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Abstract

Liver cells isolated from pre‐clinical models are essential tools for studying liver

(patho)physiology, and also for screening new therapeutic options. We aimed at

developing a new antibody‐free isolation method able to obtain the four main hep-

atic cell types (hepatocytes, liver sinusoidal endothelial cells [LSEC], hepatic macro-

phages [HMΦ] and hepatic stellate cells [HSC]) from a single rat liver. Control and

cirrhotic (CCl4 and TAA) rat livers (n = 6) were perfused, digested with collagenase

and mechanically disaggregated obtaining a multicellular suspension. Hepatocytes

were purified by low revolution centrifugations while non‐parenchymal cells were

subjected to differential centrifugation. Two different fractions were obtained: HSC

and mixed LSEC + HMΦ. Further LSEC and HMΦ enrichment was achieved by

selective adherence time to collagen‐coated substrates. Isolated cells showed high

viability (80%‐95%) and purity (>95%) and were characterized as functional: hepato-

cytes synthetized albumin and urea, LSEC maintained endocytic capacity and in vivo

fenestrae distribution, HMΦ increased expression of inflammatory markers in

response to LPS and HSC were activated upon in vitro culture. The 4 in 1 protocol

allows the simultaneous isolation of highly pure and functional hepatic cell sub‐
populations from control or cirrhotic single livers without antibody selection.

K E YWORD S

cirrhosis, hepatocytes, HSC, Kupffer cells, LSEC

1 | INTRODUCTION

The liver is the largest internal organ in humans being the main site

for macromolecule synthesis and storage, blood clearance and drug

metabolism.1 Hepatocytes, the parenchymal fraction of the liver,

approximately account for the 60% of the liver mass and are respon-

sible for the detoxification, bile synthesis and storage functions of

the organ.2 Hepatocytes alone are not competent to perform the

abovementioned functions; they work as an integrated community

with the so called non‐parenchymal cells (NPC), mainly: liver

sinusoidal endothelial cells (LSEC), hepatic stellate cells (HSC) and

resident hepatic macrophages (HMΦ) also known as Kupffer cells.3,4

LSEC (19% of the liver mass) are highly specialized endothelial

cells characterized by the presence of transcellular pores called fen-

estrae and the lack of basal membrane.5,6 This unique cell type not

only lines the physical barrier between blood and hepatocytes but is

also involved in regulating sinusoidal blood flow, tissue homeostasis,

immune response and macromolecular waste clearance.7,8 HMΦ

(10%) represent the resident tissue macrophages, which upon liver

damage synthesize and secrete immune modulators.9,10 Finally, HSC
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approximately account for the 6% of the liver mass and are found in

the space of Disse, surrounding LSEC. Major roles of HSC are regu-

lation of the vascular tone and retinoid storage. Besides, upon liver

injury, HSC activate and acquire a myofibroblast‐like phenotype in

which extracellular matrix (ECM) is actively produced and deposed in

order to limit the progression of injury and favor tissue regenera-

tion.11,12 Moreover, many other cell types, either resident (cholangio-

cytes lining in the biliary duct, cells building the lymphatic vessels,

portal fibroblasts, major vessels endothelial cells, liver progenitor

stem cells) or transient (immune cells such as T and B lymphocytes,

natural killer cells, neutrophils or erythrocytes), are found in the liver

constituting the remaining 5% of its mass.1,13-16

The key role of NPC in liver (patho)physiology is getting more

notorious. Hence, isolation of primary cells from pre‐clinical experi-
mental models is crucial. However, and especially in the field of

chronic liver disease (CLD), few reports have described detailed pro-

tocols for simultaneous isolation of the main hepatic cell types from

cirrhotic rodent models.17

In 1972, Seglen18 achieved an important advance by introducing

the two‐step perfusion technique for isolating rat liver cells. It was

not until 2011 when Liu et al19 described a detailed systematic

method for simultaneous isolation of hepatocytes and NPC by

means of low‐speed centrifugations. Nevertheless, several alternative

techniques have been developed to isolate NPC. The most extended

being density gradient centrifugation,20,21 counterflow elutriation,5,22

fluorescence activated cell sorting (FACS)17 and immunomagnetic

bead isolation also known as MACS.23

Cell density separation is highly useful to isolate HSC from the

NPC suspension. Generally, the densities of LSEC and HMΦ overlap;

therefore, further steps are required to purify both cell types. For

example, short incubation of these cells on non‐coated substrates is

sufficient for HMΦ to attach while LSEC can be easily recovered

from the suspension.24,25 Counterflow elutriation has been inten-

sively used for obtaining highly pure LSEC, although it is time‐con-
suming, expensive and requires specialized equipment. The use of

FACS and MACS as the gold standard techniques for liver cell isola-

tion has been reasonably questioned as the overall yield is generally

low and reliable surface markers are doubtfully available for liver

sinusoidal cell populations. Indeed, isolation methods based on

“specific” antibody labelling against membrane receptors have two

main limitations, especially in disease models: antibody‐receptor
recognition and binding could trigger intracellular signaling further

altering the naïve properties of the isolated cells, and the expression

of surface markers may substantially vary due to disease‐mediated

changes in cell phenotype, thus a particular cell population may be

exclusively selected, excluding cells from the same community with

slightly different phenotype.

For all the technical requirements and controversies regarding

NPC phenotype, the isolation of liver cells based on their character-

istics with regard to density and substrate adherence time remain

the primary method used to separate these cell populations. Conse-

quently, the aim of this work was to develop a fast, cheap and user‐
friendly reproducible protocol for the simultaneous isolation of the

four main liver cell types from a single rat liver without antibody

selection and suitable for different models of CLD. Isolated cells

obtained with the herein presented protocol were tested for purity,

yield and functionality.

2 | MATERIALS AND METHODS

2.1 | Animals

Wistar Han rats weighting 300‐350 g were used as healthy (control:

Ct) animals. Liver cirrhosis (Ch) was induced in 50‐75 g Wistar Han

rats by chronic inhalation of carbon tetrachloride (Ch‐CCl4) three

times a week and receiving 0.3 g/L phenobarbital in the drinking

water. When rats developed ascites, approximately after 14‐
16 weeks, toxicants administration was stopped. For thioacetamide‐
induced cirrhotic animals (Ch‐TAA), TAA was dissolved in 0.9% sal-

ine approximately 4 h before injection. Cirrhosis induction was evi-

dent after 12 weeks of treatment (250 mg/kg of TAA twice a week).

Control and cirrhotic animals (n = 6 per experimental group) were

weight and age matched.

Animals were kept at the University of Barcelona Faculty of

Medicine facilities with controlled temperature (19.7 ± 2°C), humid-

ity (52 ± 5%) and light/dark cycle (12 hours each). Animals were fed

ad libitum with water and standard rodent food pellets and housed

in conventional cages. All experiments were approved by the Labo-

ratory Animal Care and Use Committee of the University of Barce-

lona and were conducted in accordance with the European

Community guidelines for the protection of animals used for experi-

mental and other scientific purposes (European Economic Commu-

nity (EEC) Directive 86/609). All animals were supplied by Charles

River Laboratories International, Inc.

2.2 | Liver perfusion and digestion

Table 1 describes the different buffers required for the protocol.

Rats were intraperitoneally anesthetized with a combination of

100 mg/kg ketamine and 5 mg/kg midazolam and sprayed with 96%

ethanol to set an aseptic environment. A mid‐abdominal incision

towards the sternum was made and the intestines were displaced to

expose the portal vein. 500 μL heparin were injected through the

cava vein and the liver was perfused (20G catheter) through the por-

tal vein with pre‐warmed Buffer 1 for 10 minutes at a flow rate of

20 mL/min. Simultaneously, the cava vein was cut to allow outflow

of the solution. After perfusion, the liver was digested with pre‐
warmed Buffer 2 for 30 minutes at a flow rate of 5 mL/min. The

resultant digested liver was excised, cut up and in vitro digestion

were performed with Buffer 2 supplemented with 0.01% collagenase

A (30% extra collagenase A was added for cirrhotic livers). Disaggre-

gated tissue was filtered using a 100 μm nylon strainer, collected in

cold Buffer 3 and centrifuged at 50× g for 5 minutes. The pellet

contained hepatocytes, while NPC were found in the supernatant.

Complete protocol for further purification of liver cells is detailed in

the following paragraphs and summarized in Figure 1.
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2.3 | Isolation of primary rat hepatocytes

Pellet containing hepatocytes was rinsed with cold Hanks’ balanced
salt solution (HBSS) and subsequently centrifuged (50× g, 5 min,

4°C). This washing procedure was performed three times. Hepato-

cytes above 75% viability (evaluated by trypan blue exclusion) were

cultured in medium M1 (Table 2) plated in 0.1 mg/mL collagen‐
coated petri dishes at a density of 109 000 cells/cm2 and main-

tained at 37°C in a humidified atmosphere of 5% CO2. After

4 hours, cells were rinsed twice with Dulbecco's phosphate‐buffered
saline (DPBS) and the medium was replaced by medium M2

(Table 2).

TABLE 1 Buffers composition. Detailed reagents for the preparation of perfusion, digestion and suspension buffers

Reagent

Concentration

Product referenceBuffer 1 Buffer 2 Buffer 3

Hepes 12 mmol L−1 12 mmol L−1 25 mmol L−1 H3375, Sigma, Barcelona, Spain

Ethylene glycol‐bis (2‐aminoethylether)‐N,N,N′,N′‐tetraacetic
acid (EGTA)

0.6 mmol L−1 ‐ ‐ E4378, Sigma

Bovine serum albumin (BSA) 0.23 mmol L−1 ‐ ‐ A1391.0100, Panreac Applichem,

Barcelona, Spain

Sodium bicarbonate (NaHCO3) 25 mmol L−1 25 mmol L−1 0.0025 mol L−1 S6297, Sigma

Sodium chloride (NaCl) 0.14 mol L−1 0.14 mol L−1 0.125 mmol L−1 S9625, Sigma

Potassium chloride (KCl) 0.005 mol L−1 0.005 mol L−1 0.005 mol L−1 P9333, Sigma

Magnesium sulfate heptahydrate (MgSO4·7H2O) 0.001 mol L−1 0.001 mol L−1 1.75 mmol L−1 230391, Sigma

di‐Sodium hydrogen phosphate dihydrate (Na2HPO4·2H2O) 0.3 mmol L−1 0.3 mmol L−1 ‐ 6580.0500, Merck,

Darmstadt, Germany

Potassium phosphate monobasic (KH2PO4) 0.4 mmol L−1 0.4 mmol L−1 1 mmol L−1 P5379, Sigma

Heparin (1000 IU) 1% ‐ ‐ 34102, Rovi, Barcelona, Spain

Calcium chloride dihydrate (CaCl2·2H2O) ‐ 4 mmol L−1 2.5 mmol L−1 C3881, Sigma

Collagenase A ‐ 0.015% ‐ 103586, Roche, Barcelona, Spain

All buffers were set at physiological pH 7.4 and oxygenated (95% O2 + 5% CO2) for 20 minutes.

F IGURE 1 Summarized overview of hepatic cells isolation procedure. Control and cirrhotic livers (n = 6) were perfused, digested with
collagenase A, and mechanically disaggregated obtaining a multicellular suspension. Hepatocytes were purified by low revolution
centrifugations. Non‐parenchymal cells were subjected to a differential centrifugation using iodixanol obtaining a pure fraction of HSC and
another one of mixed LSEC+HMΦ. Due to the ability of LSEC to specifically adhere to coated substrates, we were able to obtain highly
enriched LSEC and HMΦ cultures
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2.4 | Purification of primary non‐parenchymal cells

The supernatant containing NPC was centrifuged to eliminate

remaining hepatocytes (50× g for 5 minutes at 4°C) and the super-

natant was centrifuged twice (800× g for 10 minutes at 4°C) to

wash and precipitate the NPC. The obtained pellet was resuspended

in 15 mL of 17% iodixanol diluted in Gey's balanced salt solution

(GBSS). Three 15 mL tubes were filled with 5 mL of the multicellular

suspension and 5 mL of 11.5% iodixanol were carefully overlaid onto

the cell suspension followed by 2 mL of GBSS. After centrifugation

at 1400× g for 21 minutes at 4°C without break, two interphases

were obtained; the lower interphase contained HMΦ and LSEC

while the upper interphase was enriched in HSC.

2.5 | Isolation of hepatic macrophages and liver
sinusoidal endothelial cells

HMΦ and LSEC‐enriched fraction was carefully collected, diluted in

DPBS and centrifuged at 800× g for 10 minutes at 4°C. The cell pellet

was resuspended in medium A (Table 2), seeded on non‐coated petri

dishes and incubated for 30 minutes at 37°C in humid atmosphere

with 5% CO2 in order to enhance LSEC purity by selective adherence

time of HMΦ. Non‐adhered cells (LSEC fraction) were seeded on

collagen‐coated substrates and maintained for 45 minutes at the

previous incubation conditions. Afterwards, cells were washed twice

with DPBS and left overnight (O/N) (37°C, 5% CO2) in medium A.

2.6 | Isolation of hepatic stellate cells

HSC‐enriched interphase was carefully collected and rinsed with

GBSS. After centrifugation at 800× g for 10 minutes at 4°C the

cell pellet was resuspended in medium S (Table 2) and plated on

non‐coated petri dishes. HSC were maintained at 37°C in a humidi-

fied atmosphere of 5% CO2 O/N.

2.7 | Cell yield and viability

Yield and viability of each cell type were evaluated in Ct and cir-

rhotic animals (Ch‐CCl4 and Ch‐TAA) by trypan blue exclusion

assessed by two independent researchers.

Yield per gram of tissue was calculated considering liver weight

averages of 9, 10 and 13 g for Ct, Ch‐CCl4 and Ch‐TAA respectively.

Functional characterization was performed in cells isolated from Ct

and Ch‐CCl4 rats.

2.8 | Immunocytofluorescence

Isolated cells were cultured in petri dishes and fixed with 4%

paraformaldehyde for 10 minutes, rinsed three times with DPBS

and permeabilized for 5 minutes with 0.1% triton. After rinsing 3

times with DPBS, cells were blocked for 30 minutes. Fixed cells

were incubated with cell type specific primary antibody: 1/63 albu-

min (MAB1455, R&D Systems, Minneapolis, MN, USA) for hepato-

cytes, 1/100 rat endothelial cell antigen 1 (Reca‐1) (MCA970R,

Biorad, Madrid, Spain) for LSEC, 1/100 cluster of differentiation 68

(CD68) (MCA341R, Biorad) for HMΦ and 1/100 desmin (M0760,

Dako, Madrid, Spain) for HSC. After 45 minutes, cells were incu-

bated with 1/300 Alexa Fluor 488‐conjugated donkey antimouse

secondary antibody (A‐21202, Thermo Fisher Scientific, Madrid,

Spain) and 1/1000 Hoechst (D1306, Thermo Fisher Scientific) for

1 hour. Finally, coverslips were placed onto cells with fluoromount‐
G medium. Blocking, primary antibody and secondary antibody solu-

tions were prepared with 1% Bovine Serum Albumin dissolved in

DPBS and incubated at room temperature.

Immunocytofluorescence staining was examined using a fluores-

cence microscope (Olympus BX51, Tokyo, Japan) equipped with a

digital camera (Olympus, DP72). Five representative images were

taken from each preparation at 200× magnification. Image analysis

was performed with Fiji‐ImageJ (National Institutes of Health,

TABLE 2 Medium composition. Detailed supplements and concentrations for cell culture media

Reagent

Concentration

Product referenceMedium M.1 Medium M.2 Medium A Medium S

Dulbecco's Modified Eagle's Medium (DMEMF12) ✓ ✓ ‐ ‐ 11320074, Gibco, Madrid, Spain

Roswell Park Memorial Institute medium 1640

without L‐glutamine (RPMI)

‐ ‐ ✓ ‐ 01‐101‐1A, Biological Industries,
Cromwell, CT, USA

Iscove's Modified Dulbecco's Medium (IMDM) ‐ ‐ ✓ 21980‐032, Invitrogen, Madrid, Spain

Fetal Bovine Serum (FBS) 10% 2% 10% 10% 04‐001‐1A, Biological Industries

Penicillin plus streptomycin 1% 1% 1% 1% 03‐331‐1C, Biological Industries

L‐glutamine 2 mmol L−1 2 mmol L−1 2 mmol L−1 2 mmol L−1 25030‐024, Gibco

Amphotericin Ba 1% 1% 1% 1% 03‐029‐1C, Biological Industries

Dexamethasonea 1 μmol L−1 1 nmol L−1 ‐ ‐ D4902, Sigma

Insulina 1 μmol L−1 1 μmol L−1 ‐ ‐ Humulin S, Lilly S.A.

Endothelial cell growth supplement (ECGS)a ‐ ‐ 50 μg/mL ‐ BT‐203, Alfa Aesar,

Karlsruhe, Germany

Heparina ‐ ‐ 100 μg/mL ‐ H3393, Sigma

aFreshly added before cell seeding.
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Bethesda, MD, USA). For each cell type, more than 700 cells were

analysed. Purity of each cell culture was calculated as the number of

positive cells (for their type‐specific marker) divided by the number

of Hoechst‐positive cells. Negative controls included the incubation

of each cell type with antibodies specific for the other hepatic cells

sub‐populations. Images were counted by two independent

researchers blindly.

2.9 | Albumin and urea production

Supernatant from healthy and cirrhotic hepatocytes cultured at dif-

ferent densities (2.5 × 105 and 5 × 105 cells/well) was collected after

24 hours of culture. Albumin and urea nitrogen (BUN) were mea-

sured using standard methods at the Hospital Clínic of Barcelona's

CORE laboratory. BUN values were converted to urea as

2.1428 mg/dL BUN = 1 mg/dL urea.

2.10 | Acetylated low‐density lipoprotein assay

The endocytic capacity of LSEC was assessed by acetylated

low‐density lipoprotein (Ac‐LDL) uptake. In this regard, LSEC cul-

tured for 12 hours upon isolation were rinsed twice with pre‐
warmed DPBS, incubated with 5 μg/mL Alexa Fluor 488 Ac‐LDL

(L23380, Invitrogen) and 1 μmol L−1 Hoechst diluted in medium A

without phenol red for 30 minutes at 37°C protected from light.

Then, cells were rinsed with DPBS and fresh media was added for

further assessment in the microscope. Six images of each sample

(200× magnification) were analysed.

2.11 | Scanning electron microscopy

LSEC fenestration was assessed by scanning electron microscopy

(SEM). LSEC were fixed O/N with 2% glutaraldehyde dissolved in

0.1 mol L−1 cacodylate buffer pH 7.4 for 30 minutes at room tem-

perature, washed with cacodylate buffer three times for 5 minutes

and incubated with tannic acid (1%) for 1 hour followed by 2 hours

incubation with 2% osmic acid. Samples were dehydrated with an

ethanol battery (50%, 70%, 90%, 95% and 100%), critical‐point dried
with hexamethyldisilazane, sputter‐coated with gold and examined

by SEM.

2.12 | HMΦ response to lipopolysaccharide
stimulation

Isolated HMΦ were incubated with 100 ng/mL lipopolysaccharide (LPS)

from Escherichia coli (L2630, Sigma) or its vehicle (DPBS) for 6 hours.

Then, cells were rinsed and properly preserved at −80°C with RLT buf-

fer (Qiagen, Madrid, Spain) containing 10 mmol L−1 β‐mercaptoethanol

for further analysis of mRNA expression: mannose receptor C type 1

(Mrc1), arginase 1 (Arg1) and interleukin‐10 (IL‐10) as anti‐inflammatory

mediators, CCL2, also known as MCP1, interleukin‐1β (IL‐1β), inter-
leukin‐6 (IL‐6) and inducible nitric oxide synthase (iNOS) as pro‐inflam-

matory signals and TNFα considered as modulator of immune response.

2.13 | RT‐PCR

mRNA was isolated and purified using RNeasy Mini Kit (74104,

Qiagen) according to manufacturer's instructions. RNA was

quantified using Nanodrop software (ND1000, Marshall Scientific,

Hampton, NH, USA) and reverse transcribed to cDNA using

Quantitect Reverse Transcription Kit (205311, Qiagen) previous

elimination of genomic DNA of the sample. cDNA templates were

amplified by real‐time TaqMan polymerase chain reaction (Taqman

Fast Universal PCR Master Mix, 4352042, Applied Biosystems,

Madrid, Spain) on an ABI ;Prism 7900HT Fast Detection System

(Applied Biosystems). Expression of Mrc1 (Rn01487 342_m1), Arg1

(Rn00691090_m1), IL‐10 (Rn00563409_m1), TNFα (Rn01525859_

g1), CCL2 (Rn00580555_m1), IL1β (Rn00580432_m1), IL‐6
(Rn01410330_m1) and iNOS (Rn00561646_m1) were analysed using

predesigned gene expression assays from Applied Biosystems

(Thermo Fisher Scientific). CT values were normalized to those of

GAPDH (Rn01775763_g1) and expressed as relative changes vs the

control (ΔΔCT method). All PCR reactions were performed in dupli-

cate and using nuclease‐free water as controls.

2.14 | HSC in vitro activation

Isolated HSC were activated in vitro with consecutive trypsinization.

Once a week, HSC cultured in 25 cm2 flask were trypsinized using

0.05% EDTA‐trypsin until passage 4. HSC protein lysate was

obtained in every trypsinization passage. Medium S was replaced

thrice a week.

2.15 | Western Blotting

HSC protein lysates were run on a SDS‐polyacrylamide gel and

transferred to a nitrocellulose membrane. Blots were blocked for

1 hour and probed O/N at 4°C with antibodies (diluted 1/1000)

against alpha smooth muscle actin (α‐SMA) (A2547, Sigma) or

GAPDH (SC‐32233, Santa Cruz, CA, USA) as a housekeeping gene.

Chemiluminescence analysis of the blots was performed using Image

Studio (LI‐COR Biosciences, Lincoln, NE, USA).

2.16 | Chemicals

For liver cirrhosis induction, CCl4 (289116, Sigma) and phenobarbi-

tal (Kern Pharma, Barcelona, Spain) or TAA (172502, Sigma) were

used. Rats were anesthetized with ketamine (448.00.03, Merial,

Barcelona, Spain) and midazolam (841155.9, Normon SA, Madrid,

Spain). Collagenase A (10103586001, Roche) was used for tissue

digestion. Reagents for cell isolation included HBSS (H8264, Sigma),

collagen type 1 rat tail (A10483‐01, GIBCO), DPBS (L0615‐500,
Biowest, Barcelona, Spain), iodixanol (D1556, Sigma) and GBSS

(G9779, Sigma). For immunocytofluorescence identification,

paraformaldehyde (sc‐281694, SantaCruz Biotechnology, Madrid,

Spain), triton (×100, Sigma) and fluoromount‐G medium (100‐01,
Southern Biotech, Birmingham, AL, USA) were used. SEM
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preparations required glutaraldehyde (G5882, Sigma) and HMDS

(440191, Sigma).

2.17 | Statistical analysis

Statistical analysis was performed with SPSS Statistics 19 (Armonk,

NY, USA) software for Windows. Results were expressed as

mean ± standard error of mean. In order to assess differences

between‐groups we performed Student's T‐test when variables were

parametric and Mann‐Whitney test for non‐parametric variables.

Differences between groups were considered as significant when

P‐value ≤0.05.

3 | RESULTS

3.1 | Hepatic cells isolation: Yield and purity

The viability and yield of hepatic cells isolated from Ct and Ch rats

are shown in Table 3. Ct livers yielded more hepatocytes than Ch

ones, showing viability around 80%. Isolation of NPC resulted in sim-

ilar yields of LSEC in all groups, but as expected, the yield of HSC

isolated from Ch livers was significantly greater than Ct. HMΦ

seemed to be reduced in cirrhotic livers, although this difference

was not significant. Viability of NPC in both Ct and Ch rats was

≥95%. No differences in the amount of each type of cells were

observed comparing both pre‐clinical models of cirrhosis.

Hepatic cells were morphologically characterized in phase‐con-
trast images (Figure 2 and Figure S1). Hepatocytes showed their

characteristic mono(bi)‐nucleated polygonal shape, freshly isolated

LSEC were small and round, HSC exhibited lipid droplets and charac-

teristic stellate shape, and HMΦ are recognized by their stellate‐
macrophage shape. Additionally, identity and purity of isolated hepa-

tocytes and NPC were evaluated by immunofluorescence of specific

proteins for each cell type: albumin (hepatocytes), Reca‐1 (LSEC),

desmin (HSC) and CD68 (HMΦ) (Figure 2). As shown in Table 3, pur-

ity of Ct or Ch hepatic cells isolation was ≥95%. Importantly, no flu-

orescence signal was obtained when each hepatic cell sub‐
population was incubated with specific antibodies for the other cell

types and analyzed using the same experimental parameters (data

not shown).

3.2 | Functional characterization of isolated hepatic
cells

3.2.1 | Hepatocytes

Primary hepatocytes isolated from Ct or Ch rats were cultured in 6‐
well plates at a density of 2.5 × 105 and 5 × 105 viable cells/well.

After 24 hours of culture, cell supernatant was collected for subse-

quent analysis. Both Ct and Ch hepatocytes synthesized and

released albumin and urea to the culture media, which was depen-

dent on cell density, thus demonstrating cell functionality. In addi-

tion, albumin production from Ch hepatocytes was lower than that T
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of Ct cells, although this difference was not statistically significant

(Figure 3A).

3.2.2 | Liver sinusoidal endothelial cells

Functionality of primary isolated LSEC was analyzed in terms of their

endocytic capacity and fenestrae presence. As shown in Figure 3B,

LSEC isolated from Ct or Ch rats were able to uptake the fluorescent

Ac‐LDL. In addition, the endothelium transmembrane perforations, or

fenestrae, characteristic of differentiated LSEC were evaluated by

SEM. As expected, Ct‐LSEC exhibited numerous fenestrae grouped in

sieve plates whereas Ch‐LSEC showed a typical de‐differentiated phe-

notype with reduced number and diameter of fenestrae (Figure 3B).

3.2.3 | Hepatic macrophages

Hepatic macrophages, as cells of the immune system, are able to

respond to different pro‐inflammatory stimuli. As shown in Figure 3C,

HMΦ isolated from Ct animals increased the expression of most pro‐
inflammatory markers (TNFα, IL‐1β, IL‐6 and iNOS) in response to LPS

without changes in anti‐inflammatory markers other than Mrc1.

Regarding cirrhotic animals, all the analyzed markers except Mrc1

were significantly increased in response to LPS. Furthermore, HMΦ

isolated from cirrhotic animals exhibited an exacerbated response to

LPS when compared to HMΦ isolated from healthy individuals as

shown by significant increases in Arg1, IL‐10, TNFα, CCL2 and IL‐1β.

3.2.4 | Hepatic stellate cells

Assessment of cell activation during in vitro culture was used as

marker of HSC functionality. Figure 3D shows the increase in the

activation marker α‐SMA in Ct and Ch HSC upon trypsinization and

during in vitro culture. When comparing Ct vs Ch, basal expression

of α‐SMA (p0) was significantly increased in cirrhotic animals. Never-

theless, no significant differences were seen in the subsequent over‐
activated cells (activation passages p1 to p4).

4 | DISCUSSION

In order to evaluate the pathophysiology or novel treatments for

liver diseases, in vivo models have several advantages over cell cul-

tures. For example, in vivo, the different hepatic cell types are kept

in their 3D physiological microenvironment, with proper direct con-

tact or paracrine communication with other cell types and are influ-

enced by systemic blood components and the immune system.3

However, in vitro cultures also feature several advantages over

in vivo models; they allow the assessment of drugs’ direct effects on

the different cell types or facilitate the study of specific cell commu-

nication (cross‐talk) in response to a therapeutic agent.26 In addition,

in vitro models have ethical advantages as they reduce or replace

otherwise required experimental animals.

For these and additional reasons, it is generally accepted that a

combination of both tools is required in pre‐clinical translational

research. In this regard, multi‐cell in vitro liver cultures such as liver‐
on‐a‐chip devices,27 organoids28 or precision cut liver slices29,30 are

becoming popular as they combine the versatility of in vitro cultures

while partially simulating the in vivo microenvironment, showing

improved function and drug‐response over conventional cultures.

Although freshly isolated liver cells would be the optimal choice

for the above mentioned in vitro models (either for conventional cul-

tures or multi‐cell systems), the difficulties and expenses associated

with cellular isolation can drive researchers to other alternatives

such as the use of immortalized cell lines or primary in vitro‐
expanded cultures, which may have lost the highly specialized fea-

tures found in liver cells in vivo.31-33

In this manuscript, we describe and characterize a novel, easy and

affordable protocol for the isolation of the four main hepatic cell

types from a single rat liver. Importantly, we clearly detail the entire

method, and release the complete list of reagents and solutions to

allow a proper replication by any researcher from any institution.

One of the advantages of this protocol lies on its independence on

antibody‐mediated selection, thus avoiding concerns about undesired

activation of membrane receptors and subsequent molecular pathways

F IGURE 2 Immunofluorescence
characterization of isolated cells. Phase‐
contrast images of primary isolated hepatic
cells were taken showing characteristic
morphology of control (A) and cirrhotic (B)
sinusoidal cells in vitro. Further
immunofluorescent characterization was
performed with specific markers for each
cell type: albumin (hepatocytes), Reca‐1
(LSEC), desmin (HSC) and CD68 (HMΦ).
Original images of these preparations are
included in Figure S1
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(positive selection) or unwanted enrichment of a cellular subpopulation

(positive/negative selection). Instead, the protocol is based mainly in

fractionation by centrifugation. In this regard, although loss of sample

or inter‐fraction contamination would be expected of any standard cen-

trifugation protocol, the results show good yields for each cell type (in

the order of millions) and the repeated wash‐centrifugation cycles

ensure a purity above 95% in all cases.

In addition to healthy livers, we herein validated the protocol in liv-

ers from two different models of CLD. It is well known that cirrhotic

rats (either CCl4‐ or TAA‐induced) display high amount of ECM,30,34

which in combination with over‐constriction of sinusoids causes an

increase in the intra‐hepatic vascular resistance (primary cause in the

development of portal hypertension).4,35 Despite the fact that our pro-

tocol relies on perfusion of the liver in order to accomplish a proper

digestion, we herein show that this protocol is suitable not only for

healthy livers (with perfectly arranged sinusoids) but also in models of

cirrhosis (distorted hepatic architecture and microcirculation). Interest-

ingly, yields reproduced the expected changes in cell population during

cirrhosis, with a significant reduction on hepatocytes (probably due to

described parenchymal extinction36), a greater number of HSC12 and

reduced HMΦ infiltration.37 Regardless, the order of magnitude of the

yield for all cell types remained similar, ensuring comparable amounts

of starting sample for any experiment to that of control isolations.

As described above, one of the main advantages of freshly iso-

lated liver cells over cell lines is the preservation of their specific

phenotype (at least for the first hours in vitro). That is why we vali-

dated the phenotype of the four cell types obtained after this proce-

dure, both with molecular markers and functional assays to

F IGURE 3 Functional characterization
of isolated cells. A, Hepatocytes
functionality was evaluated as albumin
(left) and urea (right) release to the culture
media. B, LSEC were assessed for their
endocytic ability to incorporate fluorescent
Ac‐LDL (top) (green) and fenestrae
presence (bottom) evaluated by SEM. C,
mRNA expression of the anti‐inflammatory
genes Mrc1, IL‐10 and Arg1, the pro‐
inflammatory genes CCL2, IL‐1β, IL‐6 and
iNOS, and TNFα were evaluated in Ct and
Ch HMΦ in response to LPS. Red dotted
line represents each vehicle‐treated group.
D, Representative Western Blot and
corresponding quantification of α‐SMA
evaluated in HSC isolated form Ct and Ch
rat livers during in vitro culture. Significant
differences: #P‐value ≤0.05 vs Ct; @P‐value
≤0.05 vs 250.000; *P‐value ≤0.05 vs Veh
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determine their ability to respond to stimuli. Indeed, hepatocytes

produced albumin and urea,38 LSEC displayed characteristic fenes-

trae and sinusoidal Ac‐LDL endocytosis,39–41 HMΦ responded to

LPS stimulation, especially those isolated from Ch animals, which is

in accordance with recent in vivo data on acute on chronic liver

failure,34 and HSC expressed their characteristic activation marker

α‐SMA. In addition, cells isolated from cirrhotic livers exhibited a

phenotype that matched their pathologic situation (hepatocytes:

reduced albumin synthesis,42 LSEC: lack of fenestrae,43 HMΦ:

inflammatory hyperesponse,44 HSC: increased α‐SMA expression45)

suggesting that, unlike other protocols where selection is based on

surface markers that may change during cirrhosis (CD31, CD32b)33

our protocol is phenotype‐unbiased and thus suitable for the study

of different models of CLD. For this same reason, we do not discard

the applicability of the 4 in 1 protocol in other models of liver dis-

eases, such as non‐alcoholic steatohepatitis or warm ischemia/reper-

fusion, although further studies are required in this matter.

Finally, the distinctive characteristic of this protocol is that it

allows the isolation of the main hepatic cells from just one animal.

This has several implications that represent an advantage to other

existing protocols and, in fact, address current needs of the scientific

community:

1. Reduction of the number of animals used (ethical improvement)

while the required materials are essentially the same to that of a

single cell type isolation (economic improvement).

2. Possibility of performing cross-talk experiments or assembling

multicellular in vitro culture systems with cells from the same ani-

mal (and thus with certainty that they have the same degree of

activation/damage or stage of the disease).

3. The 4 in 1 protocol may be used to isolate cells from an animal

that has been treated in vivo with a certain therapeutic, thus

allowing separate response analysis for each cell type and corre-

lation with in vivo data from the animal (AST, ALT, hemodynamic

data among others).

Indeed, only few studies have reported successful separation of

the four cell types at once.19-22 Comparison of yields and purity with

previous bibliography in the field shows similar results to those

obtained using the herein proposed protocol. However, the pub-

lished protocols rely on antibody fractionation using FACS or MACS

(with the abovementioned associated limitations), require multiple

gradient centrifugation steps (thus with greater duration and cost),

and/or rely on the use of pronase, which may be detrimental for

hepatocyte yield and viability. Moreover, none of them assessed the

suitability for isolation of cells from diseased livers.

In conclusion, we herein describe an antibody‐free protocol for

simultaneous isolation of hepatocytes, LSEC, HSC and HMΦ with

optimal yield, purity and viability, which is suitable for healthy or cir-

rhotic livers. Its low equipment requirements and quick feasibility

make it suitable for laboratories with standard cell‐culture facilities,

thus encouraging the use of freshly isolated primary cells over sub‐
optimal in vitro models.
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