant
stenosis in coronary angiography movies with a model. One
hundred and ninety-nine patients with 1,838 movies were
enrolled to produce the multi-layer 3D CNN model. A c-statistic
value of 0.61 was achieved in the test set as well as the validation
cohort in the training set (24).

CAG-FFR
ANN classifies lesions, as stated above. What surprised us is
that software based on ANN can furthermore compute FFR
instantaneously without any additional movement, while the
respective vessel is being viewed (23). CNN was applied for the
same purpose and achieved acceptable correlation (25).

Comprehensive Analysis
Since deep neural network (DNN) is widely used in CAG image
processing, is it applicable for finishing comprehensive analysis,
from segmentation to stenosis measurement, from calcification
to dissection. Du et al. implemented two different DNNs to
accomplish such tasks, which only took seconds. The labeling
of coronary artery segments and lesion types is a key factor in
training the network (26). We can expect to have a full analysis
of CAG almost instantaneously for interventionists to make
decisions in the near future.

OCT
Plaque Analysis
Owing to high spatial resolution (15µm), OCT has an inherent
advantage in morphological analysis of plaques (56, 57). Studies
focusing on plaque characteristics or classification have grown in
recent years. Accurately and efficiently identifying atherosclerotic
plaques, in particular, vulnerable plaques which are often an
alarming sign of successive cardiac events, which are of great
significance in managing ACS (58). Additionally, with AI’s
prosperity, OCT combining AI are the proposed solutions to a
series of clinical challenges.

CNN has repeatedly demonstrated its classifying ability in
other imaging modalities and has also been proven in OCT.
Furthermore, RF was combined with CNN, also serving as a
classifier. For starters, RF is particularly efficient in a large
data set. Secondly, RF has a relatively low risk of overfitting.
Thirdly, RF is good at deciding the significance of features that
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matter in classification. Lastly, RF is robust in noisy data and
OCT data is “noisy.” As a result, Lee et al. mixed DL and
manual lumen morphological characteristics to automatically
feature atherosclerotic plaques. High sensitivities and specificities
for fibrolipidic and fibrocalcific plaques were achieved after
sequential pre-processing, training, testing, and post-processing.
The hybrid approach performed better than the previous
automatic or manual method alone. The training also depends
on accurate labeling (27).

CNN was then widely tested in OCT modality to classify
different plaques (28, 59), including vulnerable plaques (31, 32).
SVM was also tested in the OCT modality to classify fibrolipidic
and fibrocalcific plaques (30). If calcified plaque is the focus of
classification, CNN could also accomplish the task, furthermore,
to pursue excellence, other DL techniques can be integrated (33).

OCT-Based FFR
FFR is considered a highly specific tool for diagnosingmyocardial
ischemia in borderline angiographic stenosis (60, 61). However,
it provides no information on the morphology of lesion
characteristics like OCT. Researchers have sought to combine
FFR with OCT via the application of artificial intelligence to
acquire both functional and morphological information at the
same time. Cha et al. obtained OCT data from 125 patients
with typical angina and left anterior descending artery lesions of
borderline stenosis (luminal diameter<70%), as well as their FFR
data. Random forest extracted the six most important features
to predict FFR. The OCT-based ML-FFR correlated well with
the wire-based FFR (34). As introduced in the previous sections
discussing CT-FFR, most FFR calculations are merely based
on images but prediction models integrating both imaging and
clinical data broaden our vision.

Predicting FCT Change
Fibrous cap thickness (FCT) precisely measured by OCT (56) is
of utmost the importance in plaque rupture (62, 63). Statin is
believed to make FCT grow so that acute coronary events are
less likely to occur (64, 65). Nevertheless, statin is not effective in
everyone by showing increased FCT (66). Hence a tool to predict
FCT change in patients taking statin will undoubtedly optimize
medical therapy in CAD patients to reduce incidents of ACS.
MLmodels predict FCT changes measured by OCT via analyzing
gene expression data (35). Once models like this are integrated,
precision medicine can potentially be practiced.

IVUS
Plaque Analysis
According to previous studies, large lipid core and thin fibrous
cap can independently predict cardiac events including ACS (58).
Intravascular ultrasound (IVUS) is widely used in evaluating
lesions and plaque. However, conventional frame-by-frame
analysis is not efficient. Various artificially intelligent algorithms
have been sought to assist in analyzing plaques.

High risk plaques are undoubtedly the first-choice target for
classifying models in IVUS modality. A computational method
called EfficientNet was introduced to identify “attenuated plaque,
calcified plaque, and plaque without attenuation or calcification”

(38). This novel approach has potential and may be of assistance
in “high risk” plaque recognition.

Thin-cap fibroatheroma (TCFA) is defined as “a lipid-rich
plaque underlying a thin-fibrous cap whose thickness is <65
µm” (67). The existence of TCFA independently predicts adverse
cardiac events, especially ACS, as concluded by a few studies
looking into the progress of non-culprit lesions. However, the
relatively poor resolution of IVUS makes it impossible to identify
TCFA. ML have appeared in predicting and classifying TCFA for
its capability in finding patterns in a huge dataset and precise
prediction with processed data.

Bae et al. collected IVUS and OCT images in patients with
stable and unstable angina, respectively. They then separated
them into the training and testing samples. Each of the IVUS-
OCT co-registered frames was labeled as with TCFA and without
TCFA. ANN, SVM, and naïve Bayes were used to predict OCT-
derived TCFA, all of which showed accuracies of around 80%
(36). Other forms of neural networks were also proven to possess
similar capability (37).

Plaque Vulnerability Prediction
A genuine clinical challenge arises in predicting upcoming
plaque rupture and related critical events like myocardial
infarction. To solve this, some effort has been made to take
advantage of artificial intelligence for its strength in image feature
extraction, a huge quantity of data processing, complex pattern
finding, and biomechanics for its advantage in studying the
fluid environment in which vulnerable plaques reside in the
perspective of fluid mechanics.

A “morphological plaque vulnerability index (MPVI)”
has been proposed to evaluate plaque vulnerability using
morphological features was obtained from in vivo IVUS
images. Wang et al. acquired IVUS data from nine patients to
reconstruct “fluid-structure interaction (FSI)” models in which
hydrodynamic metrics were obtained. In total, 10 baseline
risk factors were used by three models to forecast “MPVI
change (1MPVI = MPVIfollow−up – MPVIbaseline).” Model
of RF performed best and MPVI was weighed most in the
predictors (39).

PITFALLS AND LIMITATIONS

All kinds of novel methods/algorithms/models appear to be
promising but there is still much work to be done before
they can be translated for clinical use. No matter how well
the newly developed models perform, strict external validation
with cohorts from different centers other than the centers
where that model was built is mandatory. Before proving
satisfactory generalizability, clinical deployment is, at present, out
of the question.

Overfitting is a common trap in a complex algorithm,
although various techniques can be applied to avoid it. A
model with good performance may yield misleading results
when applying new data, leading to serious sequelae because
of overfitting. Therefore, techniques like K-fold cross validation
should be considered to reduce errors in prediction or
pattern finding.
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One of the major limitations of building an ML model
is the quality of data. The incorrect selection of data and
inaccurate measurements may produce flawed results that could
be misleading. The same problem also applies to data that have
too much noise.

Involving big data processing and a huge amount of
calculations, conducting AI research undoubtedly involves
demands both in terms of software and hardware. Further
advances in AI study are anticipated but require a lot
of investment.

To date, no guidelines or expert consensus has been issued.
Standardization of AI research is urgently required to guarantee
the quality of AI research.

CHALLENGES AND DIRECTIONS

Essentially AI is a science based on data. Generally speaking,
more data means better AI research products. Although
AI researches are prospering, the scarcity of data remains
a challenge. One important reason for this is that clinical
data often are stored in different systems. For example,
images are in Picture Archiving and Communication Systems
(PACS), electronic health records are stored in Hospital
Information Systems (HIS), and electrocardiograms (ECG)
are in paper format. Collecting integrated clinical data is
therefore time consuming and demanding of human resources.
A revolutionary data storing system is required in order to tackle
this obstacle.

Legislation focusing on clinical AI products is still in
development in most countries. Due to the complexity of AI
in terms of legal and ethical issues, the process of legislation
is expected to be long-term and difficult, given that there is
no precedent in human history. There will likely be polarizing
debates about whether the developer, the user, or the AI itself are
accountable when the AI model produces negative results in the
real world.

There have already been products integrating the collection of
health-related information, such as smart wearable devices and
hand-held diagnostic tools. Mobile devices possess an inherent
advantage for obtaining clinical data. In the future, it is likely
to be a popular direction with the potential to develop more
accurate disease phenotyping and more personalized therapies.

It is noteworthy that ACS often requires timely management
and AI products involving treatment schedules should take
processing time into account. Similar to the example algorithms
mentioned above, it is best to be able to display results
simultaneously or within seconds along with the CAG or PCI.

Attempts have been made to integrate different imaging
modalities to evaluate ACS comprehensively with efficiency in
terms of time and cost, such as IVUS and OCT in fusion.
Although large clinical trials are lacking, they may also be a
prospective direction.

CONCLUSION

Many gaps are to be bridged in cardiovascular disease, ACS in
particular, from the mechanism of disease to precise diagnosis
and personalized optimal therapeutic strategy. AI has shown
its potential in making accurate diagnoses, evaluating functions
precisely, predicting risk and outcome, assisting in making
treatment decisions, and monitoring disease progression, etc.
based on its inherent advantages compared to human power.
However, AI also has limitations to be addressed before being
widely deployed clinically. Strenuous effort should be made to
tackle overfitting, lack of generalizability, limited interpretability,
robustness, and so on. Meanwhile, standardization of conducting
AI research is an urgent matter. The application of AI to
cardiovascular medicine in the future will provide supplemental
options for clinicians and benefits to patients.
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