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Abstract

Background: A Virtual Screening algorithm has to adapt to the different stages of
this process. Early screening needs to ensure that all bioactive compounds are
ranked in the first positions despite of the number of false positives, while a second
screening round is aimed at increasing the prediction accuracy.

Results: A novel CNN architecture is presented to this aim, which predicts bioactivity
of candidate compounds on CDK1 using a combination of molecular fingerprints as
their vector representation, and has been trained suitably to achieve good results as
regards both enrichment factor and accuracy in different screening modes (98.55%
accuracy in active-only selection, and 98.88% in high precision discrimination).

Conclusion: The proposed architecture outperforms state-of-the-art ML approaches,
and some interesting insights on molecular fingerprints are devised.

Keywords: Deep learning, Drug design, Molecular fingerprints, Bioactivity prediction,
Virtual screening

Background
Virtual Screening (VS) is a routinely applied computational technique useful for drug

design. However, some issues remain uncertain due to the complexity of the algorithms

used behind the screening campaign, and this leads to generate models with different

prediction reliability. Clinical candidate molecules selected by drug detection must have a

profile responding to different criteria, that are based not only on the effect potency but

also on the selectivity, safety as well as the so called ADMET properties (Absorption,

Distribution, Metabolism, Excretion and Toxicity). Therefore, the design of the optimal

compound is a multidimensional challenge involving different aspects of Chemistry and

Biology, which can be faced using Machine Learning (ML).

One key aspect for ML approaches gaining success in property prediction, is the

possibility to access and mining large data sets that contain heterogeneous information.

Until recent years, the best performing ML techniques were “shallow” ones [1] that is
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Support Vector Machines (SVM) and decision trees, particularly ensemble methods like

Random Forests (RF).

All these ML models should be iteratively refined with new experimental data to

increase model reliability and predictive power. In the last few years, Deep Learning

Techniques, and particularly Convolutional Neural Networks (CNN) gained more and

more impact on drug design and VS due to the huge increase of the prediction accur-

acy in any stages of this process [2, 3]. Deep Neural Networks (DNN) have been used

for predicting different properties such as biological activity, ADMET properties, and

physicochemical parameters demonstrating reliable and robust prediction capabilities

with high sensitivity when used on different targets [4, 5]. CNNs have been used also to

predict several properties such as the kinetic energy of hydrocarbons as a function of

electron density [6]. Several DNN architectures use Simplified Molecular Input Line

Entry System (SMILES) as their input data [7–9]. SMILES is actually a simple chemical

language whose rules allow building string descriptors that can represent both molecu-

lar structures and reactions.

One of the most frequently asked questions by computational chemists, is if it is

better to have a model retrieving some false positives or to loose some actives as false

negatives. Depending on the drug discovery phase, at the beginning of the drug

discovery cascade, it could be useful to have some false positives, instead of losing some

putative hits. In a more mature screening stage (e.g. hit expansion) it could be better,

instead, to have more precise algorithm preventing the discovery of false positives.

Based on these considerations, the best compromise is a virtual screening model that

can adapt to the drug design campaign stage.

In this work we present a novel CNN VS of candidate compounds with respect to

their biological activity on the Cyclin-Dependent Kinase 1 (CDK1) target. Vector repre-

sentation of candidate compounds is achieved using their molecular fingerprints. The

choice of this target is given by the previous experience of the research group in the

CDK1 modulators and the fact that canonical VS approaches on CDKs do not respond

properly to activity prediction because of high structural similarity between different

kinases’ binding sites. The importance of the target is given by its validation as drug

target. It is an archetypal kinase acting as central regulator that drives cells through G2

phase and mitosis. Its importance in tumorigenesis has been demonstrated by the

evidence that, unlike other CDKs, loss of CDK1 in the liver confers complete resistance

against tumor formation demonstrating its role in the cancer development [10]. The

Kinase protein family presents a huge variety, and contains a very high number of

proteins so it provides an amount of data that is well suited for ML approaches. In [11]

Bayesian models were generated for building Quantitative Structure-Activity Relation-

ship (QSAR) models on different kinases from a large, but sparsely populated data

matrix of more than 100,000 compounds. Random Forest has been applied in another

case study for predicting kinase activities on hundreds of kinases starting from publicly

available data sets integrated with in-house data [12]. In several examples, Random

Forest models showed a higher reliability in prediction when compared to other

approaches, but they perform worse than Deep Neural Networks (DNN).

The work presents two qualifying points:

� molecular fingerprints are used as a suitable embedding for describing molecules;
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� a unique neural architecture has been designed, which has been trained with

different hyperparameters for achieving good performances in both early and

mature screening.

The proposed approach is quite novel; up to our knowledge, there are a very few and

recent examples using deep learning and fingerprint in a VS workflow [13]. An interest-

ing approach is presented by Hirohara et al. who present a CNN that learns a suitable

fingerprint from SMILES, and use such a feature to classify both active and inactive

compounds [14]. As regards the proposed application, the literature reports very few

recent approaches for Virtual Screening with respect to Cyclin-Dependent Kinase

proteins that do not use molecular fingerprints as their descriptor [15, 16]. Finally,

DNN-VS is a very recent network for VS applied to the Tyrosine Kinase using molecu-

lar descriptors [17]. Indeed, molecular fingerprints are the most natural choice for

describing compounds as inputs for a neural network, due to their inherent structure

of numerical vectors that encode all the substructures inside a molecule.

Molecular fingerprints are binary vectors, which are generated analyzing each atom

along with its neighborhood till 6 or 7 bonds away. Such a neighborhood is searched

for a set of predefined molecular substructures, the so called patterns, that is atom

types, bond types, presence of rings, and so on. After having enumerated all the

patterns in the molecule, each of them is used as a seed for a hashing function that

outputs in general 4 to 5 index positions whose corresponding bits are set to 1 in the

“pattern fingerprint”; such a fingerprint is bit-wise OR ed to the molecular one.

Actually the hashing function can cause a bit collision so we are not guaranteed of the

effective presence of a particular pattern unless at least one of its bits is unique. On the

other hand, a molecular substructure is absent if all its bits are set to 0 in the finger-

print. A simplified fingerprint generation procedure is reported in Fig. 1.

Several kinds of fingerprints with different sizes are reported in the scientific

literature to address different aspects of both the structure and the local properties of a

molecule [18]. In this work, we dealt with seven of the most popular fingerprint types:

RDKit, Morgan, AtomPair, Torsion, Layered, FeatMorgan, ECFP4. A substantial part of

this work was devoted to address either the single fingerprint or the fingerprint

Fig. 1 Fingerprint Generation. Simplefied Fingerprint generation, the hashing function sets just 1 bit
per pattern
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combination that allows achieving the best accuracy in both a highly discriminative task

(i.e. mature screening) and an active-only selection task (i.e. early screening).

A molecular fingerprint represents the corresponding molecule “as a whole” in a

suitable vector form, that is it conveys information about the presence of a particular

substructure, but not on its exact position or its repetition in different sites of the same

molecule. Moreover, we aimed at performing a binary classification between active and

inactive compounds, and biological activity is mostly related to the presence/absence of

particular substructures which in turn are well suited to bind to the target protein. As a

consequence, CNNs appeared to be the best architectural choice to classify molecular

fingerprints. On the other hand, different fingerprint types address different aspects of

the molecular structure through different search strategies. A single fingerprint might

not make explicit the particular substructure that is responsible for binding to the

target, and this is due to both its search strategy and the hashing mechanism. One of

the key ideas of this work is that many fingerprints used together to describe the same

candidate compound can make explicit the features responsible for bioactivity.

Moreover, a neural model with adequate capacity can accommodate for the redundancy

derived from having the same molecular pattern encoded in different fingerprints.

In view of the previous considerations, both 1D and 2D CNNs have been trained to

test the performance of each single descriptor separately, along with all the combina-

tions of multiple descriptors for the same compound. Moreover, also two complex

architectures have been designed. The first one uses the best performing 1D CNNs in a

direct voting scheme, and we called it Voting. The second architecture uses a 1D CNN

for each fingerprint type; such networks were retrained purposely to act as inputs of a

Multi Layer Perceptron (MLP) classifier. We called this last architecture Tuned-MLP-

Out. Each network has been trained with different hyperparameter tuning to perform

both discriminative and active-only classification. All the architectures are described in

detail in the section entitled The proposed architectures, and the results are compared

against traditional Machine Learning (ML) approaches.

Results and discussion
We performed two kinds of experiments as regards the training procedure, and several

measures were collected to devise performance in both tasks. The first training proced-

ure (training scheme 1) makes use of a classic ML approach for training where the ratio

between training, validation and test set is strongly biased towards the training set,

while keeping the ratio between the two classes untouched in all of them. This is the

correct choice if one wants to maximize the discriminative power of the network. On

the other hand, the second procedure (training scheme 2) takes into account that the

general population of a data set containing candidate compounds to be screened is

strongly biased towards inactive candidates. As a consequence, we stressed the per-

formance of the network using a balanced training with many active compounds, and

testing with a 1 : 50 active/inactive ratio. Both the schemes make use of a 10-fold

cross-validation in the training phase.

The balanced accuracy bACC = (TP/P + TN/N)/2 has been used for active/inactive dis-

crimination, which is a binary classification task. The bACC value is the mean of sensitiv-

ity or true positive rate that is the ratio between the predicted positives TP and the labeled

positives P, and specificity or true negative rate that is the ratio between the predicted
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negatives TN and the labeled negatives N. bACC measures the performance in labeling

each sample in the proper class. Also the Matthews correlation coefficient (MCC) was

used as a discrimination measure. MCC is a well known index used for binary classifica-

tion, that returns a value in [−1;1]; for a 2 × 2 contingency table, that is a binary classifier’s

confusion matrix, MCC is related to the chi-square statistic as kMCCk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
.

n

r

where

n is the number of observations. MCC thus measures the dependency of the predictions

from the true (i.e. expected) labels. On the other hand, just sensitivity has been used in

the active only selection task because we want to maximize correct prediction of active

compounds in spite of accepting a relevant number of false positives.

Our models are compared with two state-of-the-art ML approaches for Virtual

Screening that is Support Vector Machines (SVM), and Random Forests (RF) which

form the baseline for our experiments. The parameters for both models where devised

using a classical grid search. Particularly, a Radial Basis Function-SVM has been

trained, and the best performing machines have γ = 1 for both training schemes, while

the regularization parameter is C = 5 in the training scheme 1, while C = 1 and γ = 0.1

in the training scheme 2. SVM trained on FeatMorgan fingerprint performed the best

in both the training schemes. The best performing RF used 100 estimators, and the

Gini index for the training scheme 1 on the FeatMorgan fingerprint, while in training

scheme 2 Gini index and 2 estimators.

The results of the best performing architecture for each task are reported in

Table 1 and Table 2. The two tables show clearly that the reduced number of samples

in the training scheme 2 along with the inherent class unbalancing in the data set

reduce the absolute performance of the network due to an increase of false negatives.

Even if both bACC and sensitivity are acceptable, the Loss value doubles with respect to

the training scheme 1. This reflects on all the global measures that are AUC, F1 score,

and MCC. The winning architecture for both tasks is TunedMLP-Out because it takes

into account all the fingerprint types, and manages the possible redundancies by

training a shallow MLP classifier. Just one layer was always sufficient to achieve good

classification, even if we tried different sizes for the hidden layers. Particularly, discrim-

ination task was performed with 3 units, learning rate equal to 10−3, and Adam

optimizer, while active-only selection was accomplished using 5 units, learning rate

equal to 10−4, and Adamax optimizer. Active-only selection is achieved with a classifier

with both higher capacity and lower learning rate than in the discrimination case.

These values indicate a network that is more prone to overfitting than in the balanced

Table 1 Results for the active/inactive discrimination task, and Training scheme 1

Architecture Bal. accuracy Sensitivity Loss AUC F1-score MCC

Tuned-MLP-Out 0.9880 0.9855 0.0405 0.9979 0.9510 0.9462

Voting 0.9768 0.9710 0.2093 0.9920 0.8965 0.9033

CNN 1D (F) 0.9687 0.9710 0.0688 0.9904 0.8979 0.8813

CNN 2D (R-M-F) 0.9679 0.9565 0.0770 0.9912 0.8918 0.8817

Random Forest (F) 0.9510 0.8985 0.6405 0.9837 0.6065 0.8962

SVM (F) 0.9421 0.8985 0.7883 0.9868 0.8857 0.8731

Fingerprint types: (R)DKIT,(M) organ, (F) eatMorgan, (L)ayered
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case as it is less accurate. Also the 1D CNNs used by Tuned-MLP-Out have higer

capacity than the best performing 1D CNNs alone.

The winning Voting architecture is the same for both tasks because it uses always the

best 1D CNN for each fingerprint type. This network exhibits always the highest AUC

value, which means that it tends to have a good balanced performance in every case. In

fact, Voting has the lowest sensitivity when used for active-only selection, and it falls

below the baseline, but it is one of the best ranked networks in terms of the bACC

value.

A common performance measure used in VS procedures is the so called Enrichment

factor (EF) which measures the number of predicted true actives, in decreasing

probability order, in a fixed percentage of the test set. Typical percentage values are 5%

and 10% but also smaller values are used. EF is crucial in VS procedures due to the

huge number of candidates to be evaluated, so the drug designers require that a good

VS procedure assigns the highest probability values to the very first candidates in the

data set, in order to discard the remaining ones without further test. We compared our

best performing architecture versus both SVM and RF also as regards the EF value.

Results are reported in Table 3, and Table 4 respectively for each training scheme. In

particular, in training scheme 1 we were able to compute EF from 1% to 10% because

both training and test set were equally balanced. Just EF1%, and EF2% were computed

in the training scheme 2 because only 80 out of 3270 molecules were truly active that

is a percentage of 2.4%. As a consequence, computing both EF5% and EF10% would

have resulted in a artificial performance decrease by definition. Results are satisfactory.

Our Tuned-MLP-Out network ranks at 100% in EF1% and EF2%, just like RF and SVM.

It is worth noticing that drug designers are more interested computing EF for low

percentages that implies screening very few candidates. For high percentages, the

Table 2 Results for the active/inactive discrimination task, and Training scheme 2

Architecture Bal. Accuracy Sensitivity Loss AUC F1-score MCC

Tuned-MLP-Out 0.9644 0.9625 0.0983 0.9875 0.5519 0.5989

Voting 0.9639 0.9500 0.1523 0.9889 0.6379 0.6694

CNN 1D (F) 0.9579 0.9625 0.1398 0.9854 0.4709 0.5336

CNN 2D (T-L-E) 0.9525 0.9375 0.1054 0.9841 0.5192 0.5920

Random Forest (F) 0.8789 0.7750 0.6221 0.9541 0.6528 0.6540

SVM (F) 0.9208 0.8625 0.6221 0.9682 0.6699 0.6524

Fingerprint types: (F) eatMorgan, (T) orsion, (L) ayered, (E)CFP4

Table 3 Enrichment factor computed on the test set 1 (70 active molecules out of 701
compounds)

Architecture EF 1% EF 2% EF 5% EF 10%

Tuned-MLP-Out 7(100%) 14(100%) 34(97.14%) 65(94.20%)

Voting 7(100%) 14(100%) 34(97.14%) 61(88.40%)

CNN 1D (M) 7(100%) 13(92.86%) 33(94.29%) 62(85.89%)

CNN 2D (R-M-F) 7(100%) 12(85.71%) 32(91.43%) 61(88.40%)

RF(F) 7(100%) 14(100%) 35(100%) 63(91.30%)

SVM(F) 7(100%) 14(100%) 35(100%) 61(88.40%)

Fingerprint types: (R)DKIT,(M) organ, (F)eatMorgan,
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probability of a false positive prediction increases. Even if, our architecture misses just

one active compound with respect to both SVM and RF in the case of EF5% both the

shallow models exhibit a low EF10% value due to their reduced accuracy on the whole

data set.

Experiments gave us some interesting insights on the use of different fingerprint

types. The best performing 2D CNN is the one using the combination of RDKit,

Morgan, and FeatMorgan fingerprints. Such a network has a good mix of accuracy,

sensitivity, and a high AUC together with a very low Loss value. As already pointed out

in the previous section, the network has a good general behaviour but it can not be

pushed towards extreme performance in neither task we addressed in this work. Finally,

1D CNNs differ only in the fingerprint type used in the training phase. The Layered

network showed the best bACC, while the Morgan one has the highest sensitivity. The

reason for this difference in predictive ability lies in the different way of interpreting

the molecular structure. The Layered fingerprint, using different layers of structural

analysis, seems to outperform in discriminating between active and inactive candidate

compounds. The Morgan/FeatMorgan fingerprints represent a circular approach which

uses either connectivity or feature invariants, and it has been outclassed by modern

ECFP fingerprints as they are more accurate. Nevertheless, both 1D and 2D CNNs have

the best performance when such descriptors are used to represent the candidate com-

pounds. It is worth noting, in this respect, that in this work, we have tested the ability

to recognize between active and inactive molecules, based on their IC50 value, and such

a task requires a more discriminative power than other works in the literature in which

fingerprints are compared on the basis of the distinction between actives and decoys.

Our approach has to be regarded as typical ligand-based one, while decoys are gener-

ated to validate docking-based algorithms. On the other hand, decoys are synthetic

molecules whose mere structure could make them active on the target, and their use to

train an active/inactive classifier could result in a poor discriminative power. Even if it

is well known in the literature that a 1 : 10 active/inactive ratio is a common value for

in silico screening, we performed some stress tests on our best architecture that is

Tuned-MLP-Out with training scheme 1. We aimed at devising its performance in a

typical in vivo screening, where several problems can occur in essays, thus reducing the

active/inactive ratio even to 1 : 100. We resampled our data set to obtain three different

data sets with varying active/inactive ratio: 1 : 20, 1 : 50 and 1 : 100 respectively. The

Tuned-MLP-Out network was trained using the scheme 1 on all of them. The results of

active/inactive discrimination with these different proportions are reported in Table 5

Table 4 Enrichment factor computed on the test set 2 (80 active molecules out of 3720
compounds)

Architecture (Training 2) EF 1% EF 2

Tuned-MLP-Out 37(100%) 65(87.84%)

Voting 32(86.5%) 57(66.9%)

CNN 1D (F) 31(83.8%) 52(70.3%)

CNN 2D (T-L-E) 31(83.8% 52(70.3%)

RF(F) 37(100%) 62(83.8%)

SVM(F) 32(86.5%) 55(74.3%)

Fingerprint types: (F) eatMorgan, (L) ayered, (T) orsion, (E)CFP4
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while EF values from 1% to 5% are reported in Table 6. As expected, all the bACC,

Sensitivity, and EF values decreased with respect to the results reported in Table 1. This

is due to the extreme unbalancing between classes that is a hard issue for whatever

learning algorithm. Nonetheless, the results are still positive, and this can be observed

in Table 6. Apart from the EF1% for the 2% proportion data set that attains a 87.5%

value, almost all the EF values drop to values that are close to 50%, but all the hits in

whathever experiment ranked as the very first molecules in terms of the output

probabilities of the model so they still remain the first choice for the drug designer.

Also in this case we did not compute EF values for test percentages greater than the

true active/inactive proportion to avoid the computation of false low values due to the

absence of active molecules.

Conclusions
A novel CNN architecture has been presented in this work, that is trained on the

molecular fingerprints to predict biological activity of candidate medical compounds

versus the CDK1 protein target, using their IC50 value. The paper contains two main

novelties. The first one is using molecular fingerprints as the embedding for a VS deep

neural architecture both alone and combined together as bidimensional binary matri-

ces. The second novelty is designing several architectures purposely for achieving good

performances in both early screening, when almost all active candidates have to be

selected in spite of having many false positives, and a mature stage, when we want a

precise discrimination between active and inactive molecules. Four architectures were

developed: 1D and 2D CNN classifiers for both single fingerprints and suitable combi-

nations, a voting scheme based on the 1D CNN classifiers, and a an architecture that

classifies the output of different 1D CNNs using a MLP trained purposely. The results

outperform the state of the art ML approaches. Our experiments gave us very interest-

ing hints on the role of each different fingerprint type in Virtual Screening based on

deep neural architecture. Future work will be oriented towards three main goals. At

first, we want to deepen the study of the influence of each fingerprint on the screening

accuracy, while trying to devise which molecular substructures (i.e. fingerprint patterns)

are responsible for bioactivity. Next, we are designing a wide classifier for multiple

Table 5 Performance of the Tuned-MLP-Out network on three data sets with 1%, 2%, and 5%
active/inactive proportion respectively

Active/inactive proportion Bal.Accuracy Sensitivity Loss AUC F1-score MCC

1% 0.7475 0.5000 0.5116 0.9700 0.5333 0.5289

2% 0.9671 0.9375 0.5114 0.9415 0.9009 0.8226

5% 0.9382 0.8780 0.0565 0.9991 0.9230 0.9196

Table 6 Enrichment factor computed on the test set with 1%, 2%, and 5% active/inactive
proportion respectively

Active/inactive proportion EF 1% EF 2% EF 5

1% (8 active molecules) 4(50%) – –

2% (16 active molecules) 7(87.5%) 7(43.5%) –

5% (41 active molecules) 4(50%) 8(50%) 20(48.7%)
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Kinase families to cope with all the targets involved in the cell cycle. Finally, we want

to design a suitable descriptor aimed at conveying detailed information on the position

of relevant molecular substructure, while retaining the compactness of molecular

fingerprints.

Methods
Data representation

The data used in our experiments were extracted from the well known CheMBL

molecular database [19]. Biological activity of the tested compounds was measured using

the half maximal inhibitory concentration parameter (IC50) that is the amount of

substance which is needed to inhibit the target protein by one half. The literature does

not report a precise threshold to be used for labeling a compound as active or inactive. A

good rule of thumb is that IC50 < 1.0 μM implies good bioactivity, while IC50 > 10.0 μM

indicates definitely no bioactivity. Our task is a binary classification so we needed a crisp

threshold to divide our data in two classes. As a consequence, we followed a typical ML

approach in this respect, that is we devised the threshold from the data using K-Means

clustering. We didn’t have any knowledge in advance about the distribution of the IC50

values in our data. At first, the so called elbow method was applied to assess the correct

number of clusters, running the K-Means algorithm for a variable number of tentative

clusters, and plotting the Within Cluster Sum of Squares value (WCSS) against the cluster

number. The heuristic rule used in this case says that one has to select the cluster number

“where the plot has an elbow”. Our analysis resulted in choosing two clusters, as we were

expecting. Then we ran the K-Means algorithm with two clusters, and we obtained a

threshold value for IC50 = 7.414 μM, so a molecule was labeled active when IC50 ≤ 7.414

μM. It is worth noticing that this value was used merely for splitting the data in two

classes. There is no chemical relevance in this threshold. Actually, it is the value of the

two class centroids’ average. The KMeans algorithm reported also the following results

about the shape of the clusters, that are coherent with the literature:

� Active molecules: centroid at IC50 = 0.91762 μM, upper bound at IC50 = 0.971 μM

� Inactive molecules: centroid at IC50 = 13.91221 μM, lower bound at IC50 = 13.338 μM

We used the KNIME data analysis platform [20], to implement a preprocessing work-

flow for both the training and the test set. Activity data for 1830 compounds on the

CDK1 target were taken from the CHEMBL308 ID were CDK1 is considered as a single

protein, and the CHEMBL1907602 ID were it is considered as a protein complex. At

first, incomplete data were deleted; the resulting data set was then made by 1720

samples. The data set was expanded using some compounds, which are active on some

kinases with very different structure from CDK1. Also these molecules were extracted

from CheMBL. In particular, we selected 2422 active compounds on TRKA (Tropomy-

osin receptor kinase A, CHEMBL2815), 50 active compounds on RIPK1 (Receptor-

Interacting Protein 1, CHEMBL5464), 2825 active compounds on AKT1 (AKT Serine/

Threonine Kinase 1, CHEMBL4282), and 199 active compounds on LIMk1 (LIM Do-

main Kinase 1, CHEMBL5932). Duplicates have been removed from the original 5496

records returned by the queries thus obtaining 5452 inactive compounds on CDK1.
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Two different schemes have been used for training even if 10-fold cross-validation

has been used in both procedures. In the scheme 1, we adopted a classic strategy with

an approximate 80%:10%:10% split for training, validation, and test set respectively with

a 1 : 10 active/inactive ratio. Validation set has been used for hyperparameters grid

search while Test set has been used to evaluate the overall performance. In the scheme

2, the same data set as above has been divided in two almost equal parts (48% training,

and 52% test set). Moreover the training data were split in training and validation set

with a 90%:10% ratio. In the training data 720 compounds out of 3440 samples were

active molecules, while just 80 active molecules out of 3720 compounds were present

in the test set.

Finally we turned each fingerprint’s 0 value in -1 to cope with the inherent sparsity of

such a vector representation. In this way we maintained the binary information

conveyed by each fingerprint, while avoiding unwanted bias of the output of the convo-

lutional units when they receive an almost zero input.

The proposed architectures

The 1D CNNs were trained on single fingerprints; seven networks were trained, one for

each tested fingerprint type. We selected only 1024 bit fingerprints as a good trade-off

between compactness and expressivity. Low size fingerprints are too small to allow the

network learning their features properly, while 2048 or 4096 bit fingerprints require

models with very high capacity whose training is difficult. In the 2D CNNs each

compound was represented by a combination of different fingerprints arranged as a bi-

dimensional {1; −1} matrix. The 2D CNNs have been trained on all possible combinations,

ranging from fingerprint couples to a unique 7 × 1024 matrix enclosing all the finger-

prints in a single descriptor. The intuition behind this architecture is that a fingerprint

ensemble represents in a single tensor all the structural properties of a compound that

concur to its bioactivity on the target. On the other hand, a fingerprint combination can

attain a high redundancy because the same pattern is encoded in several rows of the

resulting matrix so we are not guaranteed that the more fingerprints are present in the

2D descriptor the more accuracy we will obtain after training the network.

Both 1D and 2D networks consist of 4 convolutional layers with 128/64/32/16 filters

per layer, and ReLU activation, each followed by a 2x2 Max Pooling, while they differ

only in the convolutional kernel dimensions. Such networks have 512/256/128/64

filters respectively for each convolutional layer, while the number of filters per layer in

the 1D CNNs used for direct classification are 128/64/32/16.

Classification is achieved through a MLP with 1024/512/256 ReLU units per layer

respectively, while the output is a sigmoidal unit as we want binary classification. The

1D CNN architecture is shown in Fig. 2, while the 2D architecture is depicted in Fig. 3.

The last two architectures presented in this work are ensemble classifiers using the

outputs of the 1D CNNs. 2D CNNs are characterized in general by a very low loss

value, and provide a very high AUC value but their accuracy is never the highest one.

Moreover, these networks exhibit a sort of inertia that is they attain both high sensitiv-

ity and balanced accuracy but it is not possible to stress their performance towards

either mature or early screening task. This is mainly due to the intrinsic redundancy of

the input fingerprints regardless the best performing combination. On the contrary, 1D

Mendolia et al. BMC Bioinformatics 2020, 21(Suppl 8):310 Page 10 of 14



CNN are more flexible architectures than the 2D ones, and are implemented by low

capacity models. Such networks suffer from the use of a single fingerprint, which might

not encode properly the core bioactivity features of the compound due to its particular

generation algorithm. As a consequence we resorted to two kinds of ensemble classi-

fiers: the first one, which has been called Voting, is a pure voting mechanism where the

output labels from the best performing 1D CNN for each fingerprint type are collected,

and the final label is the one provided by the majority of the voting classifiers. The

second scheme (called Tuned-MLP-Out) is a more refined version of the pure voting

mechanism, where we trained again from scratch seven 1D CNNs, one for each finger-

print type, with 512/256/128/64 filters per layer, and the same MLP arrangement as

regards their classification stage. All of them are connected in parallel as inputs of a

unique MLP layer through the probability values associated to the sigmoidal outputs.

Just three ReLU units were needed for the final classification layer. The whole Tuned-

MLP-Out architecture is reported in Fig. 4.

Hyperparameter tuning

Hyperparameters tuning was performed as a grid search in the following sets of values.

Convolutional filters tested were [1024,512,256,128,64,32,16] in combination with all

Keras padding value; learning rate were multiplied by 10 in the ranges [10−6, 1;2 · 10−5,

0.2]. Dropout probabilities where in the range [0.2,0.9] with step 0.1, all the available

optimizers in Keras were tested. Bi-dimensional tested kernel sizes were {(20,2), (20,1),

Fig. 3 2D CNN.Bi-dimensional convolution architecture

Fig. 2 1D CNN. One-dimensional convolution architecture
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(15,2), (15,1), (5,2), (5,1), (4,2), (4,1), (3,2), (3,1)}, while 1D tested kernels were {2,3,

4}. Batch sizes were doubled in the range [8,128]. Early sopping was used to devise

training epochs, and model checkpoint to save the best model after each epoch.

Hyperparameter optimization took about 100 hours to be accomplished on a GPU

NVIDIA TITAN Xp 12 GB, 3840 CUDA Cores, while each Tuned-MLP-Out

experiment took about 2 hours.
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