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Background. Patients with prolonged inflammatory bowel disease (IBD) can develop into colorectal cancer (CRC), also called
colitis-associated cancer (CAC). Studies have shown the association between gut dysbiosis, abnormal bile acid metabolism, and
inflammation process. Here, we aimed to investigate these two factors in the CAC model. Methods. C57BL/6 mice were
randomly allocated to two groups: azoxymethane/dextran sodium sulfate (AOM/DSS) and control. The AOM/DSS group
received AOM injection followed by DSS drinking water. Intestinal inflammation, mucosal barrier, and bile acid receptors were
determined by real-time PCR and immunohistochemistry. Fecal microbiome and bile acids were detected via 16S rRNA
sequencing and liquid chromatography-mass spectrometry. Results. The AOM/DSS group exhibited severe mucosal barrier
impairment, inflammatory response, and tumor formation. In the CAC model, the richness and biodiversity of gut microbiota
were decreased, along with significant alteration of composition. The abundance of pathogens was increased, while the short-
chain fatty acids producing bacteria were reduced. Interestingly, Clostridium XlV and Lactobacillus, which might be involved in
the bile acid deconjugation, transformation, and desulfation, were significantly decreased. Accordingly, fecal bile acids were
decreased, accompanied by reduced transformation of primary to secondary bile acids. Given bile acid receptors, the ileum
farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF15) axis was downregulated, while Takeda G-protein receptor 5
(TGR5) was overexpressed in colonic tumor tissues. Conclusion. Gut dysbiosis might alter the metabolism of bile acids and
promote CAC, which would provide a potential preventive strategy of CAC by regulating gut microbiota and bile acid metabolism.

1. Introduction

Colorectal cancer (CRC) is one of the most common cancers
worldwide [1] and can be identified as sporadic, hereditary
CRC, or colitis-associated cancer (CAC) [2, 3]. Patients with
long-term inflammatory bowel disease (IBD), especially
ulcerative colitis, can develop into intestinal cancer, known
as CAC. The risks of developing CAC in IBD patients were
2% by 10-year intervals, 8% by 20 years, and 18% by 30 years,
as shown in a meta-analysis [4]. Specific factors of IBD
patients can increase the prevalence of CAC, such as exten-

sive mucosal involvement, the severity and duration of the
disease, family history, primary sclerotizing cholangitis, and
therapeutic effect of the disease [5, 6]. Factors involving
CAC development include immune response, epigenetic
modification, intestinal inflammatory response, and gut dys-
biosis [7, 8].

Previous studies have indicated the relevance between
altered gut microbiota and risk of gastrointestinal diseases
(such as IBD, CRC, and irritable bowel syndrome) [6, 9,
10]. Gut microbiota maintains host health by participating
in immune modulation and host metabolism [8]. Moreover,
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the presence of gut microbiota plays a crucial role in bile acid
metabolism [9, 11]. Bile acids are synthesized by classical and
alternative pathways in hepatocytes. The bile acids conju-
gated to either taurine or glycine are finally transported to
the intestine. Bile salt hydrolase (BSH) containing bacteria
can convert bile acids from conjugated to unconjugated,
and bacteria that possess 7α-dehydroxylation activity can
make primary bile acids transform into secondary bile acids.
In the distal ileum, almost 95% of bile acids are returned to
the liver [12, 13]. Physiologically, bile acids can regulate
extensive metabolic and immune-related activities including
glucose, lipid, and energy metabolism [14, 15]. Nevertheless,
excessive bile acids in the intestine especially secondary bile
acids have the capability of promoting CRC. Previous litera-
ture has shown that gut dysbiosis and bile acid metabolism
disorder can promote CRC [10, 16]. However, the role of
these two in the CAC progression is not fully understood.

Bile acids also exert metabolic effects by activating bile
acid receptors, mainly the nuclear receptor farnesoid X
receptor (FXR) and G-protein coupled receptor (TGR5)
[17]. FXR, mainly expressed in the liver, kidney, and terminal
ileum, has a significant influence on bile acids, liquid, and
glucose metabolic homeostasis [15, 18–20]. Activation of
intestinal FXR is responsible for bile acid reabsorption
through the portal vein and limits the uptake of bile acids
in the enterocytes [21, 22]. TGR5, highly expressed in the
ileum, colon, and gallbladder, can regulate the energy
homeostasis and bile acids, liquid and glucose metabolism,
cell proliferation, and apoptosis and immune responses [23,
24]. It has shown that the TGR5 is highly expressed in esoph-
ageal and gastric adenocarcinoma [25, 26]; however, the role
of TGR5 in CAC remains unclear.

We hypothesized that gut microbiota and bile acid metab-
olism could be involved in CAC development, and we chose
the AOM/DSS model in the present study. Our results
revealed gut dysbiosis during tumorigenesis, accompanied by
abnormal bile acid metabolism. In addition, FXR and TGR5,
the two main bile acid receptors, were also involved in CAC.
These results provide a better understanding of CAC, suggest-
ing that the regulation of gut microbiota and bile acids might
be a guiding therapeutic strategy for CAC.

2. Materials and Methods

2.1. Animals and Induction of CAC. In the present study, we
chose the AOM/DSS-induced CAC model, which had the
advantages of reproducibility, simplicity, affordability, and
mainly invading the colon, similar to human sporadic CRC
[27]. Twenty female C57BL/6 mice aged 7 weeks were
obtained from Beijing Huafukang Bioscience Co. Inc. (Bei-
jing, China) and acclimatized 1 week before the experiment.
They were randomly divided into the AOM/DSS and control
groups with 10 mice, respectively. All mice were maintained
in a specific pathogen-free (SPF) condition with the 12 : 12
light-dark cycle. The mice were fed a diet of AIN-93M
rodents and free to eat and drink. According to our previous
study and literatures [28–30], intraperitoneal injection of
10mg/kg azoxymethane (AOM) (Sigma, USA) was applied
to the AOM/DSS group, while the control group was intraper-

itoneally injected with sterile isotonic saline on day 1. After
seven days, the AOM/DSS group was given 1.5% dextran
sodium sulfate (DSS) (MP Biomedicals, USA) in drinking
water on days 8–13, 27–32, and 46–51, and each cycle of
DSS treatment was followed by 14-day drinking water. Mice
were euthanized by CO2 asphyxiation on day 70
(Figure 1(a)). Animal experiments were performed following
the experimental regulations of the Animal Ethics Committee.

2.2. Tissue and Feces Collection. All mice were observed every
day and weighed weekly. The general condition and defeca-
tion of the mice were recorded during AOM/DSS treatment.
On days 0 and 70, each mouse was individually housed in a
clean cage for two hours to collect feces. Then, mice were
sacrificed with measurement of colon length and spleen
weight. The intestine was washed with ice PBS and dissected
longitudinally. The location, size, and numbers of intestinal
tumors were observed. Tumor load refers to the sum of the
tumor diameters of each mouse. Intestinal tissues (ileum
and colon) were stored at -80°C for subsequent study. The
colon was rolled and embedded in paraffin for further path-
ological and immunohistochemistry analysis.

2.3. Pathology and Immunohistochemistry. Colon tissue was
cut into sections (5μm), and then, hematoxylin and eosin
(H&E) staining was applied to colon sections for assessment
of tumor and inflammatory cell infiltration. In addition,
colon sections were deparaffinized and rehydrated for immu-
nohistochemistry to detect the expression of TGR5. Slides
were incubated with rabbit monoclonal TGR5 antibody
(1 : 100, Abcam, MA, USA) at 4°C overnight, followed by cor-
responding secondary antibody. Then, the sections were
treated with horseradish peroxidase- (HRP-) streptavidin
solution. Finally, 3,3′-diaminobenzidine was applied for
counterstaining and further observation. At least five areas
from each single section were observed under light micro-
scope DM5000B (Leika, Germany).

2.4. Immunofluorescent Staining. Colon sections were incu-
bated with primary antibody ZO-1 (Abcam, MA, USA) in a
humid chamber for 12h at 4°C. Subsequently, after washing
with PBS slightly, the fluorescently conjugated secondary anti-
body was applied. And this incubation process lasted for 1h at
room temperature. After DAPI reaction and seal, the slides
were observed with a fluorescence microscope, and then, we
obtained DAPI and FITC images of a unified area.

2.5. Real-time PCR Analysis. Total RNA was extracted from
the intestinal tissues (ileum and colon) by a RNeasy mini
kit. Reverse transcription of cDNA was performed with the
TIANScript RT Kit. Real-time PCR analysis was performed
by the Applied Biosystems StepOnePlus™ Real-time PCR
System. Each run consisted of 95°C for 10min, followed by
40 cycles of 95°C for 15 s and 60°C for 60 s, and then 95°C
for 15 s, 60°C for 60 s, and 95°C for 15 s in a 20ml volume.
The levels of mRNA were analyzed by the ΔΔCt method.
The oligonucleotide primer sequences are listed in Table 1.

2.6. Gut Microbiota Analysis. The 16S rRNA sequencing was
performed using the Illumina HiSeq PE250. DNA was
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extracted with the QIAamp DNA Stool Mini kit (Qiagen,
Germany). Then, the primer F341 (5′-ACTCCTACG
GGRSGCAGCAG-3′) and R806 (5′-GGACTACVVGGGT
ATCTAATC-3′) were designed for 16S rRNA gene (V3-V4

region) amplification. The sequences from samples of the
two groups were clustered to generate operational taxonomic
units (OTUs) at the 97% identity using Usearch. The repre-
sentative sequence of each OTU was classified using the

AOM
(10 mg/kg)

d1 d8 d13 d27 d32

DSS
(1.5%)

DSS
(1.5%)

DSS
(1.5%)

d46 d51 d70

Sacrifice Intestinal tumor

Gut microbiota

Bile acids

(a)

Control
AOM/DSS

25

20 ns ns
ns ns

0 2 4 6
Weeks

W
ei

gh
t (

g)

8 10

15

1 cm

Co
nt

ro
l

A
O

M
/D

SS

45

30

15

Tu
m

or
 lo

ad
 (m

m
)

0
Control AOM/DSS

⁎⁎
⁎⁎⁎⁎ ⁎ ⁎ ⁎ ⁎

(b)

8

7

6

C
ol

on
 le

ng
th

 (c
m

)

5
Control AOM/DSS Control

0.15

0.12

0.09

Sp
le

en
 w

ei
gh

t (
g)

0.06

0.03
AOM/DSS

⁎⁎
⁎⁎

C
on

tro
l

AO
M

/D
SS

(c)

Control

10

8

6

4

2

0
IL-1𝛽 IL-6 TNF-𝛼

AOM/DSS

Re
lat

iv
e m

RN
A

 le
ve

l

⁎⁎

⁎⁎⁎

⁎

Control group AOM/DSS group
(tumor adjacent)

AOM/DSS group
(tumor)

(d)

Figure 1: Tumor formation and severe inflammatory response in the colon of mice treated with AOM/DSS. (a) Mice received intraperitoneal
injection of 10mg/kg AOM on day 1 and followed by three circles of 1.5% DSS drinking water in the AOM/DSS group. And all mice were
killed on day 70. (b) Body weight, colon lumen appearance image, and tumor load of the two groups. (c) AOM/DSS treatment shortened
the colon length and increased the weight of the spleen. (d) H&E staining revealed colon tumor formation and inflammatory cell
infiltration in the AOM/DSS group. Real-time PCR showed the increased levels of several inflammatory cytokines (IL-1β, IL-6, and TNF-
α) in the colon. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. n = 8-10.
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RDP database. Alpha diversity and beta diversity were per-
formed using QIIME.

2.7. Measurement of Bile Acids in Feces. The liquid
chromatography-mass spectrometry (LCMS) method was
applied to measure fecal bile acid concentration. As reference
standards, cholic acid (CA), chenodeoxycholic acid (CDCA),
and lithocholic acid (LCA) were purchased from Aladdin,
with α-muricholic acid (α-MCA) and β-muricholic acid (β-
MCA) from Toronto Research Chemicals, and deoxycholic
acid (DCA) from Sigma. And they were added to fecal samples
for preliminary measurement by an external standardmethod.
Each fecal sample was suspended in 5ml of chromatographic
ethanol and then ultrasonically extracted for 60min at 30°C.
After 10 minutes of centrifugation (10,000 rpm, 4°C), the
supernatant (4ml) was aspirated and dried under nitrogen.
The samples were redissolved with methanol and went
through a 0.22μm filter. Finally, bile acids were analyzed using
the Agilent 1260 Series liquid chromatograph combined with
a 6120B mass spectrometer. The concentrations of bile acids
were determined based on the peak areas [31, 32].

2.8. Statistical Analysis. The data were described as the
mean ± SEM. Differences between the two groups were
determined by Student’s t-test. GraphPad Prism 5.01 and
SPSS 22.0 were applied for data analysis. P < 0:05was consid-
ered significant.

3. Results

3.1. General Characteristics of CACMouse Model.Mice in the
control group grew well, while two mice in the AOM/DSS
group died while receiving DSS. Mice in the AOM/DSS
group showed noticeable weight loss, accompanied by hema-
tochezia during each cycle of DSS treatment. At 10 weeks,
tumor load of the AOM/DSS group was 35:41 ± 1:901mm,
characterized by shortened colon length 6:06 ± 0:158 vs.
6:83 ± 0:125 cm and increased spleen weight 0:10 ± 0:006
vs. 0:07 ± 0:004 g (Figures 1(b) and 1(c). H&E staining
revealed significant inflammatory cell infiltration and intra-
mucosal tumor in the colon of the AOM/DSS group, and
the mRNA levels of inflammatory cytokines (IL-1β, IL-6,
and TNF-α) were significantly increased (Figure 1(d)).

Table 1: The oligonucleotide primer sequences used in the experiments.

Primers Sequence

GAPDH
Forward 5′-TGTGTCCGTCGTGGATCTGA-3′
Reverse 5′-CCTGCTTCACCACCTTCTTGA-3′

TNF-α
Forward 5′-ACTCCAGGCGGTGCCTATG-3′

Reverse 5′-GAGCGTGGTGGCCCCT-3′

IL-1β
Forward 5′-GTGGCTGTGGAGAAGCTGTG-3′
Reverse 5′-GAAGGTCCACGGGAAAGACAC-3′

IL-6
Forward 5′-CCAGTTGCCTTCTTGGGACT-3′
Reverse 5′-GGTCTGTTGGGAGTGGTATCC-3′

ZO-1
Forward 5′-GGGCCATCTCAACTCCTGTA-3′
Reverse 5′-AGAAGGGCTGACGGGTAAAT-3′

Occludin
Forward 5′-CGGTACAGCAGCAATGGTAA-3′
Reverse 5′-CTCCCCACCTGTCGTGTAGT-3′

Claudin1
Forward 5′-AGACCTGGATTTGCATCTTGGTG-3′

Reverse 5′-TGCAACATAGGCAGGACAAGAGTTA-3′

Claudin3
Forward 5′-CCTGTGGATGAACTGCGTG-3′
Reverse 5′-GTAGTCCTTGCGGTCGTAG-3′

FXR
Forward 5′-GGACGGGATGAGTGTGAAG-3′
Reverse 5′-TGAACTTGAGGAAACGGGAC-3′

FGF15
Forward 5′-TGAAGACGATTGCCATCAAGG-3′
Reverse 5′-GGATCTGTACTGGTTGTAGCC-3′

ASBT
Forward 5′-AGGAATACTGTACCAAAGTGCC-3′
Reverse 5′-TTTCCAAGGCTACTGTTCGG-3′

OSTα
Forward 5′-TGCTCACCTCCCTACTCTTC-3′
Reverse 5′-AACAAGCCTCATACCCAACC-3′

OSTβ
Forward 5′-GCTTTGGTATTTTCGTGCAGAAG-3′
Reverse 5′-GTTTCTTTGTCTTGTGGCTGC-3′

TGR5
Forward 5′-AAAGGTGTCTACGAGTGCTTC-3′
Reverse 5′-TGCATTGGCTACTGGTGTG-3′
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3.2. Intestinal Barrier Disruption and Apoptosis Inhibition
after AOM/DSS Treatment. The intestinal barrier exists as
an effective defense system to maintain homeostasis of the
host. Tight junctions including ZO-1, Claudins, and Occlu-
din are critical in preventing the penetration of pathogenic
microorganisms. The mRNA expression of ZO-1, Occludin,
Claudin1, and Claudin3 was significantly reduced in the
colon of the AOM/DSS group (Figure 2(a)), indicating that
the mucosal barrier was disrupted in the development of
CAC. Additionally, the expression of ZO-1 in immunofluo-
rescence was decreased after AOM/DSS treatment
(Figure 2(b)). The AOM/DSS group showed significantly
decreased apoptotic cells than the control group
(6:24 ± 0:82 vs. 10:95 ± 1:08, P < 0:01, Figure 2(c)), hinting
the inhibition of cell apoptosis in the CAC model.

3.3. Decreased Gut Microbiota Diversity in the Development
of CAC. A total of 372 and 353 OTUs were detected in the

AOM/DSS group, while the control group was 358 and 379
OTUs at 0 and 10 weeks (Figure 3(a)). At the phylum level,
compared with the control group, the abundance of Firmi-
cutes increased (17.3% vs. 19.8%) in the AOM/DSS group at
10 weeks, and the Bacteroidetes decreased (79.7% vs. 72.1%,
Figure 3(b)). Since there was no statistical difference in α-
diversity between the two groups at 0 weeks (P > 0:05), the
observed species, chao1, and Shannon index were signifi-
cantly reduced in the AOM/DSS group after 10 weeks
(P < 0:05), suggesting a decreased of gut microbiota richness
and diversity in the CAC model (Figure 3(c)).

3.4. Alteration of Gut Microbiota Composition in the
Development of CAC. The principal coordinate analysis
(PCoA) plot showed that the microbial composition among
the two groups was similar at 0 weeks and especially distinct
after 10 weeks (Figure 4(a)). Unweighted Unifrac Anosim
analysis showed that the R value was 0.636 and the P value
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Figure 2: Intestinal barrier was disrupted in the CACmodel. (a) The mRNA level of Occludin, Claudin1, Claudin3, and ZO-1 was reduced in
the colon after AOM/DSS treatment. (b) Immunofluorescent staining for ZO-1 in colon tissues of the control and AOM/DSS group. (c) Colon
sections from the two groups were stained with TUNEL. Data were quantified as the mean percentage of positive-stained cells in five
randomly selected fields in each sample. Scale bars, 50μm. ∗p < 0:05, ∗∗p < 0:01. n = 8-10.
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was 0.007, which indicated pronounced differences in species
diversity between the two groups at 10 weeks (Figure 4(b)).
The LefSe analysis was applied to evaluate the differential
abundant species of the two groups at different levels
(Figure 4(c)). The fecal microbiota results at week 10 showed
a high abundance of the family Bacteroidaceae, Eubacteria-
ceae, and Helicobacteraceae in the AOM/DSS group and
low abundance of Clostridiaceae 1, Porphyromonadaceae,
and Rikenellaceae. At the genus level, the abundance of path-
ogens Helicobacter and Streptococcus was increased in the
CACmodel, and the short-chain fatty acids (SCFAs) produc-
ing bacteria including Alistipes, Lachnospiracea_incertae_
sedis, and Odoribacter were decreased. Interestingly, the
abundance of Clostridium XlV and Lactobacillus, which
might be engaged in the metabolic process of bile acids, was
decreased in the AOM/DSS group.

3.5. Fecal Bile Acid Profile in the CAC Model. To investigate
bile acid metabolism during CAC development, the concen-
tration in feces was tested by LCMS. After AOM/DSS treat-
ment, levels of CA, DCA, and LCA in the feces were

significantly reduced (P < 0:05, Figure 5(a)). Importantly,
the ratio of DCA/CA and LCA/CDCA also decreased in the
AOM/DSS group, indicating an impaired conversion from
primary bile acids to secondary bile acids (Figure 5(b)). As
previously mentioned, the abundance of Clostridium XlV
and Lactobacillus, which were associated with bile acid
metabolism, was reduced in the AOM/DSS group. Thus,
the ability to bile acid deconjugation, transformation, and
desulfation might be impaired after AOM/DSS treatment.

3.6. Bile Acid Receptors FXR and TGR5 in CAC Development.
Bile acid receptors FXR and TGR5 can be activated by bile
acids. Real-time PCR showed decreased levels of ileum FXR
and fibroblast growth factor 15 (FGF15) in the AOM/DSS
group (Figure 6(a)). Consistent with this, the expression of
organic solute transporter subunits α and β (OSTα and
OSTβ) was reduced, while the apical sodium-dependent bile
acid transporter (ASBT) was highly expressed, which led to
the accumulation of bile acids in enterocytes and limited
the return to the liver (Figure 6(b)). Moreover, our results
also showed that TGR5 mRNA expression was higher in
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Figure 3: The gut microbiota composition at 0 and 10 weeks. (a) Venn diagram in the control and AOM/DSS group. (b) The abundance of
Bacteroidetes decreased in the AOM/DSS group at 10 weeks, and the Firmicutes increased. (c) The α-diversity (observed species, chao1, and
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the colon of mice after AOM/DSS treatment than in the con-
trol group (Figure 6(c)). Simultaneously, immunohistochem-
ical staining confirmed a high expression of TGR5 in the
AOM/DSS group (Figure 6(d)).

4. Discussion

It has been pointed out that 18% of IBD patients may develop
CRC 30 years after colitis is diagnosed, known as CAC [4].
Substantial evidence has demonstrated that gut dysbiosis
and abnormal bile acid metabolism exist in many diseases
such as CRC, nonalcoholic fatty liver disease, and diabetes.
Our previous studies have reported that bile acid-induced
dysbiosis promoted intestinal tumorigenesis inApcmin/+ mice
[32, 33]. Our results in the present study showed destroyed
intestinal barrier and colon tumor formation after AOM/DSS
treatment. Meanwhile, the abundance of Helicobacter and
Streptococcus, known as pathogens, was increased. Interest-
ingly, the BSH containing bacteria Clostridium XlV and Lac-
tobacillus were reduced with the decreased conversion of

primary bile acids to secondary bile acids. Furthermore, the
bile acid receptor FXR-FGF15 axis was downregulated. Our
results suggested that gut dysbiosis inhibited the bile acid
metabolism, led to the accumulation of bile acids in entero-
cytes, and promoted tumorigenesis in the CAC model
(Figure 7). Taken together, it will provide a new insight that
gut dysbiosis and abnormal bile acid metabolism play a cru-
cial role in CAC development.

Firmicutes and Bacteroidetes are the dominant phylum
bacteria in the intestine. Our data revealed the decreased
abundance of Bacteroidetes and increased Firmicutes in the
CAC model. At the genus level, the Lachnospiracea_incer-
tae_sedis, Alistipes, and Odoribacter, known as the short-
chain fatty acids (SCFAs) producing bacteria, were decreased
after AOM/DSS treatment. As a vital source of energy,
SCFAs can provide energy for colonic epithelial cells. Simul-
taneously, they are responsible for epithelial barrier enhance-
ment and gastrointestinal immunological regulation [34].
Therefore, the dysbiosis impaired the production and protec-
tive effect of SCFAs. Besides, previous studies had shown a
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Figure 4: The alteration of gut microbiota during colitis-associated cancer development. (a) The PCoA plot showed a significant distinction
in microbial composition among the two groups at 10 weeks. (b) Unweighted Unifrac Anosim analysis suggested a reasonable grouping after
AOM/DSS treatment. (c) The LefSe analysis listed bacteria with significant differences at different levels in each group. C0 and C10: control
group at 0 and 10 weeks. AD0 and AD10: AOM/DSS group at 0 and 10 weeks. n = 5 in each group.
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reduced abundance of Alistipes in IBD patients [35], and
Alistipes was reported to play a role in alleviating colitis
[36]. Thus, in the CAC model, the reduction of Alistipes
might diminish its protective effect. On the contrary, the level
of pathogens such as Helicobacter and Streptococcus
increased. In addition, Parabacteroides and Bacteroides have
been reported to have higher levels in CRC patients [37],
which also remarkably increased in the CAC model in our
study, suggesting that Parabacteroides and Bacteroides are
involved in intestinal tumorigenesis of CAC. The above
results indicated a pronounced increase in pathogens and
reduction in beneficial bacteria during CAC progression.

We also observed a decreased output of fecal bile acids
after AOM/DSS treatment. The ratios of DCA/CA and
LCA/CDCA, which represent the conversion of primary bile
acids to secondary bile acids, were also reduced. Secondary
bile acids have been reported to have anti-inflammatory
effects. For example, DCA can inhibit TNF-α production
[38] and LCA can downregulate NF-κB activity in colon cells
[39]. Additionally, DCA and LCA restrained the IL-8 secre-
tion and exerted anti-inflammatory effects on Caco-2 cells
[40]. Alternatively, genus Clostridium XlV and Lactobacillus
were reduced in CAC. It is well known that Clostridium
XlV and Lactobacillus have bile salt hydrolase (BSH) activity,
and Clostridium XlV also possesses 7α-dehydroxylation and
bile acid sulfatase activity [12, 13]. The reduction may
account for the impaired ability of bile acid deconjugation,
transformation, and desulfation activity in CAC. An intrigu-
ing study has similar results in IBD, which showed higher
levels of fecal sulfated and conjugated bile acids in IBD
patients than the healthy subjects [40]. Similarly, a recent
study found the reduction of LCA and DCA and the relative
overabundance of primary bile acids in IBD subjects by
detecting the metabolomic profiles of stool samples [41].

Thus, the reduction of secondary bile acids might be one of
the causes of CAC.

Bile acids can directly regulate gut microbiota or through
the bile acid receptors FXR and TGR5 [42, 43]. Bile acids are
regarded as FXR agonists, and the order of activation effect is
CDCA>DCA>LCA>CA [44]. The reduction of DCA,
LCA, and CA levels in our study led to the inactivation of
FXR. Moreover, a decreased abundance of Lactobacillus
caused the accumulation of conjugated bile acids, such as
T-β-MCA, which has been reported as the FXR antagonist
[45], so a high level of T-β-MCA may be involved in the
decreased expression of FXR [46]. The downregulation of
the FXR-FGF15 axis decreased the bile acid efflux transporters
and affected the reabsorption of bile acids. In our study, the
expression of FXR, OSTα, and OSTβ was decreased, while
ASBT was increased, which resulted in the accumulation of
bile acids in the enterocytes. These data revealed that abnor-
mal bile acid metabolism was involved in CAC development.
Several studies have found that the FXR mRNA expression
is inversely correlated with CRC progression, and FXR defi-
ciency increased the tumor load in Apcmin/+ mice and xeno-
graft tumor model [47–49]. Moreover, mice lacking FXR
showed disrupted intestinal epithelium integrity and an over-
growth of intestinal bacteria [50]. It has been found that FXR
activation reduced intestinal inflammation and syndrome and
improved intestinal mucosal barrier in the DSS-induced colitis
model [51]. In esophageal and gastric adenocarcinoma, the
expression of TGR5 elevates remarkably [25, 26]. Further-
more, TGR5 has been found increased in an inflammatory
state of the colitis model and Crohn’s disease patients [52,
53]. Moreover, TGR5 agonist has been reported to ameliorate
colitis [54]. We found a higher level of TGR5 in the tumor tis-
sues of CAC. Thus, targeting bile acid receptors FXR and
TGR5 would be a promising approach against CAC.
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5. Conclusion

These data suggested that gut dysbiosis might affect the bile
acid metabolism during the development of CAC, and the
reduced production of secondary bile acids with anti-
inflammatory effects could promote tumorigenesis. Our
study revealed a pivotal role of gut microbiota and bile acids
in CAC progression, which may provide a new preventive
strategy against CAC.
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