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Abstract: Achieving high mechanical performances in nanocomposites reinforced with lamellar
fillers has been a great challenge in the last decade. Many efforts have been made to fabricate
synthetic materials whose properties resemble those of the reinforcement. To achieve this, special
architectures have been considered mimicking existing materials, such as nacre. However, achieving
the desired performances is challenging since the mechanical response of the material is influenced
by many factors, such as the filler content, the matrix molecular mobility and the compatibility
between the two phases. Most importantly, the properties of a macroscopic bulk material strongly
depend on the interaction at atomic levels and on their synergetic effect. In particular, the formation of
highly-ordered brick-and-mortar structures depends on the interaction forces between the two phases.
Consequently, poor mechanical performances of the material are associated with interface issues and
low stress transfer from the matrix to the nanoparticles. Therefore, improvement of the interface at
the chemical level enhances the mechanical response of the material. The purpose of this review is to
give insight into the stress transfer mechanism in high filler content composites reinforced with 2D
carbon nanoparticles and to describe the parameters that influence the efficiency of stress transfer
and the strategies to improve it.

Keywords: GNP; nanolaminates; brick-and-mortar

1. Introduction

In the last years, many efforts have been conducted to fabricate nanocomposites
with high performances suitable for specific applications in different fields. In particular,
the main challenge is to reproduce on the macroscale the mechanical and functional prop-
erties of the nanometric reinforcement. In nature, it is possible to find materials, such as
bones or mollusc shells, that thanks to their well-organized hierarchical structure exhibit
impressive performances. In particular, the inner part of the mollusc shell, called nacre, is
characterized by a brick-and-mortar (B&M) structure, constituted by well-oriented thin
laminae of aragonite bonded together by a small amount of organic material. Therefore,
nacre can be assimilated to a composite material, capable of reproducing the mechanical
properties of the lamellar reinforcement to the macroscale [1,2] and dissipating energy
with localized plastic deformations, without experiencing global failure [3]. Accordingly,
a new class of biomimetic materials, called nacre-like materials, which mimic the brick-and-
mortar (B&M) architecture of nacre has been developed. These artificial nanolaminates are
constituted by a high quantity of stiff but brittle nanoparticles, bonded together by a small
amount of soft but tough phase.

In the following sections, a review on nacre-like composite materials is reported, highlight-
ing fabrication methods employed and raw materials used and comparing structural properties.
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1.1. Mimicking Nature: Nacre-Inspired Materials

Among all biomimetic materials, nacre has drawn great attention from the scientific
community, thanks to superior levels of strength and toughness and its brick-and-mortar
(B&M) architecture. Nacre is the iridescent inner shell layer of some molluscs. It consists
of a 3D assembly of hard lamellar aragonite tablets glued together with a low amount
(5 vol%) of soft organic materials (proteins and polysaccharides). This hierarchically orga-
nized microstructure and the small fraction of biopolymers are responsible for the unique
mechanical behaviour. In addition, the mineral bridges that connect the different tiles at
the nanoscale level are capable of preventing crack extension and providing toughness and
impact resistance [4,5]. Although nacre is composed of fragile material, it exhibits a ductile
behaviour, allowing plastic deformations. Its peculiarity is the high toughness, which is
three orders of magnitude higher than its main constituents. Nevertheless, it is associated
with different mechanisms acting at the nanoscale: (i) nanoasperities of the aragonites tiles;
(ii) organic layer acting as viscoelastic glue after the elongation of biopolymer; (iii) min-
eral bridge relocking after fracture; (iv) tile interlock due to the microscale waviness and
dovetail of tiles [4].

1.2. Engineering Materials Based on 2D Nanoparticles

Inspired by nacre, several synthetic materials with brick-and-mortar structure. have
gathered the attention of scientists worldwide. In particular, several systems have been
studied and various platelet/polymer structures have been investigated. Particular at-
tention has been devoted to paper-like materials reinforced with lamellar fillers, which
can reproduce on the macroscopic scale the mechanical characteristics of the nanoscale
reinforcement. The mechanical and functional properties of this class of material can be de-
signed according to the filler and matrix nature [6], as described in Table 1. The mechanical
performances in terms of strength and stiffness are regulated by the filler properties, while
the energy dissipation is regulated by the matrix brittle or ductile behaviour. However, the
overall behaviour depends on the quality of stress transfer between the two phases and
on their interactions. On the other hand, thermal and electrical properties depend only on
the nature of the filler, due to the low amount of polymer, and are characterized by high
anisotropy between in-plane and cross-plane conductivities [7,8].

Table 1. Mechanical and functional behaviour of composites with high content 2D nanofiller accord-
ing to reinforcement nature.

Filler Matrix Type Composite Mechanical Behaviour Composite Conductivities

Graphitic (GO, RGO, GNP,
Pyrolytic Graphite . . . )

Brittle Pseudo-elastic Electrically Conductive in plane
High ratio in plane/trough

thickness thermal conductivityDuctile Plastic

Ceramic (MTM,
Alumina, Silica . . . )

Brittle Pseudo-elastic Isolating
Ductile Plastic

In the literature, several attempts have been made to mimic and design artificial nacre.
For this purpose, different materials have been employed as bricks and mortar. The most
employed nanoparticles used as reinforcement are listed in Table 2, and a comparison in
terms of costs, mechanical properties and thermal and electrical conductivities is presented.

Table 2. Comparison between 2D nanoplatelets employed as reinforcement in B&M composites.

Particle Costs Geometry Elastic Modulus In Plane—Therm. Cond. Elec. Cond.

Graphene EUR 200–300
per flake Monolayer 1 TPa

[9]
5000 W/mK

[9]
107–108 S/m

[9]

GO 2–5 layers
48 EUR/g

2–5 layer
BET 420 m2/g

250 GPa
[10]

72 W/mK with an oxidation
degree of 0.35

[11]

270 S/m
[12]
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Table 2. Cont.

Particle Costs Geometry Elastic Modulus In Plane—Therm. Cond. Elec. Cond.

RGO 2–5 layers
68 EUR/g

2–5 layer
BET 1562 m2/g

250–350 GPa
[13]

670 W/mK with an
oxidation degree of 0.05

[11]

4480 S/m
[14]

GNP 6–10 EUR/g >10 layer
BET 30 m2/g

25–40 GPa
[15]

300–470 W/mK
[8]

2 × 106 S/m
[16]

MTM <1 EUR/g
BET 750 m2

very high (nm × µm)
aspect ratio

207 GPa
[17]

16 W/m
[18]

25 to 100 mS/m
[18]

A huge number of papers based on graphitic nanoparticles can be found in the litera-
ture. After its discovery in 2004 by the scientists Geim and Novoselov, graphene has been
in the spotlight involving many researchers for possible applications in several industrial
sectors thanks to its outstanding electronic, optical, thermal and mechanical properties. The
sub-nanometric thickness of carbon–carbon bonding makes graphene the strongest material
in the world, stronger than steel and Kevlar, with a tensile strength of 130 GPa and a Young’s
modulus of 1 TPa [9]. It is elastic, returning to initial dimensions after the stretching [19],
lightweight (0.77 mg/m2) [20] and able to absorb light [21]. Those characteristics make the
material very attractive for scientific research and industrial applications. Despite all this,
these properties refer to an ideal material, because producing monolayer graphene sheets
without defects is extremely expensive and challenging. For this reason, other graphitic
particles with similar characteristics are widely employed in the research field. They are
graphene oxide (GO), reduced graphene oxide (RGO) and graphite nanoplatelets (GNPs).
They differ from graphene by physical and chemical features such as average lateral size,
number of layers and carbon/oxygen ratio (C/O) [22]. In fact, by increasing the number
of layers of graphene, i.e., the thickness, or by decreasing the C/O ratio, both mechanical
properties and conductivity of the material are negatively affected [23]. Consequently,
the price of graphene is linked to its quality and to the technique used for its production.
Mechanically exfoliated graphene (obtained with the “scotch tape” technique [24]) comes
in small, high-quality flakes, not nearly enough for industrial applications, with a price
of the order of several thousand euros per flake. However, GO and GNPs, produced by
oxidation and exfoliation of graphite, can be mass-produced, cutting the costs to tens of
euros per gram.

In addition, nanoclays are widely used to fabricate nacre-like composites, thanks to
their low costs (<1 EUR/g) combined with remarkable mechanical properties. These are
a broad class of natural inorganic minerals, of which montmorillonite (MTM) is the most
commonly used as reinforcing material in composite applications [25]. According to the
nature of the clay, the nanoplatelet elastic modulus ranges from 50 to 180 GPa [17]. MTM
nanoplatelets consist of ~1 nm thick aluminosilicate layers stacked together to form thicker
multilayer (700 nm–10 µm) plate-like nanoparticles with a very high aspect ratio. They
exhibit low thermal and electrical conductivities (in the order of mS/m), thanks to the
porous nature of clay minerals, making them a good candidate for thermal barrier and
flame-retardant applications [18].

1.3. Technologies Enabling Industry Applications

By combining the knowledge of biological materials with processing techniques, syn-
thetic materials with remarkable mechanical and functional properties can be designed.
Several methods have been used for the production of nacre-like materials, capable of repro-
ducing the hierarchical well-organized microstructure of nacre, with lamellar nanoparticles
aligned in the longitudinal direction and bonded together by a thin matrix layer 1 [2,26].

Generally, production methods follow two different approaches: top-down and
bottom-up. For a definition, top-down methods go from a general to a specific level,
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while bottom-up methods begin at a specific level and move to the general one. More
specifically, in top-down technologies the material is fabricated starting from a mixture
of nanoparticles and polymer, which is assembled in such a way as to ensure a layered
structure (Figure 1a). Conversely, in bottom-up technologies, the material is specified in
great detail, by alternatively arranging the two phases and building up a layered struc-
ture (Figure 1b).
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Figure 1. Top-down (a) and bottom-up (b) approaches for manufacturing of composites with B&M
architecture.

In general, bottom-up technologies are more able to fine-tune the nanometric alter-
nance of the two phases [27] but remain mostly confined to the lab. Differently, top-down
manufacturing processes are suitable for an industrial scale-up but are still far from obtain-
ing the expected material architecture.

However, the final assembly of the bulk material is governed by different driving
forces, which are involved during the fabrication process both in bottom-up and top-down
technologies. Suter et al. [28] found that the formation of highly-ordered brick-and-mortar
structures depends on the interaction forces between the two phases. If the flakes are
relatively uncharged the bonds between the flakes and the polymer drive the self-assembly
to the final highly-ordered structure. This means that the properties of a macroscopic bulk
material strongly depend on the interaction at atomic levels, including van der Waals (vdW)
force, hydrogen, ionic and covalent bonds and in most cases, on their synergetic effect. Of
all the assembly interactions, vdW bonds and π–π interactions are the weakest and covalent
bonds are the strongest, while hydrogen and ionic bonds are in between them [29–31].

Thus, to guarantee optimal mechanical performances, the interface mechanisms should
be accurately adjusted to allow the optimal stress transfer from one phase to the other. In
addition, particular attention has to be paid to the nature of the matrix, which can affect the
interface and thus the overall behaviour of the composite.

2. Mechanical Performances—Experimental Observation of Literature Data

Experimental evidence demonstrated that the mechanical performances of brick-and-
mortar materials depend on filler and matrix nature and on their interactions. The choice of
the two phases and their compatibility is fundamental for achieving the desired performances.
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Figure 2 shows an Ashby plot of strength and elastic modulus of artificial nacre with
bricks of various nature. Graphene oxide (GO) nanoparticles, and in particular reduced
graphene oxide (RGO), guarantee the best performances in terms of strength of the material,
while exhibiting elastic moduli in the range of 15–40 GPa and 3–15 GPa, respectively.
On the other hand, composites made with ceramic bricks, such as montmorillonite (MTM),
show low values of strength but high elastic moduli (10–35 GPa). Finally, composites
reinforced with graphene nanoplatelets (GNPs) exhibit the lowest values of strength but
discrete elastic moduli in the range of 20–30 GPa. The low number of points indicates that
they are not widely used as reinforcement in brick-and-mortar composites because of the
difficulty of the nanoplatelets to be well dispersed in polymers.

Furthermore, these ranges are wide and depend on different factors, such as volumet-
ric filler content, range of motion of the polymeric chains and the filler/matrix compatibility.
The best performances can be achieved by improving the compatibility between nanoparti-
cles and the polymers and their interactions, for example by chemically functionalizing the
nanoplatelets or improving crosslinking. In fact, in Figure 2 the highest values of elastic
moduli are achieved when the chemical affinity between the two phases is improved,
for example by using glutaraldehyde (GA) [32,33], boric acid (BA) [34] or water (H2O) [35],
or by functionalizing GO with polydopamine (P-GO) [36].
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nature: GO [34–47]; RGO [14,33,38,41,48–57]; MTM [32,58–63]; GNP [16,64,65].

The mechanical properties of composites reinforced with lamellar nanoparticles usu-
ally depend on alignment and interfacial properties. At high filler content, the bricks tend
to be extremely oriented in-plane because the available volume for nanoparticle rotations
or displacement is limited, with a consequent waviness reduction and alignment improve-
ment. Thus, for nacre-like materials, the mechanical performances mainly depend on the
stress transfer between filler and matrix. The efficiency of reinforcement is strictly related to
the interfacial properties, i.e., to the chemical affinity between the two phases, to the matrix
wettability and to the molecular interactions that occur between adjacent nanoplatelets.

The purpose of this review is to give insight into the stress transfer mechanism in high
filler content composites and to describe the parameters that influence the efficiency of
stress transfer and the strategies to improve it (Figure 3).
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2.1. Influence of Filler Content

From a critical analysis of the mechanical behaviour of composites with nano-lamellar
reinforcement at relatively high filler content, it emerges that the elastic modulus of these
systems drops after a critical concentration deviating from the expected behaviour, which
dictates that the higher the filler content the higher the macroscopic elastic modulus. This
unusual behaviour is reported by many authors in the literature.

Wu and Dzral [16] fabricated a self-standing graphite paper consisting of graphite
nanoplatelets by vacuum filtration and impregnated it with a different amount of polyether-
imide (PEI). By adding 30 wt% of polymer the tensile modulus reaches 22 GPa but then
drops with further increase of PEI content. Likewise, Li et al. [65] produced high content
GNP polyetherimide (PEI) paper by filtration and hot-press. They investigated the tensile
properties of various filler contents and showed a maximum in the elastic modulus for a
filler content of 60 wt%. This behaviour was also observed in a composite prepared with
graphene oxide and alumina. In fact, highly-ordered GO/PVA papers, with high nanofiller
concentrations, prepared using vacuum-assisted self-assembly technique, showed a re-
duction in the elastic modulus from 36.4 GPa to 27.6 GPa for 50 wt% to 75 wt% filler
content, respectively [45]. In the same way, GO/PVA paper fabricated through a simple
solution-casting method showed a maximum at 80 wt% of GO with an elastic modulus of
11.4 GPa [46]. Tian et al. [36] fabricated graphene-based paper via vacuum filtration with a
low amount of polymer (<45 wt%). They used GO doped with polydopamine (PGO) to pre-
pare PGO/PEI papers and functionalized them by a crosslinking reaction. The mechanical
properties increased with the addition of PEI, showing a maximum strength (209.9 MPa)
and modulus (103.4 GPa) for PEI loading of 14.7 wt%. GO/Thermoplastic polyurethane
(TPU) films, with nacre-like laminated structure, are fabricated via solution casting with
different matrix contents, achieving the best performances for 20 wt% of the polymer [42].
In addition, in alumina/chitosan nacre-like composites fabricated with the doctor blading
technique, the mechanical properties are found to drop at high filler content [66]. In fact,
at very high tablet concentrations (>50 vol%), the material failed in a brittle fashion, due
to a misalignment of the tablets and the inability of the polymer to infiltrate the open
spaces between tablets. Cao et al. [54] fabricated an RGO/PVA composite with an ordered
layered structure and with a high level of molecular coupling between RGO sheets and
PVA molecules. PVA chains strongly couple with RGO sheets at the molecular level and the
neighbouring RGO sheets are linked by PVA molecules through hydrogen bonds and the
C–C covalent bonds in the PVA polymer chains, forming a stronger multi-connected bridge
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as a continuous load transfer pathway. The films display extremely high strength, and
Young’s modulus and the optimal content of PVA was found to be 70 vol%. Wang et al. [62]
fabricated Montmorillonite/poly(vinyl alcohol) (MTM/PVA) nanocomposites spanning the
complete range of MMT contents (0–100 wt%) by the simple evaporation-induced assembly.
In the range of 30–70 wt%, the nanocomposites show a nacre-like layered structure with
alternating MTM platelets and PVA layers. Composites reached the maximum value in
terms of elastic modulus and strength for MTM content of 70 wt%, then for higher filler
content, the layered structure was transformed into ”tactoids”, which are responsible for
the deterioration of the mechanical properties. This suggests that partial MTM platelets are
restacked and form “tactoids”, probably because the PVA layer is too little to fully cover all
the MTM platelets.

This evidence demonstrates that the mechanical performances of composites with
high contents of 2D nanoparticles are regulated by the efficacy of the thin polymeric
layer to transfer the load via the shear transfer mechanism. In particular, the efficiency of
reinforcement, η, is defined according to the modified rule of mixture and is based on the
elastic modulus of the composite, Ec:

η =
Ec − Em(1− v f )

v f E f
(1)

Figure 4 shows the unusual behaviour of this class of material for which with the
increasing filler content the efficiency drops below one, indicating that the stress transfer
between filler and matrix is poor. As a consequence, the elastic modulus deviates from the
rule of mixture, exhibiting a decreasing behaviour (Figure 4b).
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The drop of elastic modulus at high volume fraction is due to a bad interaction between
the two phases and specifically to bad compatibility. This compatibility is governed by the
chemical interactions between nanoplatelets and the matrix. In particular, Cilento et al. [68]
observed that in GNP/Epoxy films, at high filler content (vf > 50 vol%) there are wettability
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issues: the polymer is not able to wet the entire nanoplatelet surface and accumulates into
small pockets or droplets, which are smaller than the nanoplatelet surface. Consequently,
there is a reduction of available effective length for stress transfer between the matrix
and the nanoparticle, which is responsible for the decrease of reinforcement efficiency in
these composites.

2.2. Influence of Matrix—Effect of Matrix Molecular Weight

In particular, the matrix choice can be discriminatory for the optimal mechanical
performance of the material. The higher the molecular mobility of the polymer and the
capacity to intercalate between nanoplatelets, the better the stress transfer at the interface
and thus the performance of the material even at high filler content. Short polymer chains
are able to diffuse between nanoparticles during assembly, while very long polymer chains’
ability to navigate around the layered nanosheets is more limited [45,69]. Evidence of
this behaviour can be found by comparing the volumetric filler fraction at which the
drop of efficiency occurs and the matrix molecular weight (Figure 5). For high molecular
weights (150–300 kDa), the drop of efficiency occurs for very low volumetric filler content
(20–30 vol%), whereas for low molecular weight (<100 kDa), the drop occurs for filler
content greater than 40 vol%.
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This indicates that the matrix molecular mobility affects the efficiency of reinforcement,
which decreases as the molecular weight increases. The dependence of the efficiency of
reinforcement from the matrix molecular weight is also shown in Figure 6 for a system
reinforced with different nanoplatelets, especially in the case of MTM and GO. In the
case of RGO, there is little evidence of this behaviour since the efficiency is very low
(<10%) (Figure 6c).

This phenomenon has been found by other authors in the literature. Podsiadlo et al. [70]
observed that the polymer flexibility directly affects the stress dissipation and load transfer
from the organic matrix to the inorganic nanoscale component. In particular, they compared
the mechanical response of B&M composites reinforced with MTM, observing that the elastic
modulus of MTM/poly(diallyl dimethylammonium chloride) (PDDA) is greater than that
of MTM/Chitosan (CS), even though the elastic modulus of CS is higher than that of PDDA.
This can be explained by the high rigidity of CS and the poor MTM/CS interactions, which
contribute to lowering the mechanical properties. The CS chains cannot find an optimal
conformation on the surface of the MTM, due to lack of flexibility, which instead is possible
for PDDA, where the strength of adhesion is about four times higher than that of MTM/CS
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and the attraction energies include electrostatic attraction, hydrogen bonding, and van der
Waals forces.
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In addition, Putz et al. [45] investigated the hydrophilicity and hydrophobicity of poly-
mers, fabricating GO films with poly(vinyl alcohol) (PVA) and poly(methyl methacrylate)
(PMMA). They observed poor interactions between GO sheets with hydrophobic PMMA,
which limits improvement in stiffness at high nanofiller concentrations.

The importance of matrix molecular weight in the fabrication process of this class of
material can also be understood by comparing the values of the theoretical and measured
thicknesses of the matrix layer at different filler content. According to the representative
volume element (RVE) of Figure 7, matrix thickness decreases with increasing filler content
and is computed with Equation (2).

tm =
1− v f

v f
· tNP (2)
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In reality, from experimental data reported for GO/PVA [45], PGO/PVA [36] and
RGO/PVA [54] systems, this value deviates from the theoretical one starting from the
volumetric filler fractions which correspond to the drop of mechanical properties, as shown
in Figure 8. At high filler content, the thickness of the matrix layer is higher than the
theoretical value, meaning that the matrix does not spread as a continuous thin layer. When
the matrix content is very low, the polymer thickness should be very small (<1 nm), but it
could be incompatible with the mobility of the polymeric chains, especially when the matrix
molecular weight is high. Putz et al. [45] found that at high filler content the polymer
thickness is almost twice as much in composites with PMMA with respect to PVA due to
its higher molecular weight.
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Consequently, the polymer reaches a minimum thickness, which depends on ma-
trix molecular weight, after which it does not decrease anymore. According to Figure 7,
in order to guarantee the balance between the volumes, at high filler content, when the ma-
trix thickness reaches a critical value, partial uncovering of nanoparticle surface occurs [68].

In other words, the matrix thickness must be compatible with the gyration radius of
the polymer [71], otherwise dewetting of the nanoparticle surface can occur. This condi-
tion prevents full covering of the nanoparticle and compromises the performance of the
brick-and-mortar material. Parameters that influence the wettability of thin polymeric
films include molecular weight, temperature, film thickness, substrate interactions or their
combinations [72,73]. These negatively affect the stress transfer and thus the composites’
mechanical behaviour, leading to a drop of strength and stiffness, especially at very high filler
content (>70 wt%).
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From Figure 6a, it emerges that the best mechanical performances are achieved
when the nanoparticles are functionalized. In this respect, Podsiadlo et al. [32] and
Walther et al. [61] used glutaraldehyde (GA) to improve PVA crosslinking to connect nan-
oclays. Despite all this, the improvement of mechanical properties is more significant
in samples prepared by Podsiadlo et al., where the efficiency is maximum, rather than
those prepared by Walther et al. This difference is attributed to the manufacturing process.
In fact, Podsiadlo et al. used the LbL technique to produce MTM/PVA composites, dipping
the film in a GA solution gradually every 0.05 µm for about 30 steps. On the contrary,
Walther et al. produced a 200 µm MTM/PVA film with doctor blading and directly im-
mersed it in the GA solution. The excellent barrier properties provided by the well-aligned
microstructure of the material make it difficult for GA to penetrate in the bulk, especially
in samples prepared by Walther et al. Thus, the treatment performed by Podsiadlo et al.
is much more rigorous than the second one and involves a higher volume, justifying the
significant improvement of the mechanical properties.

2.3. Filler/Matrix Compatibility—Chemical Bonding

As shown so far, the best mechanical performances are achieved when the chemical
interactions between the two phases are improved [29]. It was found in the literature
that functionalizations with glutheraldeyde (GA) [32], boric acid (BA) [74], water (H2O)
or polydopamine are very efficient, as can be seen in Figure 2. This effect can also be
observed in GO films without a binder. Figure 9 reports the efficiency of reinforcement
for GO films with chemical bonds of various strength: covalent bond using BA [74],
hydrogen bond using H2O [45] and ionic bond using Al3+, Mg2+ ions [75] and GA [76].
As expected, BA crosslinking creates strong covalent bonding, which significantly improves
the elastic modulus by 240% with respect to not functionalized GO films. On the other hand,
functionalization with H2O slightly increases the modulus by 25%, while ions lower the
mechanical properties of the material due to the increase of the spacing between nanosheets.
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However, the strength of chemical bonds also depends on the nature of the filler.
For example, graphitic nanoplatelets, such as GO, RGO, GNP, are very different from a
chemical point of view. Specifically, GO contains oxygen atoms on the surface, which
interact with the polymeric matrix establishing covalent, ionic or hydrogen bonds. After
oxidation, the oxygen content of RGO reduces significantly and with it the possibility to
create strong chemical bonds with the polymeric matrix. As a consequence, the mechanical
performances are very poor, as demonstrated previously (Figure 6c). The same discus-
sion can be carried out for GNPs, which can interact only with weak vdW bonds and
π–π interactions.
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Consequently, the efficiency of reinforcement sharply decreases with increasing car-
bon/oxygen ratio (C/O), as shown in Figure 10. Typical values of the C/O ratio lie around
2 for GO and increases in the case of RGO being greater than 4 [77].
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Suter et al. investigated the influence of C/O ratio on the morphology of GO/PVA
structures [28]. They found that GO self-assembly can be controlled by changing the degree
of oxidation, varying from fully aggregated to intercalated assemblies with polymer layers
between sheets. The architecture varies according to the degree of oxidation. In the case
of zero oxidation (RGO) it comes predominantly aggregated, with no polymer resident
between the flakes and with the majority of flakes directly interacting with each other via
attractive van der Waals interactions. When increasing the degree of oxidation, systems
preferentially self-assemble, with a tendency toward forming intercalated morphologies,
with GO flakes lying directly above each other and with the polymer between the flakes.
The high oxidation degree allows a highly attractive interaction between PVA molecules
with the hydroxyl groups on GO flakes, leading to a very dense layer of immobile polymer
on each flake [35].

2.4. Interfacial Shear Strength

The efficient matrix–nanoplatelet stress transfer is essential to take advantage of the
very high Young’s modulus and strength of the reinforcement. To assess the efficiency of
reinforcement in nanocomposites, the interfacial property, which includes wetting, stress
transfer and adhesion, should be thoroughly examined.

The experimental evaluation of the interfacial shear strength (IFSS) in a direct way
is a challenging task, due to the technical difficulties involved in the manipulation of
nanoscale objects. In carbon nanomaterials, the interfacial mechanics can be investigated by
integrating scanning probe methods with spectroscopic techniques, such as tip-enhanced
atomic force microscopy (AFM) [78] and Raman spectroscopy.

Experimental techniques able to quantitatively evaluate the IFSS at the nanoscale
level are still demanding. Few works report pullout tests on carbon nanotubes (CNT)
performed with AFM [79,80], estimating an average interfacial strength of 150 MPa [78].
In the case of nanoplatelets, conducting an experiment at the nanoscale is much more
difficult, if not sometimes impossible. AFM examination of the interphase region requires a
specific configuration to expose the interphase to the tip. Kraunbuel et al. [81] sandwiched
a graphene nanoplatelet between two materials to measure the interfacial forces by AFM.
Similarly Liu et al. [82] measured the IFSS in a macroscopic experiment by spraying
graphene nanoplatelets on a PMMA substrate. The IFSS was measured by the stretching
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test, and the interface separation occurred as a result of the interfacial gliding of the two
surfaces in contact.

Computational and analytical methods could be used to obtain information about
the interfacial properties between the nanoplatelet and the polymer. Several studies per-
formed molecular dynamics (MD) simulations to study the overall stress–strain response
of GNP/polymer nanocomposites. Jang et al. [83] estimated an IFSS via a pullout energy
method in a GNP/vinyl ester (VE) nanocomposite of 141 MPa, while Safaei et al. [84] found
that the IFSS in GNP/HDPE nanocomposites is 108 MPa.

Specifically, the interfacial shear strength depends on both the polymer’s chemistry
and the surface’s chemical makeup. The influence of oxidized carbon surfaces on interfacial
properties is a significant parameter since the number of interfacial crosslinks improves
the interfacial shear strength. In GO, the oxidation degree promotes the formation of
hydrogen bonds, increasing the interfacial strength [85]. MD simulations also demonstrate
that crosslink agents with strong interactions can be a promising strategy to strengthen and
toughen nanocomposites with B&M architecture. In fact, by functionalizing nanoplatelets,
the interlayer load transfer is improved thanks to the interlayer crosslinking [86].

To overcome the issues associated with the direct evaluation of IFSS, indirect methods,
such as Raman spectroscopy, are widely used [87]. Raman spectroscopy gives information
about the quality of stress transfer between the matrix and the reinforcement [88]. It is a
valuable tool for understanding the relationship between macroscopic deformation and the
deformation mechanism at the molecular or microstructural level. When the material is
subjected to an external load, the nanoparticles and their chemical bonds are stressed and
the interatomic distance changes, resulting in a translation of the spectrum peaks [89,90].
Thus, by monitoring the wavenumber shift of the Raman bands when a macroscopic
stress/strain is applied (Raman shift rate), it is possible to identify the stress level within
the nanoparticles and thus the capability of the matrix to transfer load [91,92].

The sensitiveness of frequencies/wavenumbers of the Raman bands with the ap-
plied external solicitation depends on the nanofiller [93–96]. Graphitic nanoparticles are
particularly sensitive to the applied external solicitation [97–99].

The Raman shift rate can be proportionally correlated with the effective Young’s
modulus of the nanoplatelet (Eeff). In carbon-based materials, the effective modulus can be
estimated from the slope of the Raman band position against the strain [29], as follows:

Ee f f = ENP
dω/dε

(dω/dε)ref
(3)

where (dω/dε) is the measured Raman shift rate of the fundamental peak, ENP is the
modulus of the nanoplatelet and (dω/dε)ref is the rate of the peak shift for the iso-
lated nanoplatelet.

3. Analytical Models for the Prediction of Mechanical Properties

At high filler content, the material architecture involves complex deformation mecha-
nisms. The coexistence of a soft domain (polymeric layer) and a hard domain (bricks) could
affect molecular mobility, leading to an increase in ductility and energy dissipation.

Actual biological and engineering structures, such as nacre, display spatial variations
in overlap lengths, with different distributions which can be relatively narrow, as in the
case of columnar nacre, or very wide and even uniform, as in the case of sheet nacre.

However, modelling these complex microstructures with a single unit cell gives a
reasonable representation of the mechanical response of the material, which is sufficiently
reliable to examine trends and establish broad design guidelines.

Composites with brick-and-mortar architecture can be schematized as depicted in
Figure 11. They consist of a uniform assembly of bricks glued together by a uniform matrix
thin layer (mortar).
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Figure 11. Schematic illustration of brick-and-mortar composites.

The behaviour in tension is described in Figure 12. At small strain both bricks and
mortar move in the elastic field and the behaviour is linear. Then, four different failure
mechanisms can occur [100]. If the brick is weaker than the matrix, there is an instant
failure, which leads to a fragile behaviour of the structure. Otherwise, the matrix in the
vertical interface yields, making the behaviour more ductile. In this case, for linear elastic
matrices, the composite exhibits a pseudo-elastic behaviour and failure is attributed to
the vertical junctions, whereas for matrices with elastic–plastic behaviour, yielding in the
horizontal direction occurs, allowing sliding between bricks. The composite failure can be
attributed to the mortar break either in the vertical junctions or in the horizontal interfaces.
In both cases, large strains are reached with consequent sliding between bricks and the
final pullout mechanism.
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Figure 12. Stress–strain behaviour in tension of B&M composites.

In modelling brick-and-mortar composites, it is assumed that the bricks behave elas-
tically, while the mortar can have both elastic and elastoplastic behaviour. Small plane
strain deformations are assumed with zero strain in the z-direction, and zero stress in the
y-direction. In addition, under uniaxial deformation, the horizontal interfaces experience
pure shear according to the relative displacements between adjacent bricks in different rows,
while the vertical interfaces experience pure tension according to the relative displacements
between adjacent bricks in the same rows. Finally, the horizontal mortar layer is considered
very small, such that the shear strain is uniform. The representative volume elements (RVE)
are accurately chosen according to the analytical model and are depicted in Table 3.



Nanomaterials 2022, 12, 1359 15 of 23

Table 3. Analytical models for the prediction of composite’s elastic modulus.

Authors RVE Elastic Modulus

(a)
Cox et al. [101]
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The mechanical performance of these composites is regulated by the efficacy of
the thin polymeric layer to transfer load, via the shear transfer mechanism [101]. Thus,
models [100,102,105,106] and design strategies [103,107,108] to predict the elastic modulus
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and strength of brick-and-mortar composites, based on the shear lag theory, have been
proposed in the literature. These models assume perfect bonding between the two phases,
efficient load transfer to the particles and the existence of a continuous uniform matrix
layer between the bricks.

The shear lag theory was first introduced by Cox, who developed an accurate model
for cylindrical fibre [101]. It considers a fibre completely embedded in a continuous solid
matrix and loaded in the longitudinal direction. During loading, the fibre deforms the most
in the central part and less on the edges, with consequent relative displacement between
filler and matrix. Therefore, the stress transfer from the matrix to the fibre is governed by
interfacial shear stresses, which are maximum at the edges.

Based on this theory, several micromechanical models for the prediction of the me-
chanical behaviour of discontinuous composites have been developed.

Kotha et al. [102] developed a similar model for the prediction of the mechanical
properties of a 2D platelet embedded in a continuous matrix and loaded in tension along
the direction of the tablets. Similar to Cox, the model assumes that the interface does
not carry tensile stresses and that the axial stress in the matrix is constant. The RVE is
symmetric, with overlapped platelets uniformly distributed and aligned in the direction of
applied load and perfectly bonded by a uniform matrix layer. The matrix at the ends of
the platelet is considered as an imaginary platelet with the same thickness of the brick and
with the mechanical properties of the matrix that acts as a shear spring, transferring load
from one platelet to the other.

Along this path, Barthelat [103] extended the model to the case of non-symmetric
RVE, highlighting the impacts of the overlap length on the mechanical properties of the
material. According to the structure of the nacre, the RVE is characterized by tablets with a
well-defined arrangement and overlapped on a length L0. The tablets are assumed linear
elastic and brittle, while the matrix is modelled as a linear elastic–perfectly plastic material.
The deformation mechanism is of shear–tension–shear, where the tablets are loaded in
tension and the matrix in shear. For this reason, the vertical junctions between the tablet are
assumed to be empty. According to the shear lag theory, the tensile stress in the brick and
the shear stress at the interface are not uniform. Focusing on an individual overlap region
within the composite, the distribution of shear stresses along the interface is governed by a
non-dimensional elastic shear transfer number β0, reported in Table 3.

When the interface is soft and/or the overlap ratio is small (β0 < 1), the shear stress
is quasi-uniform along the overlap length. On the contrary, when β0 is large, the shear
stresses become more concentrated at the overlap regions’ edges, accelerating failure. This
is the case of low-efficiency structures, because in the central area of the overlap region, the
interface does not carry any stress, and does not provide any contribution to the structural
performance of the composite. Furthermore, for high brick concentration, variations in
aspect ratio and overlap ratios have little effect on the overall modulus, leading to high
modulus and resulting in more robust microstructures.

A more complex solution was found by Begley et al. [100], who included the vertical
junctions in the model. A micromechanical analysis was developed for the uniaxial response
of composites composed of elastic bricks bonded together with thin elastic–perfectly plastic
layers. The unit cell contains two bricks separated horizontally and vertically by a mortar
layer, interlocked by a distance L0. The model assumes that bricks are perfectly aligned, but
with an arbitrary offset between rows, and that the vertical interfaces carry the load. The
model is valid in the case of a very small mortar ratio and small mortar volume fraction,
and the material failure corresponds to that of the interfaces.

Wei et al. [106] proposed an analytical model based on shear lag theory in both elastic
and plastic regimes, capable of linking the mechanical properties of the constituents to
the mechanical behaviour of the reinforcement and their geometric arrangement, and to
the chemistries used in their lateral interactions. In particular, the model aims to define
design guidelines and to predict the characteristic overlap length for the optimization of
the mechanical performances of the material. The RVE consists of two tablets connected by
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the matrix with an overlap length L0. The system is subjected to a tensile load applied to
the right end of the top tablet and fixed in the axial direction in the left end of the bottom
tablet. The load transfer mechanism resembles that of the shear lag model, with maximum
shear stress at both nanoplatelet ends and maximum normal stress in the centre of the
platelet, like in common biological composites.

The effect of both geometry and matrix constitutive law on the macroscopic behaviour
of the composite material was investigated by Pimenta and Robinson [105], who developed
a model for brick-and-mortar structure with nonlinear matrix response. They highlighted
the relevant influence of the platelet aspect ratio (AR) on composite behaviour. In fact, for
thick configuration, the strength increases with the aspect ratio, the overall stress–strain
curve resembles the matrix constitutive law and the distribution of shear stresses along
the overlapping region is homogeneous. On the other hand, for slender configuration, the
strength is independent of AR, and the stress–strain curve does not depend on the matrix
behaviour but is governed by matrix fracture with a crack tip at the platelets’ ends and
converges to a fracture criterion, as summarized in Table 4.

Table 4. Dependence of mechanical behaviour on nanoplatelet aspect ratio.

Thick Platelets (AR < 10) Slender Platelets (AR > 30)

Strength Increase with AR Independent from AR
Stress–Strain curve Resembles the matrix constitutive law Does not depend on the matrix behaviour

Behaviour Ductile (Yield criterion) Fragile (Fracture criterion)
Fracture - Matrix fracture with crack tip at the platelets’ ends

Distribution of shear stresses Homogeneous -

Furthermore, they highlighted the importance of brick thickness on the composite
behaviour. In particular, in the case of thick platelets and strain hardening matrices, the
composite has a ductile behaviour. In contrast, thin platelets delay the final failure and
increase the strength of the composite.

However, all these models predict that the strength and the elastic modulus of the
composites increase with the amount of filler, reaching the best performance, equal to
those of the reinforcement, at very high filler content (90–95 wt%). In reality, for this class
of material the mechanical performances at high filler content drop, diverging from the
theoretical behaviour, because of the difficulty of building a continuous nanometric matrix
film able to fully cover the nanoplatelet surface [109,110]

Cilento et al. developed an analytical model which describes the unusual behaviour
(i.e., drop of modulus) that characterizes composites with lamellar reinforcement at high filler
content. The model accounts for a non-uniform matrix distribution over the nanoplatelets. It
considers that at low filler content nanoplatelets are fully covered, enabling the complete stress
transfer between the two phases and therefore maximizing the efficiency of reinforcement.
Increasing the filler content, the nanoplatelets are considered partially covered, since the
matrix accumulates into small pockets or droplets, the height of which is compatible with
the gyration radius of the polymer. In this case, the stress transfer is limited to a smaller
area and the efficiency of reinforcement drops. This model takes into account the interfacial
properties between the two phases in terms of nanoplatelet coverage since poor wetting of
nanoplatelets inhibits the stress transfer mechanism. It incorporates two parameters that
inherently capture the interfacial efficiency: (a) the minimum matrix thickness (tM), which
depends on both the chemical affinity between the two phases and the matrix wettability, and
(b) the cohesive parameter (ηii), which contains information about the molecular interactions
that occur between adjacent nanoplatelets.

4. Discussion

Learning from nature has inspired the fabrication of novel artificial materials with out-
standing performances. In the last decade, bioinspired research has led to numerous advances
in materials science and has laid the foundation for a new class of biomimetic materials.
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Among all of these materials, nacre drew attention thanks to its ability to reproduce
on a large scale the mechanical performances of the nanometric reinforcement. This is due
to the particular brick-and-mortar architecture composed of well-oriented thin laminae
of aragonite (95 vol%), bonded with a low amount of organic material. According to
this, by employing high-performant nanoparticles such as graphene as filler, it is possible
to fabricate macroscopic materials with excellent performances that can be employed
in different fields. However, achieving the desired performances is challenging, since
the mechanical response of the material is influenced by many factors, such as the filler
content, the matrix molecular mobility and the compatibility between the two phases.
Most importantly, the properties of a macroscopic bulk material strongly depend on the
interactions at the atomic level and on their synergetic effect.

However, contrary to what it is expected, nacre-like materials exhibit unusual be-
haviour at high filler content. The elastic modulus decreases with increasing filler content,
deviating from the trend dictated by the rule of mixture. At high filler content, the efficiency
of the reinforcement drops below one, indicating that the stress transfer between filler and
matrix is poor. Indeed, the mechanical performances of composites with high content of
2D nanoparticles are regulated by the efficacy of the thin polymeric layer to transfer load
via a shear transfer mechanism. When the matrix content is very low, the thickness of the
polymeric layer should be very small (<1 nm). This can be incompatible with the mobility of
the polymeric chains, especially when the matrix molecular weight is high. Consequently,
dewetting of the nanoplatelet surface can occur at high filler content, causing a reduction
of the effective length for stress transfer and impairing the reinforcement efficiency.

It follows that the matrix molecular mobility affects the efficiency of reinforcement.
Polymers with high molecular weight are characterized by high rigidity, making it difficult
for the polymeric chains to find an optimal conformation on the surface of the nanoplatelets.
Therefore, the higher the polymer molecular mobility, the better its capacity to intercalate
between nanoplatelets. In fact, it has been observed that for polymers with high molecular
weights, the drop of efficiency occurs for very low volumetric filler content, whereas for
polymers with low molecular weight, the drop occurs for higher filler content. Thus, the
selection of the matrix is important for achieving high efficiency [111,112].

To sum up, it has been found that the best mechanical properties are achieved when
the bonding and interactions between the two phases are strong and when the matrix
molecular mobility is such that the polymer intercalates between nanoplatelets, covering
their entire surface. This means that high performances and mechanical improvements
need high interfacial attraction between fillers and the surrounding matrix that guarantee
the load transfer.

To maximize the interfacial interactions, improvements of chemical bonds between
the filler and matrix should be developed by functionalizing nanoparticles by introducing
covalent, ionic or hydrogen bonding forces. In addition, other strategies aimed to improve
the stress transfer efficiency can be employed, by promoting the wetting phenomenon and
inhibiting the phenomenon of partial coverage. For example, increasing the compaction
pressure during the manufacturing process can improve the stress transfer efficiency, thanks
to a physical confinement of the polymer [68].

Basically, the filler/matrix compatibility is at the base of the optimal performance of
the material. Both the chemical bonding and the matrix wettability should be carefully
chosen in order to optimize the compatibility between the two phases. As a result, the
interface optimization would lead to a shift of the drop point to higher filler content and
the performances of the material would reach those of the reinforcement (Figure 13).
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5. Conclusions 
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This condition can be achieved when the matrix arranges as a continuous nanometric 
film on the nanoplatelets’ surface and the complete stress transfer at the interface is guar-
anteed, according to the shear lag theory. However, the mechanical response of the mate-
rial is influenced by several factors: volumetric filler content, matrix molecular mobility 
and compatibility between the two phases. Thus, the efficiency of reinforcement: 
− Drops at high filler content. 

Starting from a critical volumetric fraction, the elastic modulus B&M composites de-
viate from the expected behaviour dictated by the rule of mixture due to the partial 
coverage of the nanoplatelets at the nanoscopic level. 

− Decreases as the molecular weight increases. 
The higher the molecular mobility of the polymer and the capacity to intercalate be-
tween nanoplatelets, the better the stress transfer at the interface. 

− Improves when a high interfacial attraction between nanoparticles and the surrounding ma-
trix is guaranteed. 
Strong chemical bonding and molecular interactions between nanoparticles and the 
polymer ensure self-assemblies with a tendency toward forming intercalated mor-
phologies, with a stable layer of polymer between flakes. 

Author Contributions: Conceptualization, A.M. and F.C.; methodology, M.G.; validation, M.G. and 
A.M.; data curation, F.C.; writing—original draft preparation, F.C.; writing—review and editing, 
A.M. and M.G. All authors have read and agreed to the published version of the manuscript. 

Funding: This work has been supported by the Research Project AMICO (code ARS01_00758) 
funded by the Italian Ministry of Education, University and Research. 

Figure 13. Strategies to optimize the mechanical properties of high filler content composites.

5. Conclusions

In this review, the authors revised the state of the art of nacre-like materials, high-
lighting the issues that come out in the fabrication of composites with high filler content
and that reflect on their mechanical behaviour. The aim of the work is to give insight
into the mechanisms which regulate the stress transfer efficiency in composites with B&M
architecture, in order to lay the groundwork for the design of bioinspired materials with
outstanding properties.

Although composites with brick-and-mortar architecture are promising from a theoret-
ical point of view, in reality it is challenging to achieve the desired mechanical performances.
The target is to assemble 2D nanoparticles in order to achieve a macroscopical material able
to reproduce the unique properties of the 2D nanoparticle:

v f → 1 ⇒ Ec ≈ E2D particle

This condition can be achieved when the matrix arranges as a continuous nanometric
film on the nanoplatelets’ surface and the complete stress transfer at the interface is guaran-
teed, according to the shear lag theory. However, the mechanical response of the material
is influenced by several factors: volumetric filler content, matrix molecular mobility and
compatibility between the two phases. Thus, the efficiency of reinforcement:

− Drops at high filler content. Starting from a critical volumetric fraction, the elastic
modulus B&M composites deviate from the expected behaviour dictated by the rule
of mixture due to the partial coverage of the nanoplatelets at the nanoscopic level.

− Decreases as the molecular weight increases. The higher the molecular mobility of the
polymer and the capacity to intercalate between nanoplatelets, the better the stress
transfer at the interface.

− Improves when a high interfacial attraction between nanoparticles and the surrounding
matrix is guaranteed. Strong chemical bonding and molecular interactions between
nanoparticles and the polymer ensure self-assemblies with a tendency toward forming
intercalated morphologies, with a stable layer of polymer between flakes.
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