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A B S T R A C T

Background: Postmenopausal osteoporosis (PMOP) represents as a significant health concern,
particularly as the population ages. Currently, there is a paucity of comprehensive descriptions
regarding the immunoregulatory mechanisms and early diagnostic biomarkers associated with
PMOP. This study aims to examine immune-related differentially expressed genes (IR-DEGs) in
the peripheral blood mononuclear cells of PMOP patients to identify immunological patterns and
diagnostic biomarkers.
Methods: The GSE56815 dataset from the Gene Expression Omnibus (GEO) database was used as
the training group, while the GSE2208 dataset served as the validation group. Initially, differ-
ential expression analysis was conducted after data integration to identify IR-DEGs in the pe-
ripheral blood mononuclear cells of PMOP. Subsequently, feature selection of these IR-DEGs was
performed using RF, SVM-RFE, and LASSO regression models. Additionally, the expression of IR-
DEGs in distinct bone marrow cell subtypes was analyzed using single-cell RNA sequencing
(scRNA-seq) datasets, allowing the identification of cellular communication patterns within
various cell subgroups. Finally, molecular subtypes and diagnostic models for PMOP were con-
structed based on these selected IR-DEGs. Furthermore, the expression levels of characteristic IR-
DEGs were examined in rat osteoporosis (OP) models.
Results: Using machine learning, six IR-DEGs (JUN, HMOX1, CYSLTR2, TNFSF8, IL1R2, and
SSTR5) were identified. Subsequently, two molecular subtypes of PMOP (subtype 1 and subtype
2) were established, with subtype 1 exhibiting a higher proportion of M1 macrophage infiltration.
Analysis of the scRNA-seq dataset revealed 11 distinct cell clusters. It was noted that JUN was
significantly overexpressed in M1 macrophages, while HMOX1 showed a marked elevation in
endothelial cells and M2 macrophages. Cell communication results suggested that the PMOP
microenvironment features increased interactions among M2 macrophages, CD8+ T cells, Tregs,
and fibroblasts. The diagnostic model based on these six IR-DEGs demonstrated excellent diag-
nostic performance (AUC = 0.927). In the OP rat model, the expression of IL1R2 and TNFSF8
were significantly elevated.
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Conclusion: JUN, HMOX1, CYSLTR2, TNFSF8, IL1R2, and SSTR5 may serve as promising mo-
lecular targets for diagnosing and subtyping patients with PMOP. These results offer novel per-
spectives on the early diagnosis of PMOP and the advancement of personalized immune-based
therapies.

1. Introduction

Osteoporosis is a bone disorder marked by diminished bone strength and loss of bone mass, leading to a substantially higher risk of
fractures [1]. Postmenopausal osteoporosis (PMOP) is the most prevalent form, primarily driven by an imbalance in bone homeostasis
due to diminished estrogen secretion in postmenopausal women [2]. Specifically, decreased ovarian function causes bone resorption to
exceed bone formation during the remodeling process [3,4]. This imbalance leads to a rapid decline in both bone density and quality,
thereby increasing the risk of fractures. PMOP represents a substantial global health concern, imposing significant physical and
economic burdens on elderly women. In the United States, nearly 20 % of women aged 50 and above suffer from hip osteoporosis, with
approximately 50 % experiencing a substantial reduction in hip bone mass [5]. Another study indicates that the prevalence of oste-
oporosis in women escalates from 4 % at age 50 to a staggering 52 % at age 80 [6]. Thus, early diagnosis and timely intervention for
PMOP are of paramount importance.

Currently, clinical diagnosis of PMOP heavily relies on bone mineral density (BMD) testing, considered the most critical indicator
for predicting fracture risk. This includes assessing BMD through dual-energy X-ray absorptiometry (DXA) [7,8]. However, for most
female PMOP patients, clinical symptoms are notably absent until explicit fractures occur. BMD testing only provides a limited
reflection of bone quantity and poses challenges for precise and prompt early-stage PMOP diagnosis [9]. Presently, there is a dearth of
biomarkers for early PMOP diagnosis, which is essential for timely intervention and treatment to enhance patient outcomes.

Estrogen deficiency is a significant etiological factor in PMOP, with its receptors widely distributed among osteoblasts, osteoclasts,
and hematopoietic cells [10]. Estrogen may suppress bone resorption by regulating osteoclast formation. Previous research has
emphasized the strong connection between the pathophysiological mechanisms of PMOP and immune regulation within the body [11,
12]. From an immunological perspective, as aging process intensifies, immune defenses weaken of body, maintaining a state of chronic

Fig. 1. The flowchart of this study.
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inflammation that could activate osteoclasts and exacerbate bone loss [13]. However, the mechanisms behind bone metabolism and
immune regulation in PMOP remain unclear [14]. Recent advancements in genomics provide promising prospects for exploring
biomarkers in PMOP patients at a micro-level [15]. Therefore, investigating the immune microenvironment of PMOP patients,
identifying immune-related biomarkers for diagnosis and classification, could aid in early diagnosis and personalized immune-based
therapies, offering molecular targets for PMOP patients.

This study is the first to investigate the expression profile of immune-related genes and the immune microenvironment in PMOP
patients from an immunological standpoint. Utilizing machine learning algorithms, distinctive biomarkers were identified, leading to
the establishment of reliable immune-related molecular subtypes and diagnostic models (Fig. 1). This provides a foundation for early
PMOP diagnosis and personalized immunotherapy for patients.

2. Materials and methods

2.1. Data source

Data from PMOP patients were sourced from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/),
specifically from the GSE56815 and GSE2208 datasets. The GSE56815 dataset, derived from array-based gene expression profiles,
includes gene expression matrices of peripheral blood mononuclear cells from 20 PMOP patients and 20 healthy controls, all
sequenced using the GPL96 platform. Similarly, the GSE2208 dataset contains 9 PMOP patients and 20 healthy controls, also
sequenced on the GPL96 platform. To ensure consistency in the training set results, GSE56815 was used as the training set, while
GSE2208 served as the validation set for subsequent analysis. Furthermore, we utilized “Perl” software [16] to convert probe names
into gene symbols for further analysis. Detailed dataset information can be found in Table 1.

2.2. Analysis of immune-related differentially expressed genes (IR-DEGs)

A total of 2483 immune-related genes (see Supplementary Table 1) were obtained from the ImmPort database (https://immport.
org). Subsequently, Using the “limma” package [17], the expression matrix of immune-related genes from 20 PMOP and 20 healthy
samples was extracted. Differential expression analysis was then conducted to identify significantly differentially expressed
immune-related genes (IR-DEGs) between PMOP patients and healthy controls. Visualization was performed using differential heat-
maps and box plots. The criteria for selection were set as log fold change (log|FC|)> 0.585 and adjusted P < 0.05.

2.3. Enrichment analysis

To explore the potential molecular mechanisms of IR-DEGs between PMOP patients and healthy samples, Gene Ontology (GO)
enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were analyzed. The GO functional analysis encompassed
Molecular Functions (MF), Cellular Components (CC), and Biological Processes (BP). The top 5 enriched functions and the top 10 KEGG
pathways were visualized using bar graphs in different colors. We used a significance threshold of P < 0.05 to determine which
functions or pathways were significantly enriched.

2.4. Characteristic gene selection

To identify key genes, we employed machine learning algorithms to select characteristic IR-DEGs. Initially, we compared the re-
sidual error values of two commonly used Support Vector Machine Recursive Feature Elimination (SVM-RFE) [18] and Random Forest
(RF) [19] models, to determine the most suitable machine learning algorithm. Subsequently, a Least Absolute Shrinkage and Selection
Operator (LASSO) [20] regression was employed to identify the selection of characteristic genes. The final set of characteristic IR-DEGs
was determined by taking the intersection of genes identified by both machine learning algorithms. Additionally, we analyzed the
chromosomal locations of these characteristic IR-DEGs.

2.5. Single-cell data and analysis

The ScRNA-seq dataset GSE147287 of PMOP patients was obtained from the GEO database, comprising the raw matrix data of one
PMOP patient. Data processing and filtering were conducted using the “Seurat” package in R software (version 4.3.2). Standard data
preprocessing procedures involved determining the number of genes, cells, and total molecules. Cells with a detected gene count less
than 500 or exceeding 7500 were discarded. Cells with high mitochondrial gene content (≥20 %) were also removed. Subsequently,

Table 1
Dataset source and information.

Dataset Platform Sample Cell Type

GSE56815 GPL96 20 PMOP vs 20 Control Mononuclear cells derived from peripheral blood
GSE2208 GPL96 9 PMOP vs 20 Control Mononuclear cells derived from peripheral blood
GSE147287 GPL24676 1 PMOP Mononuclear cells derived from bone marrow

S. Fang et al. Heliyon 10 (2024) e38022 

3 

https://www.ncbi.nlm.nih.gov/geo/
https://immport.org
https://immport.org


data standardization was performed using the “ScaleData” function in “Seurat,” and 2000 highly variable genes (genes showing
significant differences between some cells) were selected for principal component analysis (PCA) dimensionality reduction and cell
identification across all samples. Appropriate PC values (PC = 10) and resolution (0.5) were chosen for further optimization of cell
clustering. Visualization and storage of DEGs for each cluster were carried out. Additionally, each cluster was subsequently defined and
annotated based on the specific expression patterns of marker genes. Finally, differential expression analysis was conducted for key IR-
DEGs across different clusters.

2.6. Cell cycle and cell communication

The cell cycle is a well-conserved and ongoing process. The “tricycle” package was employed to predict the specific positions of cells
in the cell cycle based on data projection. The cell cycle stages were inferred as five phases: G1.S phase, S phase, G2 phase, G2/M phase,
and M.G1 phase, represented by the UAMP of the data. The proportions of different cell cycle phases were further calculated for each
distinct cluster. Additionally, the “CellChat” package was utilized to analyze chondrocyte-like samples from OA joints, calculating
intercellular communication within each cell cluster of PMOP samples to reveal the communication strength of each signaling
pathway. A significance threshold of P< 0.05 was applied, and the visualization was based on the number and intensity of connections
between various cell clusters.

2.7. Determination of molecular subtypes in PMOP patients

Conducting disease subtyping through clustering analysis is beneficial for personalized treatment of patients. Therefore, we utilized
Consensus Clustering analysis to identify molecular subtypes in PMOP patients. Initially, PMOP patients were subjected to Consensus
Clustering using the “ConsensusClusterPlus” package [21,22]. We generated eight clustering models (K = 2–9) based on different K
values and visualized them using clustering heatmaps. The clustering parameters were set as follows: max K= 9, reps= 50, pFeature=
1, pItem= 0.8. Subsequently, we calculated the consensus scores for the K= 2–9 clustering models and created cumulative distribution
functions (CDF) along with area under the curve (AUC) to identify the most appropriate clustering K value.

Moreover, to confirm significant differences between PMOP molecular subtypes with distinct features, we conducted PCA [23] for
subtyping 20 PMOP patients. Subsequently, we examined the expression differences of key IR-DEGs across the identified molecular
subtypes.

2.8. Analysis of immune microenvironment in PMOP patients

The pathogenesis of PMOP may be associated with immune regulation. Therefore, we conducted a comprehensive exploration of
the immune microenvironment in PMOP patients. Initially, we performed immune cell infiltration analysis and immunoscore calcu-
lation for each PMOP sample and healthy control using the “CIBERSORT” package [24]. Subsequently, the infiltration levels of 22
immune cell types were compared between PMOP patients and control samples, with the significant differences visualized through
cluster heatmaps and box plots. Finally, the variations in infiltration levels of these 22 immune cell types among different PMOP
subtypes (subtype 1 and subtype 2) were visualized through histograms and box plots.

2.9. Immune correlation analysis of characteristic IR-DEGs

We further explored the immunoregulatory relationship of characteristic IR-DEGs with PMOP patients from an immunological
perspective. Subsequently, we conducted correlation analyses between these key IR-DEGs and the 22 immune cell types. A significance
threshold was set at P < 0.05 and |R|>0.3 to identify genes with a pronounced correlation with immune cells.

2.10. Single-sample gene set enrichment analysis (ssGSEA)

ssGSEA is a widely used method to assess the enrichment of target genes under specific biological conditions [25]. In this study,
PMOP samples from the training group were divided into low- and high-expression groups for each characteristic IR-DEG, based on the
median expression level of these genes. This categorization allowed for the analysis of biologically significant functions or pathways
that were significantly enriched for each f characteristic IR-DEG. A significance threshold of P < 0.05 was utilized to determine these
enriched biological functions or pathways.

2.11. Diagnostic model based on characteristic IR-DEGs

We further developed a diagnostic model for PMOP using the characteristic IR-DEGs, evaluating their ability to distinguish between
PMOP patients and control samples. Specifically, we employed the “glmnet” and “pROC” packages [26] to build ROC curves for the
characteristic genes and performed ROC evaluations for each gene. Subsequently, we established a logistic regression model for the
characteristic genes to generate an overall ROC curve and calculate the AUC values. Finally, we employed the independent GSE2208
dataset as a validation set to validate the ROC curves constructed for the characteristic genes.
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2.12. PPI and gene-gene interaction networks

To investigate the potential interaction mechanisms among characteristic IR-DEGs, we constructed a Protein-Protein Interaction
(PPI) network using the online STRING database (https://string-db.org). Genes lacking interactions were excluded, and the selected
minimum confidence score was set to 0.15. Furthermore, we established a gene-gene interaction network for characteristic IR-DEGs
based on the GENEMANIA online database (http://genemania.org), visually represented as a circular plot. Additionally, we created
gene-miRNA and gene-disease regulatory networks through the NetworAnalyst database (https://www.networkanalyst.ca).

2.13. Establishment of PMOP rat model and RT-qPCR

Purchase 24 female SD rats, aged 4–5 months and weighing 400–500g, from the Guangdong Province Medical Experimental
Animal Center. After a week of routine feeding in the lab, administer 2 % pentobarbital sodium intraperitoneally (40 mg/kg) for
anesthesia, then prepare and disinfect the abdominal area. Randomly divide the 24 rats into two groups: 12 in the PMOP group and 12
in the sham group. The PMOP group undergoes bilateral ovariectomy, while the sham group only has the adipose tissue around the
ovaries removed, followed by suturing and disinfection of the incisions. Resume normal diet post-operation and establish the PMOP
model after 8 weeks. After the model was established, 24 rats were anesthetized with an intraperitoneal injection of sodium pento-
barbital, and blood was collected via the jugular vein. The rats were then euthanized, and the right femoral tissue was extracted.

Extract total RNA from femur tissue and peripheral blood using the Simply Total RNA Extraction Kit (BioFlux, Japan), according to
the manufacturer’s instructions. Transcribe cDNA using the SweScrip RT I First Strand Synthesis Kit (Service Bio, Guangzhou, China)
as per the instructions provided. Employ the MyiQ PCR instrument to detect the expression of the genes JUN, HMOX1, CYSLTR2,
TNFSF8, IL1R2, and SSTR5. Use GAPDH for normalization. Primer sequences are listed in Table 2. The animal experiments conducted
in this study were approved by the Medical Research and Clinical Trial Ethics Committee of the First People’s Hospital of Huzhou
(Approval No. 2022-SDYW-004).

2.14. Statistics analysis

For normally distributed data, comparisons between two groups were conducted using two-sample independent t-tests. In cases
where normality assumptions were not met, the Wilcoxon test was employed for comparing two groups. Statistical significance was
defined as a P-value less than 0.05. All gene expression matrices and statistical analyses were conducted using R version 4.1.3 (https://
www.R-project.org/) along with relevant packages.

3. Results

3.1. Identification and enrichment analysis of IR-DEGs

The GSE56815 dataset comprised 40 patients with low bone density and 40 patients with high bone density. After excluding
premenopausal individuals with low bone density and postmenopausal individuals with high bone density, we obtained a control
group consisting of 20 premenopausal individuals with high bone density and 20 patients with PMOP. Similarly, the GSE2208 dataset
included 10 patients with high bone density and 9 PMOP patients, resulting in a control group of 5 premenopausal individuals with
high bone density and 9 PMOP patients after excluding 5 premenopausal individuals with low bone density. We utilized the “limma”
package to extract immune-related genes from the data matrices and conducted differential expression analysis, identifying a total of
327 IR-DEGs (see Supplementary Table 2). The top 10 IR-DEGs were visually represented through differential heatmaps and box plots
(Fig. 2A and B).

We performed functional and pathway enrichment analyses to investigate the possible biological roles and mechanisms of the IR-
DEGs. The KEGG pathway analysis indicated the IR-DEGs were significantly enriched in pathways related to blood coagulation, wound
healing, and hemostasis (Fig. 2C). GO functional analysis revealed that these IR-DEGs were strongly linked to biological processes (BP)
related to wound healing, lymphocyte differentiation, and coagulation. In terms of cellular components (CC), the IR-DEGs were
primarily associated with the external side of the plasma membrane, the lumen of cytoplasmic vesicles, and secretory granules.
Molecular functions (MF) were mainly enriched in phospholipid binding, DNA-binding transcription activator activity, and collagen
binding (Fig. 2D). These results suggest that IR-DEGs could contribute to the regulation of PMOP and may have an impact on the

Table 2
The primers used for characteristic immune-related DEGs.

Targeted genes Forward (5′–3′) Reverse (3′–5′)

JUN AACTCGGACCTTCTCACGTC GGTCGGTGTAGTGGTGATGT
CYSLTR2 TCATGCTCAACCTGGCCATT GGCCCAGTCCCCAAATATCC
SSTR5 CCTCCACACCAAGCTGGAAT CAACAGGTAGAGCACAGGCA
TNFSF8 ACACTGCAGCTCGTCATCAA TCCACCCGGACAGATATGGT
IL1R2 TGTAAACGCCAGGCTGGAAA TTTGGTTTGGGCTGGAAGGG
HMOX1 GCATGTCCCAGGATTTGTCC ACCAGCTTAAAGCCTTCCCT
GAPDH TTCACCACCATGGAGAAGGC CTCGTGGTTCACACCCATCA
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Fig. 2. Identification and Functional Analysis of Immune-Related Differentially Expressed Genes (IR-DEGs). (A) Differential heat map of the top 10
IR-DEGs, with red representing upregulated genes and blue representing downregulated genes. (B) Differential box plot of the top 10 IR-DEGs, with
red indicating the PMOP group and blue indicating the control group. (C) The top 10 significant enrichment of KEGG pathways. (D) The top 5
significantly enriched biological functions (BP) revealed by GO functional analysis, the top 4 enriched cellular components, and the top 5 enriched
molecular functions. Significance: **P < 0.01, ***P < 0.001.
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hematological system.

3.2. Selection of characteristic IR-DEGs

To select characteristic genes, we initially compared the residual error values of RF and SVM-RFE. Using box plots and residual
distribution curves, we determined that SVM-RFE was the appropriate selection method (Fig. 3A and B). In the SVM-RFE analysis,
cross-validation accuracy plots indicated that 17 features achieved an accuracy of 0.825, while cross-validation error plots showed that
these 17 features had an error rate of 0.175 (Fig. 3C and D). Consequently, 17 SVM-RFE-selected characteristic genes were obtained
(Supplementary Table 3). Next, we performed LASSO regression analysis with cross-validation on IR-DEGs, resulting in 13 charac-
teristic genes (Fig. 3E and F). By further intersecting these genes, we identified 6 characteristic IR-DEGs: JUN, HMOX1, CYSLTR2,
TNFSF8, IL1R2, and SSTR5 (Fig. 3G). Chromosome location analysis indicated that JUN, IL1R2, TNFSF8, CYSLTR2, SSTR5, and
HMOX1 were situated on chromosomes 1, 2, 9, 13, 16, and 22, respectively (Fig. 3H).

3.3. Identification of different cell types, cell cycle and cell communication analysis

To further investigate the occurrence and progression of PMOP, the immune microenvironment of PMOP patients was analyzed at
the cellular level using scRNA-seq data set (GSM4423510). After quality control, filtering, PCA dimensionality reduction, and t-SNE
clustering analysis, a total of 12 different cell types were identified (Fig. 4A). Using feature markers, these cells were defined as 11
different subtypes: M1 macrophage (FCGR3B), Treg (NRP1), CD8+ T cell (GZMK and CD8A), Endothelial cell (PECAM1), M2
macrophage (CD163), RBC (HBD), B cell (CD37), lymphoid-primedmulti-potential progenitors (LMPP) (CAMP), Fibroblast (FGF7), NK
cell (NKG7), Epithelial_cell (CDH1) (Fig. 4B and C). The heatmap shows significant differences in gene markers among different cell
clusters (Fig. 4D). Subsequently, UMAP was employed to visualize the expression of key genes (JUN, HMOX1, CYSLTR2, TNFSF8, and
IL1R2) in cells (Fig. 5A). Differential expression analysis of key IR-DEGs across cell clusters showed that JUN expression was markedly
elevated in M1 macrophages compared to the other six cell types (Treg, CD8+ T cell, Endothelial cell, M2 macrophage, RBC, and B
cell). HMOX1 showed significantly higher expression in endothelial cells and M2 macrophages. CYSLTR2, TNFSF8, and IL1R2 were
expressed less in various cell types and showed no significant differences (Fig. 5B).

Additionally, to explore potential connections and molecular mechanisms between different cell types, further analysis of the cell
cycle and cell communication was conducted. M1 macrophages were found to be present in almost all cell cycles (M.G1, G2.M, G2, S,
G1.S) and constituted a significant proportion, while Treg cells were mainly concentrated in the S and G1.S phases of the cell cycle
(Fig. 5C and D). Cell communication analysis revealed that M2 macrophages, CD8+ T cells, Treg cells, and fibroblasts exhibited more
interactive cell communication pairs in the PMOP microenvironment, with M1 macrophages having the highest number of interacting
cells (Fig. 5E). These findings suggest that macrophages may play a crucial role in the immune microenvironment of PMOP.

3.4. Determination of molecular subtypes in PMOP patients

Subtyping PMOP patients helps in further analyzing the differences in the immune microenvironment between different subtypes,
thereby aiding the development of personalized immunotherapy approaches. Based on six characteristic IR-DEGs, we employed
consensus cluster analysis to identify molecular subtypes within PMOP patients. Specifically, based on the clustering matrix heatmaps
for K = 2 to K = 4, K = 2 was considered the optimal clustering solution (Fig. 6A). Subsequently, the Consensus Cluster Score results
indicated that both subtypes achieved scores exceeding 0.80 for K= 2 (Fig. 6B). Furthermore, the determination of the best K value was
reinforced by the Consensus CDF plot and the area under the CDF curve (Fig. 6C and D). Consequently, K= 2was confirmed as themost
appropriate clustering solution, revealing two subtypes, Subtype 1 (comprising 8 samples) and Subtype 2 (comprising 12 samples).
Principal Component Analysis (PCA) results highlighted marked dissimilarities between Subtypes 1 and 2 (Fig. 6E).

Additionally, we analyzed the differential expression of characteristic genes between the two subtypes (Fig. 6F). The heatmap and
boxplot results showed significant differences in HMOX1 and IL1R2 expression levels between Subtype 1 and Subtype 2, with both
genes showing notably higher expression in Subtype 2.

3.5. Analysis of immune microenvironment in PMOP patients

Previous research has indicated that alterations in the immune status of PMOP patients may contribute to ongoing bone
destruction, emphasizing the interaction between immune cells and bone [27,28]. In this context, we performed an in-depth analysis of
the immune microenvironment in PMOP patients. The “CIBERSORT” algorithm was employed to identify and score 22 distinct im-
mune cell types in both PMOP patients and healthy controls. The results were visually represented through a heatmap and a boxplot
(Fig. 7A and B). The analysis revealed significant upregulation of resting dendritic cells and naive B cells in PMOP patients, while
follicular helper T cells and naive CD4 T cells showed substantial downregulation in their infiltration levels within the PMOP patient
group. These findings suggest a potential involvement of T cells and B cells in the immune regulation mechanisms underlying PMOP.
Furthermore, within PMOP subtype 2, resting NK cells, and monocytes exhibited significantly elevated immune infiltration, while M1
macrophages, M2 macrophages, and eosinophils had higher infiltration levels in subtype 1 (Fig. 7C).
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3.6. Immune correlation analysis

Additionally, we performed a correlation analysis between each key IR-DEG and the proportions of 22 immune cell types. Notably,
HMOX1, IL1R2, and SSTR5 demonstrated significant correlations with immune cells (Fig. 8A–C). Specifically, HMOX1 exhibited a
significant negative correlation with resting mast cells (R = − 0.53, P = 0.018), while IL1R2 showed a significant positive correlation
with memory B cells (R= 0.51, P= 0.02). Additionally, SSTR5 exhibited a significant negative correlation with resting memory CD4 T
cells (R = − 0.55, P = 0.013).

3.7. ssGSEA enrichment analyses

Additionally, we investigated the potential molecular mechanisms and pathways related to the six IR-DEGs. ssGSEA-KEGG pathway
enrichment analysis revealed the following associations: JUN was primarily enriched in pathways related to acute myeloid leukemia
and galactose metabolism (Fig. 9A–F). HMOX1 showed prominent enrichment in pathways associated with acute myeloid leukemia
and focal adhesion. CYSLTR2 was notably enriched in pathways such as axon guidance, cytokine-cytokine receptor interaction, and
drug metabolism. TNFSF8 was enriched primarily in pathways including focal adhesion, huntington’s disease, and nod-like receptor
signaling pathway. IL1R2 was enriched in pathways linked to acute myeloid leukemia and lysosome. SSTR5 was predominantly
enriched pathways connected to aldosterone regulated sodium reabsorption and asthma. In summary, these IR-DEGsmay influence the
development of PMOP by regulating amino acid metabolism and potentially have close associations with acute myeloid leukemia.

3.8. Construction of PMOP diagnostic model

To investigate the diagnostic value of the six IR-DEGs, the diagnostic models were constructed (Fig. 10A and B). ROC curves for
each gene were generated in the training set, demonstrated that, except for SSTR5 (AUC = 0.690), all other characteristic genes
exhibited AUC values exceeding 0.700, with JUN (AUC = 0.700), HMOX1 (AUC = 0.772), CYSLTR2 (AUC = 0.725), TNFSF8 (AUC =

0.705), and IL1R2 (AUC = 0.780). The AUC value for the logistic regression model was 0.927 (95 % CI: 0.837–0.995). Furthermore,
using another dataset (GSE2208) for validation and ROC curves were established (Fig. 10C and D). Due to the limited sample size,
information for only three characteristic genes was available: JUN (AUC= 0.933), CYSLTR2 (AUC= 0.711), and IL1R2 (AUC= 0.733).
All these AUC values exceeded 0.70. In the validation set, the AUC value for the logistic regression model was 0.956 (95 % CI:
0.800–1.000), indicating that the IR-DEGs hold substantial diagnostic value for PMOP.

3.9. Construction of PPI and gene-gene interaction networks

To investigate the potential molecular mechanisms of the six characteristic IR-DEGs, a PPI network was constructed using the
STRING database (Fig. 11A). This network consisted of 4 nodes and 6 edges. Subsequently, utilizing GENEMANIA database references,
including physical interactions, co-expression, and predicted interactions, we established a gene-gene interaction network (Fig. 11B).
This network comprised 26 nodes and 64 edges. We further explored the Gene-miRNA interaction network based on miRTarBase v8.0
(Fig. 11C), which encompassed 5 genes, 122 nodes, and 124 edges. Of particular interest, JUN, HMOX1, and IL1R2 exhibited in-
teractions with has-miR-26b-5p. JUN and TNFSF8 were associated with has-miR-342-3p and has-miR-4724-5p, while TNFSF8 and
CYSLTR2 were connected to has-miR-9500.

To elucidate the connection between these characteristic IR-DEGs and diseases, we used the NetworkAnalyst database to build a
gene-disease regulatory network (Fig. 11D). This analysis predicted that JUN and SSTR5 might be involved in the regulation of 19 and
5 human diseases, respectively. Notably, status epilepticus exhibited associations with both JUN and SSTR5.

3.10. RT-qPCR validation

To confirm the reliability of the bioinformatics analysis, we initially validated the differences in characteristic IR-DEGs between
PMOP and healthy samples using the independent GSE2208 dataset. Due to sample size limitations, the expression differences of three
characteristic IR-DEGs were analyzed. The results indicated that JUN was significantly overexpressed in the control group, consistent
with the training set results. While no significant differences were observed for IL1R2 and CYSLTR2 between the two groups, the
expression trends aligned with the training set results (Fig. 12A). To validate the consistency of key gene expression identified in the
bioinformatics analysis, an OP rat model was established. The microCT results demonstrated a reduction in trabecular bone and
decreased bone density in the OP group, confirming the successful establishment of the OP model (Fig. 12B). Subsequently, consistent
with the peripheral blood results from the patient dataset, PCR results from the peripheral blood of rats showed that IL1R2, HMXO1,
and TNFSF8A were significantly upregulated in the OP group, while JUN, CYSLTR2, and SSTR5 were significantly downregulated

Fig. 3. Identification of characteristic IR-DEGs using machine learning methods. (A and B) Residuals from the Random Forest (RF) and Support
Vector Machine-Recursive Feature Elimination (SVM-RFE) models. (C) Change curves in the predicted true values for each IR-DEG. (D) Change
curves in the predicted error values for each IR-DEG. (E) Gene coefficient plots from the Least Absolute Shrinkage and Selection Operator (LASSO)
regression analysis. (F) Cross-validation curves. (G) Characteristic IR-DEGs obtained by the intersection of genes selected by LASSO and SVM-RFE.
(H) Chromosomal positions of the 6 characteristic IR-DEGs.
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Fig. 4. Cell clustering analysis and annotation using the tSNE method. (A) Identification of 12 cell clusters based on the tSNE method. (B)
Determination of 11 cell types based on cell-specific markers. (C) Specific markers for the 11 cell types. (D) Heatmap illustrating the classification of
the 11 cell types.
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(Fig. 12C). RT-qPCR results from femoral tissue revealed a significant upregulation of IL1R2 and TNFSF8 mRNA levels and a down-
regulation of CYSLTR2mRNA levels in the OPmodel, confirming the consistency of key gene expression in peripheral blood (Fig. 12D).

4. Discussion

Osteoporosis, particularly PMOP, is a bone metabolism disorder intricately linked to estrogen metabolism, with its incidence
steadily rising [29]. Conventionally, it has been believed that estrogen deficiency, aging, and disease triggers lead to an imbalance in
bone mineralization and absorption, thereby increasing bone loss in PMOP patients [30]. However, as researchers delve deeper into
the immune system, a complex relationship between osteoporosis and immune regulation is emerging. Since the conceptualization of
“immune osteoporosis” by Srivastava et al. [31], attention has been drawn to the role and mechanisms of the immune system in the
occurrence and progression of OP. Wang et al. [32] discovered that the immune regulation influences osteoclast absorption and
differentiation. Specifically, major histocompatibility complex class II (MHC-II) are markedly upregulated in osteoclast precursors,
where they bind short peptides and present them to T lymphocytes. This process activates T cell-derived inflammatory factors, which
in turn promote bone remodeling in PMOP. We conducted a thorough analysis of the PMOP immune microenvironment. Our findings
revealed a significant downregulation of follicular helper T cells and naive CD4 T cells. This result may represent an immunological
factor contributing to the bone remodeling difficulties observed in PMOP patients.

Moreover, as crucial elements of the adaptive immune system, B cells play a vital role in the regulation of osteoclast formation [33,
34]. In postmenopausal osteoporosis, estrogen deficiency activates B cells, which in turn secrete elevated levels of receptor activator of
nuclear factor-kappa B ligand (RANKL) and granulocyte colony-stimulating factor (G-CSF), leading to increased bone resorption [28,
35]. Consistent with this, our study found a significant upregulation of naive B cells in PMOP patients, which could accelerate the bone

Fig. 5. Cell cycle and cell communication analysis in PMOP patients. (A) Expression levels of five characteristic IR-DEGs in bone marrow cells. (B)
Visualization of differential expression of five characteristic IR-DEGs among different cell types. (C) Proportions of different cell types in various cell
cycles. (D) Visualization of the cell cycle distribution among different cell types. (E) Interactions among the 11 different cell types.
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resorption process. These findings underscore the intricate interplay between immune factors and PMOP, potentially shedding new
light on therapeutic approaches for this complex condition. Understanding the immunological mechanism influencing bone homeo-
stasis in PMOP opens doors to more targeted interventions and personalized treatment strategies.

Macrophages, traditionally regarded as vital regulators of the immune system, are emerging as key orchestrators in the complex
interaction between the bone and immune systems [36]. They modulate the immune microenvironment in PMOP, consequently
influencing the differentiation processes of bone cells. Xu et al. [37] proposed that the interactions and crosstalk between skeletal
tissue and immune cells underlie the pathogenesis and potential mechanisms of PMOP. Specifically, the dynamic equilibrium of the
skeleton depends on the balance between two macrophage phenotypes: M1 and M2. Mechanistically, M1 macrophages secrete
pro-inflammatory cytokines, including IL-1, IL-2, IL-6, and TNF-α, thereby fostering an inflammatory milieu [38]. In contrast, M2
macrophages, activated by cytokines such as IL-10 and IL-4, secrete anti-inflammatory cytokines and bone-related molecules,
including osteopontin and bone morphogenetic protein-2 (BMP-2) [39,40]. Furthermore, the activation of M1/M2 macrophages leads
to the secretion of oxidative stress-regulating factors, such as reactive oxygen species (ROS), indirectly influencing the differentiation
and activation processes of osteoblasts and osteoclasts [41,42]. This elucidates the profound impact of macrophages on the immune
environment and bone homeostasis in PMOP.

Fig. 6. Construction of molecular subtypes in peripheral blood monocytes of PMOP patients based on characteristic IR-DEGs. (A) Heatmap of
different K-means clustering matrices (K = 2–4). (B) Consistency clustering scores of different subtypes (K = 2–9). (C) Cumulative distribution
function (CDF) plot determining the optimal K value (K = 2). (D) Delta area plot. (E) Principal component analysis (PCA) of PMOP subtypes 1 and 2.
(F) Differential expression analysis of the 6 IR-DEGs between Subtypes 1 and 2. Significance: **P < 0.01, ***P < 0.001.

Fig. 7. Analysis of the immune microenvironment in PMOP patients. (A) Heatmap depicting the correlation between the infiltration abundance of
22 immune cell types between the PMOP group and control group. (B) Differential expression analysis of the infiltration abundance of 22 immune
cell types between the PMOP group and control group. (C) Differential expression analysis of immune cell infiltration abundance between PMOP
Subtypes 1 and 2. Significance: *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 8. Correlation analysis of key IR-DEGs with 22 immune cell types. (A) HMOX1 exhibits a significant negative correlation with resting Mast
cells. (B) IL1R2 shows a significant positive correlation with activated dendritic cells. (C) SSTR5 demonstrates a significant negative correlation with
resting T cells CD4 memory.
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In a comprehensive exploration of macrophage phenotypes, Dou et al. [43] delved into ovarian-excision (OVX) mice models. They
discovered that OVX mice exhibited an enhanced M1 macrophage polarization and a weakened M2 polarization, resulting in an
increased M1/M2 ratio. This elevated ratio could potentially lead to intensified osteoclast differentiation. Interestingly, estrogen re-
ceptor agonists were found to ameliorate osteoporosis in OVX mice by decreasing this ratio. Concurrently, a human study investigated

Fig. 9. Single-Sample Gene Set Enrichment Analysis (ssGSEA) of the 6 Key IR-DEGs. ssGSEA results for JUN (A), HMOX1 (B), CYSLTR2 (C), TNFSF8
(D), IL1R2 (E) and SSTR5 (F) between high-expression and low-expression groups.
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the immune phenotypes of macrophages in women postmenopausal blood samples, which revealed a slowdown in M2 macrophage
activation and an increasedM1/M2 ratio [44]. Consistent with these studies, we demonstrated a higher proportion of M1macrophages
in PMOP subtype 1. This suggested that subtype 1 might be associated with inflammatory responses and osteoclast differentiation.
These results underscored the pivotal roles that macrophage polarization and activation play in the processes of bone formation and
resorption in postmenopausal osteoporosis.

Notably, multiple genes are involved in the regulation of the PMOP process. Heme Oxygenase 1 (HMOX1) is an essential enzyme
responsible for degrading heme into free iron and has been shown to play a crucial role in maintaining bone disease homeostasis [45].
Barbagallo et al. [46] found that the overexpression of HMOX1 increases the expression levels of osteopontin, OPG, and BMP-2 in
mesenchymal stem cells (MSCs) under high glucose conditions, suggesting its potential as a therapeutic target for OP. At the animal
level, HMOX1 knockout mice exhibit significant bone mass reduction [47]. Another study indicated that total bilirubin levels, a
metabolite of HMOX1, are lower in OP patients [48]. We did not observe a significant decrease in HMOX1 mRNA levels in the PMOP
model, which might be due to differences in expression between bone tissue and peripheral blood. Further experiment is required to
clarify the role of HMOX1 in PMOP. JUN is a transcription factor that has been shown to play a role in regulating key cellular processes
in fibrotic diseases, such as the cell cycle, self-renewal, and metabolism [49]. As a member of the activator protein 1 family, JUN also

Fig. 10. Diagnostic value of 6 characteristic IR-DEGs in PMOP. (A) ROC curves for each of the 6 characteristic IR-DEGs (JUN, HMOX1, CYSLTR2,
TNFSF8, IL1R2, and SSTR5) in the training dataset (GSE56815). (B) ROC curve for the Logistic regression model constructed based on the 6
characteristic IR-DEGs in the GSE56815 dataset. (C) ROC curves for each of the 3 characteristic IR-DEGs in the validation dataset (GSE2208). (D)
ROC curve for the Logistic regression model constructed based on the 3 characteristic IR-DEGs in the GSE2208 dataset.
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plays a role in bone growth and development. David et al. [50] demonstrated that the activation of JUN1 in bone marrowmonocytes is
crucial for the regulation of osteoclastogenesis. Another study demonstrated that JUN stimulates hedgehog signaling in skeletal stem
cells and accelerates fracture healing in models, highlighting its potential as a therapeutic target for OP patients [51]. Moreover,
consistent with this study, several bioinformatics analyses have identified JUN as a key gene in OP patients, potentially playing a
regulatory role in osteogenic and adipogenic differentiation processes [52,53].

Nevertheless, this study has several limitations. First, the relatively small sample size may have introduced errors in immune
subtyping and diagnostic model construction, highlighting the need for larger sample sizes in future investigations. Second, the
expression of the six characteristic genes has not yet been validated in clinical samples. Future studies should focus on exploring the
roles of these genes in regulating immunity and bone integration in PMOP through functional experiments. Despite these limitations,
the study successfully identified molecular subtypes and developed diagnostic models for PMOP from an immunological perspective,
offering valuable targets for early diagnosis and treatment of PMOP.

Fig. 11. Potential molecular mechanisms of characteristic IR-DEGs. (A) Construction of the Protein-Protein Interaction (PPI) network based on JUN,
HMOX1, TNFSF8, and IL1R2. (B) Generation of the gene-gene interaction network for the key IR-DEGs using the GENEMANIA database. (C)
Establishment of the gene-miRNA interaction network based on JUN, HMOX1, TNFSF8, CYSLTR2, and IL1R2. (D) The gene-disease interaction
network based on JUN and SSTR5.
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5. Conclusion

In summary, we integrated various machine learning algorithms to identify six characteristic biomarkers (JUN, HMOX1, CYSLTR2,
TNFSF8, IL1R2, and SSTR5). These markers are instrumental in establishing highly effective diagnostic models and molecular sub-
types, offering new insights into early diagnosis and personalized immunotherapy for PMOP.
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