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Toll-like receptors (TLRs) are pathogen recognition receptors, and primitive sources of 
innate immune response that also play key roles in the defense mechanism against 
infectious diseases. About 10 different TLRs have been discovered in chicken that 
recognize ligands and participate in TLR signaling pathways. Research findings related 
to TLRs revealed new approaches to understand the fundamental mechanisms of the 
immune system, patterns of resistance against diseases, and the role of TLR-specific 
pathways in nutrient metabolism in chicken. In particular, the uses of specific feed 
ingredients encourage molecular biologists to exploit the relationship between nutrients 
(including different phytochemicals) and TLRs to modulate immunity in chicken. 
Phytonutrients and prebiotics are noteworthy dietary components to promote immunity 
and the production of disease-resistant chicken. Supplementations of yeast-derived 
products have also been extensively studied to enhance innate immunity during the last 
decade. Such interventions pave the way to explore nutrigenomic approaches for healthy 
and profitable chicken production. Additionally, single-nucleotide polymorphisms in TLRs 
have shown potential association with few disease outbreaks in chickens. This review 
aimed to provide insights into the key roles of TLRs in the immune response and discuss 
the potential applications of these TLRs for genomic and nutritional interventions to improve 
health, and resistance against different fatal diseases in chicken.

Keywords: chicken, toll-like receptors, gene expression, nutrigenomic, polymorphism, immunity

INTRODUCTION

Innate and adaptive immunity have been considered as largely separate through complementary 
mechanisms of defense against microbes (Tipping, 2006). Both immune systems distinguish 
foreign organisms as non-self and trigger the corresponding defence action. Specifically, 
antigen receptors on lymphocytes are key feature of adaptive immunity, while innate immunity 
relies on antigen presenting cells (APCs) and phagocytic cells including dendritic cells 
(DCs), granulocytes, and macrophages (Tate et  al., 2010). Macrophages and DCs belong 
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to the innate immune cells that are activated by microbial 
components, such as lipopolysaccharide (LPS) of Gram-negative 
bacteria (Tate et  al., 2010). Macrophages perform functions, 
such as phagocytosis, production of chemokines and cytokine, 
secretion of antimicrobial peptides, and antigen presentation 
(Parihar et  al., 2010).

Toll-like receptors (TLRs) are a group of pattern recognition 
receptors (PRRs) and are also the main components of innate 
immunity (Kawai and Akira, 2010). These receptors provide 
protection against a wide range of pathogens (Zhang and Liang, 
2016). TLRs modulate signaling pathways in the host defence 
system to control the infection and repair damaged cells (Wang 
et  al., 2016). Agonists/ligands are specialized structural motifs 
present on microbes that activate the macrophages upon binding 
with the corresponding TLRs. The binding of specific ligands 
to TLRs activates various adaptor proteins, transcriptional 
factors, and stimulates cytokine genes (Kawasaki and Kawai, 
2014). These cytokines increase inflammatory responses and 
protect against various diseases (Bresnahan and Tanumihardjo, 
2014). There are multiple factors that can regulate the functions 
of TLRs including genetic polymorphism and nutrients 
(Vidya et  al., 2017; El-Zayat et  al., 2019a).

Genetic associations among different TLRs can help scientists 
to study the genetic potential and prevention of infectious 
diseases in birds. To date, 10 TLRs genes have been characterized 
in chicken (Roach et  al., 2005; Yilmaz et  al., 2005; Iqbal et  al., 
2005b; Higgs et  al., 2006). Variations in the sequence of TLRs 
change the recognition patterns of PAMPs and modify the 
host resistance against pathogenic infections (Ruan and Zheng, 
2011; Ruan et al., 2015). TLRs polymorphism can play a crucial 
role as a genetic marker for the selective breed improvement 
programs in chicken. This literature review highlights the key 
roles of TLRs in the immune mechanisms, and further describes 
potential applications of these TLRs for genomic and nutritional 
interventions to improve health and resistance against different 
infectious diseases in chicken.

PATTERN RECOGNITION RECEPTORS

Phagocytic recognition of invading microbes activates 
inflammatory reactions against these pathogens via a set of 
PRRs including the scavenger receptors, TLRs, complement 
receptors, integrins, and members of the C-type lectin receptor 
family. These germline receptors are specialized structures that 
change over time to identify specific motifs on pathogens that 
are absent in higher-order eukaryotes, and these motifs control 
the invading pathogens (Aderem and Smith, 2004). TLRs are 
conserved transmembrane proteins of the PRRs family and 
categorized by the presence of an extracellular domain, which 
further contains LRR and a cytoplasmic domain (TIR domain; 
Akira et  al., 2006).

PAMPs have usually been found invariant which also help 
pathogens in survival and support to maintain divergent feature 
from “self ” (Haunshi and Cheng, 2014). Recognition of “alert 
signals” in the host during aberrant localization or presence 
of inflammatory molecules or different cellular stress is mostly 

assisted by PRRs (Beg, 2002). Upon recognition by PAMPs, 
PRRs indicate the presence of infectious agents either by 
presentation at the cell surface or activate antimicrobial and 
proinflammatory responses through a signal to the host immune 
system (Figure  1). This mechanism further elicits several 
intracellular signaling pathways, such as kinases, transcription 
factors, and adaptor molecules (Akira and Takeda, 2004). The 
chicken TLRs (chTLRs) also recognize specific components of 
pathogens (agonist) as shown in Table  1.

TOLL-LIKE RECEPTORS

First TLR was identified in Drosophila (Chu and Mazmanian, 
2013). Later on, the regulation of innate immunity was also 
observed in fungal infections (Plato et  al., 2015). TLR is a 
primitive pathogen scrutiny system and widespread in animals 
and plants. At present, 13 receptors have been recognized 
in mammals, but TLR 10, 11, and 13 have exhibited specie 
specific gene expression (Leulier and Lemaitre, 2008). Many 
vertebrate contains 10 to 13 TLRs (Roach et  al., 2005), e.g., 
humans carry TLR1-10 while TLR1-13 are present in mice. 
The chTLRs gene expression has demonstrated their conserved 
nature during evolution. At least 10 diverse TLRs have been 
recognized in chicken so far, but they express differently in 
contrast to mammals as shown in Table  1 (Brownlie and 
Allan, 2011). These chTLRs are originated from gene duplication, 
a phenomenon known as paralogs (Roach et  al., 2005), and 
these paralogs are further classified into six major groups 
through phylogenetic analysis; TLR2 cluster (include TLRs 
1, 2, 6, 10, and 14), TLR3, TLRs4, TLRs5, TLRs7/8/9, and 
lastly, TLR11 cluster that contains TLRs 11, 12, 13, 21, 22, 
and 23, respectively.

ChTLRs are slightly different from other vertebrates due to 
the presence of the pseudogene TLR8, chTLR1LA, chTLR1LB, 

Infection or breakdown of tolerance 

Pathogen-specific molecules (e.g. LPS) 
Aberrant localization of molecules (e.g. 

endosomal DNA) 
Abnormal molecular complexes (e.g. self 

DNA-autoantibody complex) 

Pattern recognition receptors 

Innate immune response 

Resolution of 
infection  

Inflammatory disease 
autoimmunity 

FIGURE 1 | Flow chart diagram showing innate immune recognition through 
pattern recognition receptors (PRRs).
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chTLR15 and chTLR2, and the absence of TLR9 (Brownlie 
and Allan, 2011). Explicitly, orthologs to mammals have been 
characterized in chicken, such as for mTLR3, mTLR4, mTLR5, 
and mTLR7, whereas chicken lacks TLR8/9. However, mTLR1, 
mTLR6, and mTLR10 are exchanged with TLR1A and B, while 
TLR2A and TLR2B are replaced with TLR2 because of gene 
doubling. TLR15 and TLR21 are the two additional chTLRs. 
Avian species have distinct TLR15, which is stimulated after 
the invasion of bacterial proteases and virulent fungi (Iqbal 
et  al., 2005a; Yilmaz et  al., 2005; Temperley et  al., 2008; de 
Zoete et al., 2010), while TLR21 is discrete from mTLR9 which 
has chief orthologs in amphibians and fish (Brownlie et al., 2009).

TLRs MEDIATED IMMUNE RESPONSE

The primary function of TLRs during innate immune actions 
is similar in both birds and mammalian species, and APCs 
surface assists TLRs for their expression. TLRs identify PAMPs 
and establish signaling to the innate immune response by 
stimulating the reactive oxygen and nitrogen intermediates. 
APCs stimulate the upregulation of co-stimulatory molecules 
and pro-inflammatory cytokines (Takeda and Akira, 2005). 
APCs also play a role of junction between innate and adaptive 
immunity in pathway stimulated by TLRs. Although, peripheral 
tissues have immature DCs that are considered as affinity sites 
for microbial invasion (Mbongue et  al., 2014), stimulation of 
TLRs results in the maturation of immature DCs that not 
only regulate major histocompatibility complex molecules and 
co-stimulatory molecules, but also boost lymphoid organs to 
stimulate T cells for antigen activation. Cellular activation is 
controlled by special receptors “chemokine” which are activated 
by DCs and upregulate TLRs (Cutler et  al., 2001).

The chTLRs stimulate multiple pro-inflammatory cytokines 
through monocytes like interleukin macrophage inflammatory 
protein-1β, IL-6, IL-1β, and IL-8 and these cytokines have 
innate immune and inflammatory responses (He et  al., 2011). 
The first step in TLR signaling is the myeloid differentiation 
protein 88 (MyD88)-dependent pathway which in return activates 
mitogen-activated protein kinase (MAPK), nuclear factor-kappa 
B (NF-κB), following the production of inflammatory chemokines 

and cytokines. The second pathway is MyD88-independent that 
stimulates various factors including interferon-inducible genes, 
type-1 interferons (IFN) as shown in Figure  2 (Takeda and 
Akira, 2005; Kawai and Akira, 2006). The expression of 
antimicrobial peptides is due to the TLR signaling pathway 
and these are the major molecules of innate immune systems. 
Taken together, these observations explain the potential role 
of TLRs to modulate innate and adaptive immunity, and this 
intrinsic property of TLRs can be used as adjuvants in vaccines 
(Birchler et  al., 2001).

TLR SIGNALING IN CHICKEN DISEASES

The chTLRs expression has been studied against several pathogens 
and their association was found with disease resistance. The 
most important chTLRs are discussed below:

Toll-Like Receptor2 (Type 1 and 2)
The chTLR2 was reported for the first time in 2001 and grouped 
into two types, TLR2 type 1 and type 2 located on chromosome 
4; TLR1 is also classified in a similar manner (Fukui et  al., 
2001; Yilmaz et  al., 2005), and chTLR2 type 1 and 2 are 
analogous to hTLR2, perhaps due to gene duplication (Plato 
et  al., 2015). The expression pattern of chTLR2 revealed that 
it is only expressed in caecal tonsils, spleen, liver, bursa, B 
cells, CD8+ cells, and heterophils (Iqbal et  al., 2005a; Kogut 
et  al., 2008). A number of ligands bind to chTLR2 because 
of heterodimerization of chTLR2 homologs with TLR1 isoforms, 
and these isoformic properties of TLRs initiate activity to other 
agonists. Therefore, chTLR2/TLR1 heterodimerization upregulates 
the activity against synthetic tri-acylated lipopeptide in chicken, 
whereas chTLR2-1/TLR1-2 heterodimerization activates upon 
binding with peptidoglycans (Keestra et al., 2007; Higuchi et al., 
2008). The TLR2 upregulates initial response of cytokine in 
host cells upon recognition of M. pulmonis (Love et  al., 2010). 
ChTLR2 response was significantly highest in Hela 57A against 
Campylobacter spp. (p < 0.05) when treated with lysed 
Campylobacter (de Zoete et  al., 2010). In addition, TLR2 
members were also associated with Clostridium perfringens and 
their expression was upregulated in the spleen. Moreover, the 

TABLE 1 | Major chTLRs receptors.

TLR Ligands Pathogen Accession No. References

TLR1A/TLR1 Type 1/TLR16 Lipoprotein Bacteria AB109401 Yilmaz et al., 2005
TLR1B/TLR1 Type 2 Lipoprotein Mycoplasma DQ518918 Yilmaz et al., 2005
TLR2A/TLR2 Type 1 Lipoprotein and peptidoglycans Bacteria and fungus NM_204278 Higgs et al., 2006
TLR2B/TLR2 Type 2 Lipoprotein and peptidoglycans Bacteria and fungus AB046533 Higgs et al., 2006

TLR3 dsRNA Viruses NM_001011691
Iqbal et al., 2005b; Roach et al., 2005; 
Higgs et al., 2006

TLR4 LPS Bacteria AY064697
Iqbal et al., 2005b; Roach et al., 2005; 
Higgs et al., 2006

TLR5 Flagellin Bacteria AJ626848 Iqbal et al., 2005b; Higgs et al., 2006

TLR7 ssRNA Viruses NM_001011688
Philbin et al., 2005; Roach et al., 2005; 
Higgs et al., 2006

TLR15 Lipoprotein Yeast NM_001037835 Higgs et al., 2006
TLR21 CpG ODN Bacteria and viruses NM_001030558 Roach et al., 2005
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combined gene expression levels of TLR2.2 and TLR1.1 were 
also higher which also suggested the role of TLR1  in the 
regulation of innate host response (Lu et  al., 2009).

Toll-Like Receptor3
The chTLR3 is located on chromosome 4 (Yilmaz et  al., 2005) 
and expressed in the thymus, duodenum, ileum, jejunum, colon, 
caecum, B cells, T cells, and heterophils (Iqbal et  al., 2005a). 
In chicken, it binds with polyinosinic polycytidylic [Poly (I:C)] 
acid (He et  al., 2007, 2012; Schwarz et  al., 2007). The said 
acid is a double-stranded RNA (dsRNA) homolog that induces 
stimulation of IL-10, IFN-α, IFN-γ, and IFN-β similar to 
mammals. However, it produces a scanty amount of nitric 
oxide in monocytes and also decreases the activation of 
pro-inflammatory cytokines (He et  al., 2012).

Toll-Like Receptor4
ChTLR4 recognizes a major structural component of the cell 
wall of Gram-negative bacteria which is known as LPS and 
stimulates the immune system. Upon interaction with the 
extracellular proteins, LPS makes a complex of myeloid 
differentiation protein 2 (MD2), cluster of differentiation 14 
(CD14), and TLR4 (Oshiumi et  al., 2003). TLR4 and MD2 
have 43 and 31% similarity with protein orthologs present in 
humans, respectively, and both were cloned in HeLa cells, and 
their expression profiles are noteworthy (Keestra et  al., 2007). 
LPS binds with TLR4 to induce a cascade of signaling pathways 
following activation of NF-κB that results in pro-inflammatory 

chemokines and cytokines production (Fukui et  al., 2001). 
TLR4 signaling also produces many chemokines, cytokines, 
IL-6, IL-8, and IL-1β upon invasion of viral and bacterial 
pathogens (Heggen et  al., 2000; Kaiser et  al., 2000; Laurent 
et  al., 2001). ChTLR4 has a range of expression pattern, but 
its genetic expression level is higher in heterophils and 
macrophages (Leveque et  al., 2003; Kogut et  al., 2005; 
Iqbal et  al., 2005a).

Toll-Like Receptor5
ChTLR5 is activated by bacterial flagellin and plays a key 
function in host resistance to pathogenic bacteria (Hayashi 
et  al., 2001; Wlasiuk et  al., 2009). It is located on chromosome 
3 and possesses almost 50% homology with hTLR5 at amino 
acid level (Iqbal et  al., 2005a,b). Upregulated gene expression 
of chTLR5 has been observed in a few tissues that induces 
pro-inflammatory responses. Flagellin-based stimulation of 
Stromal and HD11 cells results in the production of IL1-β 
(Iqbal et  al., 2005b). In heterophils, the expression levels of 
inflammatory chemokines and IL6 are increased upon binding 
with LPS/flagellin (Kogut et al., 2008). TLR5 expresses in HeLa 
cells and activates NF-κB when treated with purified flagellin 
or Salmonella enterica serovar Enteritidis (Keestra et  al., 2008). 
ChTLR5-mediated molecular mechanisms may contribute to 
lung infection and cause acute respiratory syndrome (Zhang 
et  al., 2012). However, few bacteria like Campylobacter Jejuni 
do not carry TLR5-binding sites that make chTLR5 sense them 
because of variation in flagellin (Paul et  al., 2013).

FIGURE 2 | Pathways of chicken toll-like receptors (chTLRs) by recognition of their agonists (Gupta et al., 2014).
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Toll-Like Receptor7
ChTLR7 is alternatively spliced that owes 63% similarity with 
chTLR7 at amino acid level and expressed in the forms of 
three different transcripts to produce two types of proteins 
(Philbin et  al., 2005). ChTLR7 is expressable in a number 
of cells/tissues likewise other TLRs (Iqbal et al., 2005a; Philbin 
et  al., 2005). Single-stranded RNA has been identified as a 
ligand for TLR7 which is controlled by a gene similar to 
TLR8 (Kawai and Akira, 2010). RNA ligands stimulate 
splenocytes and HD11 cells that cause activation of IL-1β, 
IL-6, IL-8, and cytokines. This stimulation of cytokines is 
important for endosomal acidification due to chloroquine 
sensitivity (Kogut et  al., 2005; He et  al., 2006). Another 
research found contradictory results for TLR7 agonist loxoribine 
that downregulated pro-inflammatory cytokines (Kogut et  al., 
2005) and it was a contradictory observation reported for 
neutrophils in humans (Hayashi et  al., 2003). A research 
report described that infection of avian influenza in chicken 
macrophages exhibited significant upregulation of TLR7 gene 
expression initially (Kawai and Akira, 2010), but the gene 
expression decreased later on.

EXPRESSION PATTERNS OF TLRs 
DURING DIFFERENT AVIAN DISEASES

The expression of TLRs mRNA is not limited to the tissues 
involved in the immune system including spleen, thymus, 
tonsils, lymphatic vessels, and lymph nodes, but it is also found 
in the peripheral blood leukocytes, vital organs, pancreas, colon, 
small intestine, ovary, placenta, testis, prostate, and skeletal 
muscles (Zarember and Godowski, 2002). Moreover, the gene 
expression of TLRs has also been observed in various cells of 
the immune system including macrophages, NK cells, DCs, 
circulating leukocytes, adaptive immune cells, and non-immune 
cells like epithelial and endothelial cells and fibroblasts (Delneste 
et al., 2007). All the 10 TLRs are found on chicken heterophils 
and can be  functionally activated in vitro with either TLR 
agonists or intact bacterial cells (Kogut et  al., 2005, 2006, 
2008). A broader and enriched expression pattern of TLRs 
has been observed in heterophils which suggests that heterophils 
might play a major role as first-line effector cells through 
TLR-induced signaling pathway (Kogut et  al., 2005, 2006). In 
addition, TLRs are bridging molecules since they are also 
expressed on DCs that join innate and adaptive immunity 
(Gao et  al., 2017). This is the reason that the induction of 
innate immunity by TLRs further stimulates adaptive immunity 
(Akira and Takeda, 2004). TLRs recognize the pathogen and 
convey the signal to APCs which kill the microbes by phagocytosis 
(Moresco et  al., 2011; Sharma et  al., 2013). Moreover, the 
presence of a total group of TLRs on immature DCs assists 
in their maturation process (Re and Strominger, 2011). The 
DCs initiate the immune response in the chicken gut by the 
production of cytokines and stimulate other immune competent 
cells. Different feed additives like phytochemicals have shown 
the potential to mediate the functions of DCs through both 

direct and indirect ways to effectively modulate the immune 
response (Teng and Kim, 2018).

The dynamic expression of TLRs may indicate the chances 
of genetic modulation and production of enhanced 
immunological response due to higher expression levels of 
TLRs in chicken. The TLR2 and TLR4 are only expressed on 
the surface of DCs, natural killer (NK) cells, and monocytes, 
but intracellular expression has also been noticed in the 
endothelial cells (Tamiru et  al., 2019). Similarly, NK cells use 
a variety of cellular receptors, such as Ly49 and CD94 to 
induce immunological responses (Boudreau and Hsu, 2018). 
The DCs are grouped into CD11c positive myeloid and CD11c 
negative plasmacytoid (PDCs). These PDCs secrete IL-6, IL-10, 
IL-12, IP10, and tumor necrosis factor (TNF)-α as soon as 
they are exposed to pathogens and also regulate the TLR7 
and TL9 dependent immune pathways (Katherine et al., 2020). 
The expression profiles of TLR3 and TLR7 have been found 
higher in lungs of the post-hatch chicks, while the expression 
of TLR7 increases with the age of the birds (Karpala et  al., 
2012). Different expression patterns of TLRs generate responses 
against pathogens of various poultry diseases; however, the 
individual role of TLRs in causing disease resistance is limited. 
The expression patterns of TLRs in a few infectious disease 
of poultry have been discussed below.

Marek’s Disease
A comparative study between resistant and susceptible chicken 
embryo fibroblasts elucidated that resistant chicken shows higher 
TLR3, IL8, and TLR7 gene expression when treated with Marek’s 
disease and TLR3 ligand Poly(I:C; Haunshi and Cheng, 2014). 
The synthetic analogy to dsRNA like Poly (I:C) stimulates 
chTLR3  in DF-1 cells and spleen (Karpala et  al., 2008) that 
acts as an adjuvant against Marek’s disease (Parvizi et al., 2012). 
The findings of Haunshi and Cheng (2014) are similar to the 
fact that the expression of chTLR3 increases in the bursa (Jie 
et  al., 2013) and in lungs (Abdul-Careem et  al., 2009) upon 
infection with Marek’s disease. The higher expression level of 
chTLR3 highlights the role in resistant birds in comparison 
with susceptible ones (Haunshi and Cheng, 2014). When CEFs 
were treated with TLR3 ligand, Poly (I:C) increased the expression 
level of IL-6, IL-1β, and IL-18 that subsequently resulted in 
81% reduction in Marek’s disease (Zou et  al., 2017; 
Bavananthasivam et  al., 2018). The expression pattern of TLR 
in CEFs is different Bavananthasivam et al. (2018) as compared 
to Haunshi and Cheng (2014) study. This difference in expression 
confers that the genetic makeup of chicken may influence the 
TLR expression and develops resistance against diseases.

Newcastle Disease
In Newcastle disease, a similar expression level of TLR3 and 
TLR7 is reported in chicken embryo fibroblasts and duck 
embryonic fibroblasts that activate host innate immune responses 
upon signaling cues received by pro-inflammatory cytokines 
and IFNs. The gene expression levels of TLR3 and TLR7 were 
higher in chicken embryo fibroblast due to the species differences 
in chicken and ducks (Kang et  al., 2016). Additionally, the 
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antiviral effect of TLR7 against Newcastle disease infection 
was also characterized in layers and reported presence of 
different haplotypes that responded to viral attacks as a front-
line immune response (Rowland et  al., 2018). In chicken bone 
marrow macrophage cell line HD11, TLR7 inhibited the 
replication of Newcastle disease (Zhang et  al., 2018).

Avian Influenza
The chTLR7 agonist Poly-C has shown to inhibit influenza 
virus replication in the chicken macrophage efficiently than 
TLR3 ligand Poly (I:C), but TLR3 also exhibited significant 
effect (Karpala et  al., 2008; Stewart et  al., 2012). The TLR3 
agonist enhances the stimulation of IL-6, IL-12, and IFN-γ 
when these are used as an adjuvant with avian influenza virus 
(Liang et al., 2013). Moreover, the significant antiviral response 
of ligands of TLR2, 3, 4, 7, and 21, i.e., Poly (I:C), Pam3CSK4, 
LPS, and CpG, has been observed against H4N6 avian influenza 
virus infection. Ligands Pam3CSK4, CpG, and LPS reduce the 
growth of avian influenza virus in macrophages of chicken 
and increase expression profile of interferon regulatory factor-7, 
IL-1b, IFN-c, and IFN-b (Barjesteh et  al., 2014). All TLR 
ligands reduce the shedding of virus with the greatest avian 
influenza virus immunity when treated with Poly (I:C; Paul 
et al., 2012). On the basis of these findings, it could be concluded 
that TLRs might have substantial ability to serve as an antiviral 
agent in chicken to control viral infections.

Association of TLRs With Resistance/
Susceptibility of Bacterial Diseases in 
Chicken
Salmonellosis
The TLR4, TLR15, TLR21, MD-2, ILs, IFNs, and iNOS have 
been reported as resistant genes against salmonella infections 
(Tohidi et  al., 2012; Gupta et  al., 2014). ChTLR21 acts as a 
receptor for microbial genetic material (Tamiru et  al., 2019). 
MD2 is a specialized molecule needed by TLR4 to recognize 
LPS ligands (Shimazu et  al., 1999). Upon salmonella infection, 
LPS serves as an inflammatory agent that is stimulated by 
TLR4. After inflammation, LPS binds to CD14 present on 
macrophage and these macrophages send signals to the TLR4/
MD2 complex (Akashi et  al., 2001). The said pathway takes 
part in the transcription of genes related to immunity during 
salmonella infection. MD2 is required for the LPS recognition 
of TLR4, intracellular distribution, and cell surface expression 
(Nagai et  al., 2002). A number of TLR4 receptors vary among 
different chicken species, therefore, the expression levels of 
LPS-binding receptors vary between them (Dil and Qureshi, 
2002). Two research studies proved that the susceptibility of 
salmonellosis is associated with chTLR4 (Beaumont et al., 2003; 
Leveque et  al., 2003).

The relationship between the chTLR4 gene and susceptibility/
resistance to salmonella infection has been studied (Leveque 
et al., 2003). Maximum resistant level of 93% has been observed 
in chicken due to TLR4 expression profiles and W1 (resistant) 
gene at NRAMP1  in comparison with those that have TLR4 
and C alleles at locus NRAMP1 (58%). Furthermore, gene 

expression of TLR4, TLR5, and TLR21 increases substantially 
in Salmonella enterica serovar Typhimurium infected chicken, 
as soon as they bind with their respective ligands. Genetic 
expression of these TLRs suggests a positive role in resistance 
or susceptibility against Salmonella serovars (Shaughnessy 
et  al., 2009).

Necrotic Enteritis
Gene expression of different TLRs in birds challenged with 
C. perfringens has been studied. It was observed that the 
infection upregulated the genetic expression of TLRs (TLR2 
family, TLR15, and TLR21) and related genes that induced 
the TLR signaling in ilea and spleens (Lu et  al., 2009). TLRs 
are the key activator of TNF-α production and also modulate 
the gene expression of TNF-α inducing factor homolog to 
activate NF-κB that turns out to be a stimulant for inflammation. 
In chicken exposed to Eimeria and Salmonella species, the 
assimilation of TNF-α modulation increases with the 
corresponding increase in the inflammatory cytokines (Higuchi 
et  al., 2008). Inflammation and stimulation of innate response 
have been studied in necrotic enteritis (Lu et al., 2009), whereas 
the homolog expression of TNF-α inducing factor may have 
the ability to initiate the TNF-α response against C. perfringens 
in chicken. These findings highlight the importance of specific 
TLRs in birds’ disease resistance and further studies are required 
to explore the possible mechanism of action and related 
molecular targets.

THE POTENTIAL REGULATION OF TLRs 
BY PHYTONUTRIENTS

Restricted uses of growth-promoting antibiotics motivate the 
use of alternate natural compounds for profitable chicken 
production. Natural plant-derived compounds are called 
phytonutrients that carry multiple healthy effects and also 
restrict the multiplication of microbial growth. Phytochemicals 
can promote quality food production in the chicken industry 
while keeping the taste of the food intact. Phytonutrients include 
natural plant extracts, essential oils, and phytochemical 
compounds that modulate innate/non-specific and humoral/
specific immune responses in chickens (Karásková et  al., 2015; 
Singh et  al., 2016; Catanzaro et  al., 2018). TLRs have been 
identified in B cells, macrophages, and heterophils, where host 
responses are mediated by enhanced cellular activity and 
cytokines production. In response to pathogen invasion and 
infection, TLRs elicit reactive oxygen species, inflammatory 
cytokines, upregulate inflammatory reaction, and promote host 
adaptive immune response (Keestra et  al., 2013; Huang, 2017). 
No doubt, TLRs are essentially important in the innate immune 
system and play crucial roles in the host defence against 
microbial invasions, but overstimulation of TLRs disturbs the 
body homeostasis resulting in the production of excessive 
pro-inflammatory cytokines that subsequently leads to the onset 
of many autoimmune and inflammatory diseases. Thus, inhibition 
of TLRs signaling pathways has been considered as a potential 
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therapeutic strategy to mitigate undesirable, disease-related 
inflammatory cascades (Gao et al., 2017: El-Zayat et al., 2019b).

Target-specific inhibition of TLRs can be  sought through 
two possible ways (1) by blocking the binding of TLRs ligands 
to the corresponding receptor and (2) by interfering with 
the intracellular signaling pathways to stop the signal 
transduction. Based on these facts, it has been suggested that 
therapeutic interventions among TLRs pathways offer potential 
remedies to reverse chronic liver diseases (Catanzaro et  al., 
2018; Katherine et al., 2020). Many inhibitory agents for TLRs 
signaling have been developed to control excessive inflammation, 
such as small inhibitory molecules (synthetic or naturally 
derived chemical weak bases, e.g., antimalarial drugs), 
antibodies, oligonucleotides, lipid-A analogs, microRNAs, and 
new emerging nano-inhibitors (Gao et  al., 2017). In addition, 
phytochemicals like curcumin and its analogs have shown 
to modulate JK/KB signaling pathway that results in NF-κB 
activation by inhibiting IκB phosphorylation and degradation 
(Ullah et  al., 2020).

Moreover, 6-shogaol is a compound present in ginger which 
can inhibit the TRIF (Toll/interleukin-1 (IL-1) receptor domain-
containing adapter inducing interferon)-dependent signaling 
pathway of TLRs by targeting TANK-binding kinase1, and, 
hence effectively modulate TLR-derived immune/inflammatory 
target gene expression induced by microbial infection 
(Park et  al., 2009b).

Phytonutrients restrict the proliferation of T cells induced 
by PHA and also reduce the production of IL-2, nitric oxide 
(NO), LPS-dependent NF-κB-mediated inflammatory pathway, 
and augments NK cell cytotoxicity. Besides, these compounds 
also inhibit NF-κB, and MAPK signaling pathways to inhibit 
stimulatory signals necessary for T cell activation. Phytonutrients 
also impair the growth of pro-inflammatory (IL-12) cytokines. 
In several in vivo and in vitro studies, curcumin produces the 
preceding advantages of phytonutrients (Catanzaro et al., 2018). 
It is imperative to modulate the gene expression of TLR and/
or LPS oligomerization of TLRs to prevent excessive energy 
loss and host cell damage. Several phytochemicals modulate 
the gene expression of TLRs or prevent oligomerization of 
TLRs by pathogen LPS. This ability of phytonutrients mediates 
the expression patterns of TLRs and opens the horizon for 
potential nutrigenomic interventions to modulate the 
immunogenic response in chicken. Effects of potent 
phytochemicals with superior ability to affect the regulation 
of TLRs are described as under:

Thymol and Carvacrol
Inflammatory responses stimulated by TLRs via MyD88 pathways 
produce pro-inflammatory cytokines (Netea et  al., 2004). 
Mammalian TLR4 can identify LPS which is a unique feature 
of Gram-negative bacteria, while TLR2 recognizes peptidoglycans 
of Gram-positive bacteria (Pasare and Medzhitov, 2005). During 
C. perfringens infections in broilers, mRNA expression of TLR2 
was increased. On the other hand, supplementation of essential 
oils (EO) containing thymol and carvacrol decreased the mRNA 
expression of the same protein and improved resistance against 

the pathogens (Du et al., 2016). Thymol and carvacrol improve 
not only cellular immunity, but also increase the function of 
humoral system, whereas these chemicals also increase the 
expression of genes involved in chicken’s immune response 
(Awaad et al., 2014). Thymol and carvacrol inhibited inflammatory 
cell recruitment, pro-inflammatory cytokines, and oxidative 
impairment (Riella et  al., 2012). However, pro-inflammatory 
response via cytokine production might damage the gut health 
and increase energy consumption (Lee et al., 2013a). Therefore, 
EO supplementation decreases TLR2 and pro-inflammatory 
cytokine that improves the health status of the gut (Du et  al., 
2016). When broiler birds were supplemented with carvacrol, 
TLR4 expression decreased considerably and inhibited the 
secretion of inflammatory cytokines (Liu et  al., 2019). The 
blends of EO (25% thymol and 25% carvacrol) against necrotic 
enteritis have been well studied in broilers that were treated 
with C. perfringens. The supplementation of EO downregulated 
the TLR2 expression in challenged birds (Yin et  al., 2017). 
This suggests that thymol and carvacrol regulate gene expression 
of TLR2 and TLR4 in diseased birds. Phytogenic feed additives 
including thymol and carvacrol have shown to downregulate 
the gene expression of TLR2  in chicken (Paraskeuas and 
Mountzouris, 2019).

Andrographis Paniculata and Morinda 
Citrifolia
Andrographolide is a constituent of Andrographis paniculata, 
a medicinal plant that has been traditionally used to treat 
infectious diseases, inflammation, fever, and cold 
(Chandrasekaran et  al., 2011). At present, andrographolide 
serves as a modulator of adaptive immune response and also 
regulates the TLRs activities (Thakur et  al., 2014). Morinda 
citrifolia is commonly known as Noni which is a popular 
medicinal plant that contains multiple phytochemicals, such 
as gums and mucilages, carbohydrates, proteins, fats, amino 
acids, anthraquinone glycosides, flavonoids, coumarin glycosides, 
alkaloids, phenolic compounds, citric acid, and tannins (Nayak 
et  al., 2011).

Kalmegh and Noni supplementation influenced the gene 
expression profile of TLR2, 3, 4, 5, 15, and 21 (Sunder et  al., 
2016). Phytochemicals and polysaccharides present in Noni fruit 
also modulated the NF-B signal transduction pathways in a 
dose-dependent manner (Desai et  al., 2009). The upregulation 
of genetic expression of TLR3, 4, and 5 might be  attributed 
to enhanced TLR signaling mediated by quercetin treatment 
which is a phytochemical found abundantly in Noni and 
accelerates IFN-γ production (Park et al., 2009a). These antiviral 
products upregulate TLR3, TLR4, and TLR5 genes (Tanabe 
et  al., 2003). The higher gene expression of TLR3, TLR4, and 
TLR5 and lower gene expression of TLR7 indicate the antiviral 
and antibacterial activities of IFN-γ. Andrographolide induces 
the APK and PI3K signaling pathways that activate macrophages 
(Wang et al., 2010). Moreover, andrographolide is more effective 
in downregulate gene expression of TLR7 and TLR8 which 
suggests that the modulation of cytokine might be  due to the 
inhibition of TLR7 and TLR8 gene expression (Thakur et al., 2014). 
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TLR7 and TLR8 are similarly expressed in HL-60 cell lines 
treated with andrographolide and revealed the anti-inflammatory 
effect of andrographolide (Thakur et  al., 2015). It also increases 
cellular apoptosis and downregulates NF-κB protein and TLR4 
expression to control the inflammatory response (Gao and Wang, 
2016). The significant effect of andrographolide to downregulate 
expression profiles of TLR3, TLR7, and TLR8  in the intestine 
of Monopterus albus suggested its key role as health promotor 
in aquaculture (Shi et  al., 2020). However, more detailed dose–
response studies are necessary to reaffirm this assertion (Thakur 
et  al., 2014).

Allium sativum and Ocimum sanctum
Allium sativum L. is commonly known as garlic and it has 
been extensively used in various medical treatments for a long 
time. It has an immunomodulatory effect that increases 
T-lymphocyte blasto-genesis, phagocytosis, and cytokine (Hodge 
et al., 2002). S-Allylcysteine is a key compound in garlic extract 
that mediates repressive effects on NF-κB as it also serves as 
a transcriptional modulator during an adaptive immune response 
and stands as a sole regulator of proinflammatory gene expression 
(Ho et  al., 2001). Allicin is also an antibiotic constituent of 
garlic that suppresses the bacterial growth in intestines and 
also inhibits fungal growth that produces aflatoxin (Ho et  al., 
2001). Holy basil (Ocimum sanctum) has the features of anti-
inflammation, wound-healing, and modulates humoral immunity 
(Cohen, 2014). EO and biologically active compounds (ethanol, 
methanol, linalool, and eugenol) of O. sanctum have resourceful 
antibacterial functions especially against Shigella spp., 
Staphylococcus aureus, Salmonella typhi, Bacillus pumilus, E. coli, 
and Pseudomonas aeruginosa (Prakash and Gupta, 2005). 
Monoterpene, a component of O. sanctum, is a phenolic 
compound in nature and exhibits immunomodulatory effect 
by increasing IFN-γ, IL-4, T-helper, and NK cells that result 
in phagocytic activity (Mondal et al., 2011). In a study, Eimeria 
acervuline challenged chickens were fed garlic metabolites 
(propyl thiosulfinate and propyl thiosulfinate oxide) and these 
metabolites significantly decreased mRNA expression of TLR3 
and TLR5 and also increased anti-inflammatory response (Kim 
et  al., 2013a). Garlic powder and leaf powder of Holi basil 
promote mRNA translation of TLR2, TLR4, and TLR7 of 
broilers (Sheoran et  al., 2017). Since TLR2 and TLR4 increase 
innate immunity against various Gram-positive and Gram-
negative bacteria, therefore, changes in their genetic expression 
through garlic powder and leaf powder of Holi basil suggest 
a positive effect against bacterial infections. TLR7 recognizes 
viral nucleic acid and increases the level of TLR7 either by 
garlic powder alone or in combination with leaf powder. Allicin 
and Ajoene are present in garlic that enhance the host innate 
immunity against plasmodium and HIV infection, respectively 
(Feng et  al., 2012).

Curcumin and Other Dietary Flavonoids
Turmeric is the most extensively studied medicinal plant among 
the Curcuma genus and possesses many phytochemicals to 
trigger immunity (Li et al., 2011). Curcumin (diferuloylmethane) 

has properties of antioxidant, anti-inflammation, lipid 
peroxidase inhibitor, antiviral, free radical scavenger, 
antimicrobial, antitumor, antiprotozoal, and immunity 
enhancer (Pulido-Moran et  al., 2016; Amalraj et  al., 2017). 
Curcuminoids (a mixture of curcumin, dimethoxy curcumin, 
and bisdemethoxycurcumin) are effective anti-inflammatory 
agents by acting through multiple mechanisms, such as 
suppression of NF-κB, inhibition of cyclooxygenase-2, 
downregulation of the metastatic gene products, cell 
proliferation, and anti-apoptotic (Aggarwal et  al., 2006). 
Curcuminoids also modulate the proliferation and cellular 
response of macrophages, B cells, neutrophils, T cells, DCs, 
and natural killer (NK) cells (Chandrasekaran et  al., 2013). 
LPS activates TLR4 that stimulates MAPK and NF-κB pathways 
to produce cytokines (Kagan and Medzhitov, 2006). For 
that reason, reduction of the inflammatory response is needed 
via downregulation of NF-κB pathway. Supplementation of 
curcumin downregulates the gene expression of TLR4, and 
associated downstream molecules (NF-κB, MyD88, TNF-α, 
1 l-1β, and IL-6) in laying hens (Nawab et  al., 2019). TLR4 
activates MyD88 and regulates NF-κB activation (Karnati 
et  al., 2015). Moreover, IL 1β, IL 6, IL 12, IL 18, and TNF15 
increase in chicken macrophages treated in vitro with organic 
extract of turmeric (Lee et  al., 2010). Turmeric also 
downregulates CD28, myeloperoxidase, and lactotransferrin 
in broiler birds that are associated with inflammatory response  
(Kim et  al., 2013b).

A study reported the effect of 10 ethanolic extracts including 
Castanea sativa leaves, barks of Cinchona pubescens, 
Cinnamomum verum, Salix alba, Rheum palmatum root extract, 
Alchemilla vulgaris plant, Humulus lupulus cones, Vaccinium 
myrtillus berries, Curcuma longa root, and Arctostaphylos 
uvaursi leaves which worked as an anti-inflammatory drug. 
These extracts significantly mitigated TLR4 and TLR2 signaling 
pathways (Schink et  al., 2018). Resveratrol acts as an anti-
inflammatory agent that is an important phytoalexin found in 
various fruits like berries, peanuts, and grape skins (Saleh 
et  al., 2021). It inhibits TLR4 expression in macrophages and 
heart tissues and reduces inflammation (Li et  al., 2015; 
Tong et  al., 2020).

A group of flavonoids including flavones, flavonols, isoflavones, 
flavanones, anthocyanidin, and flavanols demonstrated anti-
inflammatory properties. Flavonoids are polyphenols that serve 
as antioxidant and anti-inflammatory agents in diet and regulate 
TLR gene expression (Pérez-Cano et  al., 2014). Significant 
downregulation of TLR4 has been noticed after the treatment 
with flavonoids (Pérez-Cano et  al., 2014). Flavonoids have 
shown to mediate the molecular targets and TLR-mediated 
signaling pathways. The potential effects of flavonoids on 
immunoregulatory response in the body are mediated through 
three primary levels (1) by modulating the composition of 
the microbiota (2) by mediating the expression and activation 
of TLRs, and (3) through modulating the downstream signaling 
pathways involved. The combined action of all these pathways 
might explain the crucial utility of flavonoids in preventing 
various diseases and immune-related disorders in different avian 
species (Pérez-Cano et  al., 2014). The suppression of TLRs 
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activation by flavonoids offers the opportunity to develop new 
and alternative therapeutic interventions for the treatment of 
inflammatory diseases.

Effect of Yeast-Derived Products
Yeast (Saccharomyces cerevisiae)-based probiotic has been a 
promising substitute for antibiotics, as it is capable to modulate 
bacterial population (Trckova et  al., 2014). Yeast can stimulate 
an immune response by providing binding sites to pathogens 
(Gao et  al., 2008).

The immune modulation mechanism in yeast has not been 
fully understood. Polysaccharide is the main constituent of 
the yeast cell wall (YCW) that partially consists of β1, 3–1, 
6-glucans, and mannan which modulate PRRs expression to 
enhance the innate immunity (Mogensen, 2009). Recognition 
of YCW by PRRs may activate macrophages and DCs of innate 
immunity following the modulation of cytokines (IL-4 and 
IL-10) that facilitate antibiotic production (Haghighi et al., 2006).

Gene expression of chTLR2b and chTLR4 supplemented with 
yeast-derived macromolecules improves the spleen and bursa of 
Fabricius (Yitbarek et  al., 2013). Dietary nucleotides increase 
cell-mediated immunity, improve host resistance, and humoral 
immunity against invaded bacteria (Hess and Greenberg, 2012). 
Higher TLR2b level enhances barriers of the gastro-intestinal 
epithelium to block the invading pathogens (Chen et  al., 2007).

Mannan oligosaccharides (MOS) are yeast-derived 
carbohydrates that have great potential to control necrotic 
enteritis in chicken, while simultaneously control pathogenic 
invasion (Hajati and Rezaei, 2010). ChTLR2 acts as a receptor 
for lipoproteins and LPS (Fukui et al., 2001). Therefore, broiler 
chicken fed on MOS challenged with C. perfringens show 
upregulated TLR2b gene expression (Yitbarek et  al., 2012). 
However, zymosan derived from Saccharomyces cerevisiae is 
recognized through TLR2 which initiates the cascade of 
pro-inflammatory stimulation (Sato et  al., 2003). Thus, the 
inclusion of MOS in broiler chickens might benefit to perform 
the proper functions of innate immunity in the ileum. Upregulated 
TLR4 gene expression in caecal tonsil and ileum in MOSC-
treated birds prove that TLR4 is a key receptor to identify 
the LPS (Yitbarek et al., 2012). Studies implicate that upregulated 
gene expression of TLR4 is associated with resistance to 
Salmonella Saccharomyces cerevisiae, glucuronoxylomannan, 
and Candida albicans derivatives in chicken (Chaussé et al., 2011).

Various components of YCW produce immunomodulatory 
functions, and supplementation of even 0.05% YCW enhances 
cell-mediated and humoral immune reactions in chicken (Gómez-
Verduzco et  al., 2009). Particularly, β-glucans supplementation 
stimulates innate immunity and increases resistance to S. enterica 
(Lowry et  al., 2005). Nucleotides of yeast and YCW have also 
immunomodulatory properties (Hess and Greenberg, 2012). 
Genetic expression of TLR4 gene was upregulated in chicken 
supplemented with nucleotide-rich diet (Alizadeh et  al., 2016) 
and YCW supplementation also upregulated TLR2b gene 
expression (Alizadeh et  al., 2016). This may be  due to a 
noteworthy level of mannan and β1,3–1,6-glucan (Sato et  al., 
2003). Mannan oligosaccharides improve chicken production 

and increase innate immunity. Its use in the diet may also 
exert beneficial effects. This discussion highlights the importance 
of yeast and yeast-derived products during gene regulation 
of TLRs.

A study was conducted to evaluate the effect of probiotics 
(Lactobacillus acidophilus) on different genes expression levels 
of TLRs in chicken’s cecal tonsil and the TLR2, TLR4, and 
TLR5 gene expression were different in chickens fed with 
probiotic mixed diet in comparison with the birds in the control 
group (Asgari et  al., 2018). Same probiotic supplementation 
increased the TLR2 regulation in cecal tonsils of S. enteritidis-
infected chickens that helped in lowering the infection level. 
The previous studies showed that Lactobacillus-based probiotics 
could reduce the level of pro-inflammatory cytokines in the 
intestine of S. Enteritidis-infected chickens and increased the 
gene expression of TLR2  in their cecal tonsils (Penha Filho 
et  al., 2015). The effects of probiotics on genetic expression 
of TLRs in dairy cow were also evaluated, and gene expression 
of TLR2, TLR6, TLR7, and TLR8 was downregulated. Studies 
in cattle TLRs suggested that probiotic behaved like anti-
inflammatory agents and control TLRs genetic expression and 
innate immune response (Adjei-Fremah et  al., 2018).

Effect of Micronutrients
Inflammatory responses of TLR2 and TLR4 have also been 
studied against high-fat diet in rats (Wan et  al., 2014; Lee 
et al., 2015). These treatments downregulated the gene expression 
of TLR2 and TLR4  in CD14 monocytes and impaired their 
functions (Wan et al., 2014). This diet activated the macrophages 
that significantly increased stimulation of NF-κB and IL-6 (Lee 
et al., 2015). TLR-dependent vitamin D mediated innate immunity 
has also been studied (Arababadi et al., 2018). Innate immunity 
regulation by vitamin D was also associated with TLRs regulation 
(Sadeghi et  al., 2006). It was confirmed that TLR4 caused the 
activation of APCs that reduced the inflammatory response 
of innate immunity (Gambhir et  al., 2012; Calton et  al., 2015).

POLYMORPHISM IN DIFFERENT TLRs 
IN CHICKEN

Polymorphic variants in TLRs may control the reaction of 
hosts against different pathogenic microbes, and these phenomena 
control the susceptibility and resistance against diseases (O’Dwyer 
et  al., 2013). These variations may also affect the recognition 
patterns of ligands by TLRs to differentiate host resistance to 
pathogenic infections. The single-nucleotide polymorphisms 
(SNPs) found within the PRRs change the structural orientation 
of the receptors and associated interactive features between 
the ligands and their corresponding receptors (Skevaki and 
Pararas, 2015). These topological variations influence the signaling 
pathways and also enable to recognize different pathogens.

A study reported 27 polymorphic sites in the amino acid 
sequence of chTLR1; 14  in type 1, while 13  in type 2 (Ruan 
and Zheng, 2011). Scientists declared that variations in the sequence 
of amino acids G560S and T130A present in LRR site of type 1 and 
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C228S, F129L, G285S, and L275P in type 2 LRR site might change 
PAMP recognition by these TLRs. LRRs are the extracellular 
domains of TLRs to facilitate functional domains for the recognition 
of ligands (Jin and Lee, 2008). Moreover, two distinctive polymorphic 
sites have been found; first (A645T) in chTLR1 type 1 and second 
(L275P) in chTLR1 type 2, and both occur in LRR domains in 
White-Leghorn chicken (Table  2). These variants characterize 
resistance against salmonellosis (Wigley, 2004).

Similarly, 10 polymorphic sites in the amino acid sequences 
of TLR2 type1 and type 2 have been reported among seven 
chicken breeds, i.e., six and four in type 1 and type 2, respectively 
(Ruan et  al., 2012a). Five SNPs have been found in LRR of 
TLR2 type 1 (Q45R, L115P, H232Y, E284G, and T494A) while 
three were LRR of type 2 (V66L, I311V, and A22V). However, 
TIR domain is similar to the IL-1 receptor that is highly 
conserved and interacts with adapter proteins, such as MyD88 
(Verstak et  al., 2009). Various polymorphic sites also report 
in the TIR domain (Table 2) that cause loss of MyD88 binding 
and reduce TLR2/TLR4 signaling, because TIR is the functional 
domain of subsequent recruitment of intracellular adapter 
proteins (Nagpal et  al., 2009; Werling et  al., 2009).

A study reported nine polymorphisms in the amino acid 
chain of chTLR4 including eight in extracellular sites, while 
only one in cytoplasmic sites (Ruan et  al., 2012b). Out of 
these, nine reported SNPs, five were like the SNPs in the LRR 
region as shown in Table  2 (Leveque et  al., 2003). Similarly, 
nineteen amino acid variants represented 10 novel mutations, 
while nine were reported previously. Seven new and four old 
mutations (E83K, R343K, H383Y, and Q611R) have been featured 
in LRR (Li et  al., 2017). Moreover, E83K of TLR4 has more 
resistance against SE, and E83K mutation has been documented 
as AA/AG genotypes because of G to A substitution at nucleotide 
247, and GG is known as a wild genotype. However, this SNP 
shows significant resistance against salmonella with prominent 
results in the GG genotype (Li et  al., 2017).

Similarly, genotype GG has been associated in Sentul chicken 
against salmonella and Newcastle disease (Mamutse et al., 2018). 
However, all genotypes (AA, AG, and GG) were also found 
with a similar resistance pattern against salmonella in Kampung 
chicken (Ulupi et  al., 2013). A group finds polymorphism in 
TLR4 gene’s exon 2 in 14 Chinese chicken including Red Jungle 
fowl and Tibetan chicken. Particularly, these chickens are more 
resistant to disease, and they are only BB at exon 2 of TLR4, 
while the rest of all breeds is AA, BB, and AB. Here, BB has 
been reported as a wild type at TLR4 exon 2, and AA genotype 
is because of G/A mutations at nucleotide 114 and 142 of 
exon 2, respectively, as reported as G114A and G142A. The 
genotype BB may be  beneficial for immunity in chickens, and 
the B allele might have a significant association with resistance 
(Liu et al., 2011). They also found two mutations in the amino 
acid sequence of TLR4, G114A, and G142A. Further investigation 
to find the relationship between these SNPs and resistibility 
to disease will reveal selective breeding programs in the future.

ChTLR3 and chTLR7 have the potential to increase innate 
immunity against viral attacks as discussed in this review. 
Therefore, various polymorphic regions might play frequent 
roles in resistance or susceptibility of disease in chickens. 

TABLE 2 | Allelic variation and major single-nucleotide polymorphisms in the 
different TLRs in chicken.

Gene Polymorphism Breed Reference

TLR1 Type 1 T130A RY
Ruan and 
Zheng, 2011

G560S WS
A645T WL

I388L NB
Haunshi et al., 
2018

TLR1 Type 2 F129L BF
Ruan and 
Zheng, 2011

C228S NN3, LB
L275P WL
G285S WS

TLR2 Type 1 Q45R BF

Ruan et al., 
2012a

L115P NN3
H232Y NN3
E284G BW
T494A NN3

TLR2 Type 2 A22V BW
Ruan et al., 
2012a

V66L BF
I311V HL

TLR3 D14V HL, WS

Ruan et al., 
2015

R345S BW, HL, NN3, WL

G362E
BF, BW, HL, LB, LH, 
NN3, RY, WL, WS

R459K
BF, BW, HL, LH, NN3, 
RY, WL

A540V LB, WS

A649V
BW, HL, LH, NN3, RY, 
WL, WS

D68V NB, GH

Haunshi et al., 
2018

K92Q NB, GH
N98S NB
H316Q NB
L317K NB
R399S WLH, NB, GH
R513K WLH, NB, GH

TLR4
K83E

NN3, HL, LB, LH, BB, 
BY, CH, HG, LY, TH, LS, 
WE, WL, XJ

Ruan et al., 
2012b; Li et al., 
2017

R261K LB
Ruan et al., 
2012b

G225E WL
Leveque et al., 
2003

D301E NN3, HL, LH Leveque et al., 
2003; Ruan 
et al., 2012b; Li 
et al., 2017

R343K
NN3, HL, LH, BF, BW, 
BB, BY, CH, HG, LY, TH, 
LS, WE, WL, XJ

Y383H
WL, BB, BY, CH, HG, LY, 
TH, LS, WE, WL, XJ

Ruan et al., 
2012b; Li et al., 
2017

F427V RY
Ruan et al., 
2012b

P551T LB, RY Leveque et al., 
2003E574D RY

R611Q
NN3, BB, BY, CH, HG, 
LY, TH, LS, WE, WL, XJ

Leveque et al., 
2003; Ruan 
et al., 2012b; Li 
et al., 2017

TLR7 V91L RY, WS
Ruan et al., 
2015

S135T WS
P669S HL, RY, WL, WS

BF, Beijing Fatty; BW, Beijing White 939; HL, Hy-Line Brown; LB, Laiwu Black; LB, 
Luhua; NN3, Nongda no. 3; RY, Royal; WL, White Leghorn; WS, White-Feather Silky; 
GH, Ghagus; NB, Nicobari; BB, Big Bone; BY, Beijing-you; CH, Chahua; HG, Henan 
Game; LS, Langshan; LY, Liyang; TH, Taihe; WE, White Earlobes; and XJ, Xianju.
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A study has published six SNPs (R345S, D14V, G362E, A540V, 
A649V, and R459K) in the LRR region of TLR3, while a single 
one (T713S) has been found in TIR domain. Three polymorphic 
sites have been found in the LRR region of TLR7 (V91L, 
S135T, and P669S), while one (V876M) has been located in 
the TIR domain as shown in Table  2 (Ruan et  al., 2015). Ten 
SNPs in the LRR region of TLR3 have been observed in Indian 
local chicken breeds and eight in the LRR domain as shown 
in Table  2 (Haunshi et  al., 2018). Polymorphic regions in 
TLR3 and TLR7 might exert potential effects on host responses 
against viruses to establish patterns of variable disease resistance 
or susceptibility (Al Qahtani et al., 2012; O’Dwyer et al., 2013). 
A number of reports have presented polymorphic regions in 
TLR3 gene that are associated with resistance against viral 
load (Kindberg et  al., 2011; Sironi et  al., 2012; Svensson et  al., 
2012; Lee et  al., 2013b; Studzińska et  al., 2017). A parallel 
study also reported significant relationship of different TLR3 
variants in the susceptibility or resistance against various chicken 
diseases. These are non-synonymous changes in SNPs due to 
change in amino acid sequence. These can be beneficial, harmful, 
or neutral against proteins functions, while it may be  neutral 
if SNPs have synonymous substitution (Downing et  al., 2010).

The available variations in chTLRs suggest a positive selection 
of resistance or susceptibility against diseases. A sufficient 
research gap is yet to be  exploited to identify the association 
of SNPs with resistance against microbial infections in chicken. 
Identification of associated polymorphic regions may contribute 
to the genomic selection of chicken and help to design future 
breeding programs. There is also a dire need to conduct some 
association studies among these variants and resistance in 
chicken for the improvement of commercial chicken.

CONCLUSION

Ten different TLRs activate TLR signaling pathways including 
ChTLR1, 2, 3, 4, and 7 which elicit essential immunogenic 

and inflammatory responses during different viral and bacterial 
diseases. Several nutrients and phytochemicals have proven 
as an excellent source to trigger innate immunity via stimulation 
of TLRs in chicken suggesting that some TLRs are nutrient 
specific. Yeast derivatives (as probiotic and prebiotic) have 
also been revealed as potential modulators of TLRs to enhance 
the immune response in chicken under health and disease 
conditions. Such interventions suggest the nutrigenomic 
potential of TLRs to improve the health status and production 
through dietary supplementation in chicken feed with specific 
nutrients particularly phytonutrients. Moreover, variations in 
TLRs have been identified that link potential association with 
disease susceptibility and resistance in chicken. Such genetic 
variations including SNPs are particularly useful for the 
genomic selection of chicken to produce birds with better 
genetic resistance and resilience against different diseases. 
However, a lot of work is needed to explain the role of 
nutrients and phytochemicals that modulate the genetic 
expression of TLRs.
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